Academic literature on the topic 'Dynamical filtrations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamical filtrations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamical filtrations"
Bartłomiejczyk, P., and Z. Dzedzej. "Index filtrations and Morse decompositions for discrete dynamical systems." Annales Polonici Mathematici 72, no. 1 (1999): 51–70. http://dx.doi.org/10.4064/ap-72-1-51-70.
Full textGordin, M. I. "Double extensions of dynamical systems and constructing mixing filtrations." Journal of Mathematical Sciences 99, no. 2 (April 2000): 1053–60. http://dx.doi.org/10.1007/bf02673626.
Full textJiao, Rui, Wei Liu, and Yijun Hu. "The Optimal Consumption, Investment and Life Insurance for Wage Earners under Inside Information and Inflation." Mathematics 11, no. 15 (August 5, 2023): 3415. http://dx.doi.org/10.3390/math11153415.
Full textKCHIA, YOUNES, and PHILIP PROTTER. "PROGRESSIVE FILTRATION EXPANSIONS VIA A PROCESS, WITH APPLICATIONS TO INSIDER TRADING." International Journal of Theoretical and Applied Finance 18, no. 04 (June 2015): 1550027. http://dx.doi.org/10.1142/s0219024915500272.
Full textAtamanyuk, Volodymyr, and Yaroslav Gumnytskyi. "Mass Exchange Dynamics During the Second Filtration Drying Period." Chemistry & Chemical Technology 3, no. 2 (June 15, 2009): 129–37. http://dx.doi.org/10.23939/chcht03.02.129.
Full textRazvan, M. R. "On Conley's fundamental theorem of dynamical systems." International Journal of Mathematics and Mathematical Sciences 2004, no. 26 (2004): 1397–401. http://dx.doi.org/10.1155/s0161171204202125.
Full textSavrassov, Ju S. "Algorithms of filtration and extrapolation for discrete-time dynamical systems." Acta Applicandae Mathematicae 30, no. 3 (March 1993): 193–263. http://dx.doi.org/10.1007/bf00995471.
Full textDuda, Zdzisław. "Hierarchical filtration for distributed linear multisensor systems." Archives of Control Sciences 22, no. 4 (December 1, 2012): 507–18. http://dx.doi.org/10.2478/v10170-011-0038-7.
Full textH.Z, Igamberdiev, and Kholodzhayev B.A. "ALGORITHMS FOR SUSTAINABLE RECOVERY OF INPUT INFLUENCE ON THE BASIS OF DYNAMIC FILTRATION METHODS." International Journal of Psychosocial Rehabilitation 24, no. 03 (February 18, 2020): 232–39. http://dx.doi.org/10.37200/ijpr/v24i3/pr200774.
Full textBang, Jong-Geun, and Yoong-Sup Yoon. "Analysis of Filtration Performance by Brownian Dynamics." Transactions of the Korean Society of Mechanical Engineers B 33, no. 10 (October 1, 2009): 811–19. http://dx.doi.org/10.3795/ksme-b.2009.33.10.811.
Full textDissertations / Theses on the topic "Dynamical filtrations"
Benzoni, Séverin. "Classification des filtrations dynamiques et étude des systèmes d'entropie positive." Electronic Thesis or Diss., Normandie, 2024. https://theses.hal.science/tel-04835404.
