Academic literature on the topic 'Dynamical domains'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamical domains.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamical domains"
Mizutani, Masahiro, and Shunji Ito. "Dynamical systems on dragon domains." Japan Journal of Applied Mathematics 4, no. 1 (February 1987): 23–46. http://dx.doi.org/10.1007/bf03167753.
Full textHuang, Yang. "A dynamical construction of Liouville domains." Proceedings of the American Mathematical Society 148, no. 12 (September 4, 2020): 5323–30. http://dx.doi.org/10.1090/proc/15187.
Full textBOYARSKY, ABRAHAM, and PAWEŁ GÓRA. "CHAOS OF DYNAMICAL SYSTEMS ON GENERAL TIME DOMAINS." International Journal of Bifurcation and Chaos 19, no. 11 (November 2009): 3829–32. http://dx.doi.org/10.1142/s0218127409025158.
Full textKidwingira, F., J. D. Strand, D. J. Van Harlingen, and Y. Maeno. "Dynamical Superconducting Order Parameter Domains in Sr2RuO4." Science 314, no. 5803 (November 24, 2006): 1267–71. http://dx.doi.org/10.1126/science.1133239.
Full textTsironis, G. P. "Dynamical domains of a nondegenerate nonlinear dimer." Physics Letters A 173, no. 4-5 (February 1993): 381–85. http://dx.doi.org/10.1016/0375-9601(93)90255-x.
Full textBao, Weizhu, and Qinglin Tang. "Numerical Study of Quantized Vortex Interaction in the Ginzburg-Landau Equation on Bounded Domains." Communications in Computational Physics 14, no. 3 (September 2013): 819–50. http://dx.doi.org/10.4208/cicp.250112.061212a.
Full textHa, N. T. T., N. V. Hong, and P. K. Hung. "Distribution of sodium and dynamical heterogeneity in sodium silicate liquid." International Journal of Modern Physics B 33, no. 05 (February 20, 2019): 1950013. http://dx.doi.org/10.1142/s0217979219500139.
Full textPadmanabhan, T. "Gravity and quantum theory: Domains of conflict and contact." International Journal of Modern Physics D 29, no. 01 (November 5, 2019): 2030001. http://dx.doi.org/10.1142/s0218271820300013.
Full textKobine, J. J., T. Mullin, and T. J. Price. "The dynamics of driven rotating flow in stadium-shaped domains." Journal of Fluid Mechanics 294 (July 10, 1995): 47–69. http://dx.doi.org/10.1017/s0022112095002801.
Full textELLIS, GEORGE F. R. "DYNAMICAL PROPERTIES OF COSMOLOGICAL SOLUTIONS." Journal of Hyperbolic Differential Equations 02, no. 02 (June 2005): 381–95. http://dx.doi.org/10.1142/s0219891605000464.
Full textDissertations / Theses on the topic "Dynamical domains"
Comanici, Adela N. "Spiral waves on spherical domains: A dynamical systems approach." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/29088.
Full textBelzil-Lacasse, Christian. "Study of Dissipative Spots In Three-Component Reaction-Difussion Systems on Two-Dimensional Domains." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34257.
Full textTurhan, Nezihe. "Deterministic and Stochastic Bellman's Optimality Principles on Isolated Time Domains and Their Applications in Finance." TopSCHOLAR®, 2011. http://digitalcommons.wku.edu/theses/1045.
Full textSoler, Vila Paula 1989. "Multi-scale study of the genome architecture and its dynamical facets." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/668229.
Full textEl desarrollo de métodos experimentales basados en la captura de la conformación cromosómica (3C) ha permitido tener una visión más detallada de la arquitectura genómica. El Hi-C, derivado del 3C, se ha convertido en una técnica de referencia para analizar la estructura tridimensional de la cromatina, así como su relación con el estado funcional celular. Sin embargo, varios aspectos del análisis y la interpretación de los datos de Hi-C siguen siendo un desafío, y pueden ocultar un potencial aún por descubrir. En esta tesis se exploran múltiples niveles de organización estructural de la cromatina. Hemos realizado un estudio integrativo combinando datos de in situ Hi-C con nueve capas epigenéticas y hemos revelado un nuevo compartimento genómico caracterizado por su dinámica y capacidad de transición, enriquecido en cromatina reprimida por polycomb. Este nuevo compartimento intermedio juega un papel importante en la modulación del genoma durante la diferenciación de células B y durante su transformación neoplásica, específicamente en pacientes con leucemia linfocítica crónica (CLL) o con linfoma de células del manto (MCL). Además, hemos desarrollado TADpole, un nuevo método computacional destinado a la detección de la jerarquía de dominios asociados topológicamente (TADs) empleando mapas de interacciones de Hi-C. Hemos demostrado su robustez ante una evaluación técnica y biológica, así como su capacidad de detectar diferencias topológicas en experimentos de capture Hi-C de alta resolución.
Feng, Libo. "Numerical investigation and application of fractional dynamical systems." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/126980/1/Libo_Feng_Thesis.pdf.
Full textPasa, Luca. "Linear Models and Deep Learning: Learning in Sequential Domains." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3425865.