Full textIn this thesis, we explore the possible structures of measure preserving dynamical systems of the form $\bfX :=(X, \A, \mu, T)$ and their factor $\s$-algebras $\B \subset \A$. The first two chapters investigate various ways in which a factor $\s$-algebra $\B$ can sit in a dynamical system $\bfX :=(X, \A, \mu, T)$, i.e. we study some possible structures of the \emph{extension} $\A \arr \B$. In the first chapter, we consider the concepts of \emph{super-innovations} and \emph{standardness} of extensions, which are inspired from the theory of filtrations. An important focus of our work is the introduction of the notion of \emph{confined extensions}, which first interested us because they have no super-innovation. We give several examples and study additional properties of confined extensions, including several lifting results. Then, we show our main result: the existence of non-standard extensions. Finally, this result finds an application to the study of dynamical filtrations, i.e. filtrations of the form $(\F_n)_{n \leq 0}$ such that each $\F_n$ is a factor $\s$-algebra. We show that there exist \emph{non-standard I-cosy dynamical filtrations}.The second chapter furthers the study of confined extensions by finding a new kind of such extensions, in the setup of Poisson suspensions: we take an infinite $\s$-finite measure-preserving dynamical system $(X, \mu, T)$ and a compact extension $(X \times G, \mu \otimes m_G, T_\phi)$, then we consider the corresponding Poisson extension $((X \times G)^*, (\mu \otimes m_G)^*, (T_\phi)_*) \to (X^*, \mu^*, T_*)$. We give conditions under which that extension is confined and build an example which fits those conditions.Lastly, the third chapter focuses on a family of dynamical filtrations: \emph{weak Pinsker filtrations}. The existence of those filtrations on any ergodic system comes from a recent result by Austin \cite{austin}, and they present themselves as a potential tool to describe positive entropy systems. We explore the links between the asymptotic structure of weak Pinsker filtrations and the properties of the underlying dynamical system. Naturally, we also ask whether, on a given system, the structure of weak Pinsker filtrations is unique up to isomorphism. We give a partial answer, in the case where the underlying system is Bernoulli. We conclude our work by giving two explicit examples of weak Pinsker filtrations
Lanthier, Paul. "Aspects ergodiques et algébriques des automates cellulaires." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR034.
Full textThe first part of this manuscript falls within the framework of probability theory, and is devoted to the study of filtrations generated by some cellular automata. We study two versions of an algebraic automaton acting on configurations whose states take values in a finite Abelian group: one is deterministic, and consists in adding the states of two consecutive cells, and the second is a random perturbation of the first one. From these automata, random Markovian processes are constructed and the filtrations generated by these processes are studied. Using the I-cosiness criterion, we show that the two filtrations are standard in the sense developed by Vershik. However, cellular automata have the particularity of commuting with the coordinate shift operator. In this thesis, we introduce a new classification of the filtrations called "dynamic" which takes into account the action of this transformation. Filtrations are no longer defined on probability spaces but on dynamical systems, and are in this case "factor" filtrations: each sigma-algebra is invariant by the dynamics of the system. The counterpart of standardity from the dynamic point of view is studied. This creates a necessary criterion for dynamic standardity called "dynamic I-cosiness". The question of whether the dynamic I-cosiness is sufficient remains open, but a first result in this direction is given, showing that a strengthened version of the dynamic I-cosiness leads to dynamic standardity. By establishing that it does not satisfy the criterion of dynamic I-cosiness, it is proved that the factor filtration generated by the deterministic automaton is not dynamically standard, and therefore that the dynamic classification of the filtrations differs from the classification developed by Vershik. The probabilistic automaton depends on an error parameter, and it is shown by a percolation argument that the factor filtration generated by this automaton is dynamically standard for large enough values of this parameter. It is conjectured that it will not be dynamically standard for very small values of this parameter. The second part of this manuscript, more algebraic, has its origin in a musical problem, linked to the calculation of intervals in a periodic melodic line. The work presented here continues the research of the Romanian composer Anatol Vieru and of Moreno Andreatta and Dan Vuza, but in an original way from the point of view of cellular automata. We study the action on periodic sequences of two algebraic cellular automata, one of which is identical to that of the first part. The questions on the characterization of reducible and reproducible sequences as well as the associated times have been deepened and improved for these two automata. The calculation of preimages and images via the two automata was explained. The question of the evolution of the periods was treated with the creation of a tool called "characteristic" which allows to describe and control the evolution of the period in negative times. Simulations show that the evolution of the periods when the preimages are drawn at random follows an almost regular pattern, and the explanation of this phenomenon remains an open question. The mathematical results of this second part have been used in the "Automaton" module of a free composing software called "UPISketch ». This module allows a composer to create melodic lines by iterating images or taking successive preimages of a starting melodic line
Khan, Muhammad Waleed. "Dynamic filtration at soil-geotextile interfaces." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39882/.
Full textTurkson, Abraham K. "Electro-ultrafiltration with rotating dynamic membranes." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72036.
Full textFour dynamic membranes, Zr(IV) oxide, calcium oleate, poly-2-vinylpyridine and cadmium sulfide, were used to filter bovine serum albumin (BSA) in a disodium phosphate solution at pH = 8 and Prussian blue in distilled water. Prussian blue is a particle of 0.01(mu)m diameter with a zeta potential of -41mV while BSA is a macromolecule of 69,000 molecular weight, a Stokes-Einstein radius of 0.0038(mu)m and a zeta potential of -23.3mV at pH = 8. For BSA, the flux declined with time while the rejection increased. Filtrate fluxes increased with rotation rate and electric field and declined with concentration for both feeds. The flux declined beyond N = 2000rpm and was constant above C(,0) = 5.0wt%. For Prussian blue, the rejection was greater than 90% at all levels of E, N and C(,0). For BSA, the rejection increased with rotation rate and declined with concentration. The BSA rejection declined above N = 2000rpm and was constant beyond C(,0) = 0.5wt%.
A mathematical model was derived to predict the time variation of filtrate flux and a rejection model was used to predict the effect of surface concentration on BSA rejection.
Schousboe, Frederik Carl. "Media Velocity Considerations in Pleated Air Filtration." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6632.
Full textWang, Yuyan. "Simulation of pulsatile flow in baffled permeable channel for membrane filtration system." Thesis, University of Bath, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332793.
Full textFLEISCHMAN, GREGORY JOSEPH. "FLUID FILTRATION FROM CAPILLARY NETWORKS (MICROCIRCULATION, MATHEMATICAL MODELING)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187998.
Full textCao, Shiya. "Analysis of Household Water Filtration in China: A System Dynamics Model." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1268.
Full textArthur, Kevin Gordon. "An experimental and theoretical study of the filtration characteristics of water-based drilling muds." Thesis, Heriot-Watt University, 1986. http://hdl.handle.net/10399/1082.
Full textRoberts, Mark. "Assessment of glomerular dynamics in human pregnancy using theoretical analysis and dextran sieving coefficients." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336811.
Full textBooks on the topic "Dynamical filtrations"
Klotz, Dietmar. Berechnete Durchlässigkeiten handelsüblicher Brunnenfilterrohre und Kunststoff-Kiesbelagfilter (Stand 1990). Neuherberg: GSF-Forschungszentrum für Umwelt und Gesundheit, 1991.
Find full textJohn, Harlim, ed. Filtering complex turbulent systems. Cambridge: Cambridge University Press, 2012.
Find full textV, Panfilova I., ed. Osrednennye modeli filtrat͡s︡ionnykh prot͡s︡essov s neodnorodnoĭ vnutrenneĭ strukturoĭ. Moskva: "Nauka", 1996.
Find full textPankov, V. N. (Viktor Nikolaevich) and Panʹko, S. V. (Sergeĭ Vasilʹevich), eds. Matematicheskai︠a︡ teorii︠a︡ t︠s︡elikov ostatochnoĭ vi︠a︡zkoplastichnoĭ nefti. Tomsk: Izd-vo Tomskogo universiteta, 1989.
Find full textMazo, Aleksandr, and Konstantin Potashev. The superelements. Modeling of oil fields development. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1043236.
Full textEspedal, M. S. Filtration in porous media and industrial application: Lectures given at the 4th session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24-29, 1998. Edited by Fasano A, Mikelić A, and Centro internazionale matematico estivo. Berlin: Springer, 2000.
Find full textEndlich, Karlhans, and Rodger Loutzenhiser. Tubuloglomerular feedback, renal autoregulation, and renal protection. Edited by Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0209.
Full textCharry, Luisa, Pranav Gupta, and Vimal Thakoor. Introducing a Semi-Structural Macroeconomic Model for Rwanda. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0018.
Full textAndrle, Michal, Andrew Berg, R. Armando Morales, Rafael Portillo, and Jan Vlcek. On the Sources of Inflation in Kenya. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0015.
Full textEspedal, M. S., and A. Mikelic. Filtration in Porous Media and Industrial Application: Lectures given at the 4th Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held ... Mathematics / Fondazione C.I.M.E., Firenze). Springer, 2001.
Find full textBook chapters on the topic "Dynamical filtrations"
Shub, Michael. "Filtrations." In Global Stability of Dynamical Systems, 8–12. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_2.
Full textShub, Michael. "Sequences of Filtrations." In Global Stability of Dynamical Systems, 13–19. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_3.
Full textÇetin, Umut, and Albina Danilova. "Static Markov Bridges and Enlargement of Filtrations." In Dynamic Markov Bridges and Market Microstructure, 81–117. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8835-8_4.
Full textSpitzenberger, Andy, Katrin Bauer, and Rüdiger Schwarze. "Reactive Cleaning and Active Filtration in Continuous Steel Casting." In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 427–52. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_17.
Full textSirbiladze, Gia. "Problems of States Estimation (Filtration) of Extremal Fuzzy Processes." In Extremal Fuzzy Dynamic Systems, 255–88. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4250-9_8.
Full textKempken, R., H. Rechtsteiner, J. Schäfer, U. Katz, O. Dick, R. Weidemeier, and I. Sellick. "Dynamic Membrane Filtration in Mammalian Cell Culture Harvest." In Animal Cell Technology, 379–84. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5404-8_60.
Full textXie, Xiaomin, Wenxiang Zhang, Luhui Ding, Philippe Schmitz, and Luc Fillaudeau. "Hydrodynamic Enhancement by Dynamic Filtration for Environmental Applications." In Environmental Chemistry for a Sustainable World, 243–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33978-4_6.
Full textRõõm, Rein, and Aarne Männik. "Acoustic Filtration in Pressure-Coordinate Models." In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 221–26. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_29.
Full textNicklas, Jan, Lisa Ditscherlein, Shyamal Roy, Stefan Sandfeld, and Urs A. Peuker. "Microprocesses of Agglomeration, Hetero-coagulation and Particle Deposition of Poorly Wetted Surfaces in the Context of Metal Melt Filtration and Their Scale Up." In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 361–86. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_15.
Full textBoguslavskiy, Josif A. "Identification of Parameters of Nonlinear Dynamic Systems; Smoothing, Filtration, Forecasting of State Vectors." In Dynamic Systems Models, 71–108. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04036-3_5.
Full textConference papers on the topic "Dynamical filtrations"
Mao, Xinyu, Irmgard Bischofberger, and Anette E. Hosoi. "Poster: Manta-inspired filtration." In 77th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2024. http://dx.doi.org/10.1103/aps.dfd.2024.gfm.p2673818.
Full textErshov, Ivan A., Oleg V. Stukach, Igor V. Sychev, and Igor B. Tsydenzhapov. "The Wavelet Filtration Denoising in the Raman Distributed Temperature Sensing." In 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306138.
Full textBelim, S. V., and S. B. Larionov. "The algorithm of the impulse noise filtration in images based on an algorithm of community detection in graphs." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239433.
Full textVan Der Zwaag, Claas H., Tor Henry Omland, and Tore Vandbakk. "Dynamic Filtration: Seepage Losses on Tyrihans." In SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/151678-ms.
Full textPeng, Shuang Jiu, and J. M. Peden. "Prediction of Filtration Under Dynamic Conditions." In SPE Formation Damage Control Symposium. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/23824-ms.
Full textErshov, Ivan A., Oleg V. Stukach, Nina V. Myasnikova, Igor B. Tsydenzhapov, and Igor V. Sychev. "The Resolution Enhancement in the Distributed Temperature Sensor with the Extremal Filtration Method." In 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306163.
Full textVaussard, A., M. Martin, O. Konirsch, and J. M. Patroni. "An Experimental Study of Drilling Fluids Dynamic Filtration." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/15412-ms.
Full textLi, D., B. Rong, X. Rui, and Y. Liu. "Modelling of cake filtration in centrifugal dewatering by finite difference." In 1st International Conference on Mechanical System Dynamics (ICMSD 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.1791.
Full textLu, Junfeng, Yang Chu, and Wen-Qiang Lu. "An Investigation for the Usability of K-K Equations for Nano Porous Membranes." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18088.
Full textOviroh, Peter Ozaveshe, Lesego M. Mohlala, and Tien-Chien Jen. "Effects of Defects on Nanoporous Graphene and MoS2." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23442.
Full textReports on the topic "Dynamical filtrations"
Clague, D., T. Weisgraber, J. Rockway, and K. McBride. Dynamic simulation tools for the analysis and optimization of novel collection, filtration and sample preparation systems. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/894770.
Full text