Full textCon la diffusione di dispositivi a basso costo, e reti di sensori (come ad esempio l'Internet of Things), nonché lo sviluppo di interfacce di interazione uomo-macchina a basso costo, la capacità di processare dati sequenziali in maniera veloce, e assicurando un basso consumo di risorse, è diventato sempre più importante. Molti sono i compiti che trarrebbero beneficio da un avanzamento in questo ambito, dal monitoraggio e classificazione di comportamenti umani fino alla predizioni di eventi futuri. Molti dei task citati richiedono l'uso di tecniche di pattern recognition e di abilità correlate con metodi tipici dell’apprendimento automatico. Molti sono gli approcci per eseguire apprendimento su domini sequenziali proposti nel recente passato, e molti sono basati su tecniche tipiche dell'ambito del Deep Learning. I metodi di Deep Learning sono tipicamente basati su sistemi fortemente non lineari, capaci di ottenere ottimi risultati in problemi di predizione/classificazione, ma che risultano anche essere molto costosi dal punto di vista computazionale. Quando si cerca di eseguire un compito di apprendimento su domini sequenziali, e più in generale su dati strutturati, tipicamente si ricorre all'utilizzo di sistemi non lineari. Non è però sempre vero che i task considerati richiedono modelli non lineari. Quindi il rischio è di andare ad utilizzare metodi troppo complessi, e computazionalmente costosi, per poi ottenere alla fine soluzioni che migliorano di un’epsilon (o anche no migliorano) i risultati ottenibili tramite l'utilizzo di sistemi lineari dinamici, che risultano essere molto meno costosi dal punto di vista dell'apprendimento, e del costo computazionale. L'obiettivo di questa tesi è di discutere del ruolo che i sistemi lineari dinamici possono avere nelle esecuzioni di compiti di apprendimento su dati strutturati. In questa tesi vogliamo mettere in luce le capacità dei sistemi lineari dinamici (LDS) di ottenere soluzioni molto buone ad un costo computazionale relativamente basso. Inoltre risulta interessante vedere come, nel caso in cui un sistema lineare non sia sufficiente per ottenere il risultato sperato, esso possa essere usato come base per costruire modelli più complessi, oppure possa essere utilizzato per eseguire la fase di pre-training per un modello non lineare, come ad esempio Echo State Networks (ESNs) e Recurrent Neural Networks (RNNs). Nello specifico in questa tesi è stato considerato un task di predizione dell'evento successivo, data una sequenza di eventi. I dataset usati per testare i vari modelli proposti nella tesi, contengono sequenze di musica polifonica, che risultano essere particolarmente lunghe e complesse. Nella prima parte della tesi viene proposto l'utilizzo del semplice modello LDS per affrontare il compito considerato. In particolare vengono considerati tre approcci diversi per eseguire l'apprendimento con questo modello. Viene poi introdotti nuovi modelli, ispirati al modello LDS, che hanno l'obiettivo di migliorare le prestazioni di quest'ultimo nei compiti di predizione/classificazione. Vengono poi considerati i più comuni modelli non lineari, in particolare il modello RNN il quale risulta essere significativamente più complesso e computazionalmente costoso da utilizzare. Viene quindi empiricamente dimostrato che, almeno per quanto riguarda il compito di predizione e i dataset considerati, l'introduzione di una fase di pre-training basati su sistemi lineari porta ad un significativo miglioramento delle prestazioni e della accuratezza nell'eseguire la predizione. In particolare 2 metodi di pre-training vengono proposti, il primo chiamato pre-training via Linear Autoencoder, ed il secondo basato su Hidden Markov Models (HMMs). I risultati sperimentali suggeriscono che i sistemi lineari possono giocare un ruolo importante per quanto riguarda il compito di apprendimento in domini sequenziali, sia che siano direttamente usati oppure siano usati indirettamente (come base per eseguire la fase di pre-training): infatti, usandoli direttamente, essi hanno permesso di raggiungere risultati che rappresentano lo stato dell'arte, andando però a richiedere uno sforzo computazionale molto limitato se confrontato con i più comuni modelli non lineari. Inoltre, anche quando le performance ottenute sono risultate non soddisfacenti, si è dimostrato che è possibile utilizzarli con successo per eseguire la fase di pre-training di sistemi non lineari.
Wuth, Clemens [Verfasser]. "Stochastic and coherent dynamics of individual magnetic domains and domain walls / Clemens Wuth." München : Verlag Dr. Hut, 2015. http://d-nb.info/1079768815/34.
Full textRichter, Kornel. "Study of the fast domain wall dynamics in thin magnetic wires." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-01004612.
Full textMunz, Marton. "Computational studies of protein dynamics and dynamic similarity." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:2fb76765-3e43-409b-aad3-b5202f4668b3.
Full textMayes, Katherine. "Dynamic domains in strongly driven ferromagnetic films." [S.l. : s.n.], 2002. http://elib.tu-darmstadt.de/diss/000302.
Full textBooks on the topic "Dynamical domains"
Luo, Albert C. J. Discontinuous Dynamical Systems on Time-varying Domains. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00253-3.
Full textservice), SpringerLink (Online, ed. Exterior Billiards: Systems with Impacts Outside Bounded Domains. New York, NY: Springer New York, 2012.
Find full textRapp, R. Ocean domains and maximum degree of spherical harmonic and orthonormal expansions. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1999.
Find full textRapp, R. Ocean domains and maximum degree of spherical harmonic and orthonormal expansions. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1999.
Find full textMilnor, John W. Dynamical systems (1984-2012). Edited by Bonifant Araceli 1963-. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textQuinn, Peter J., ed. Membrane Dynamics and Domains. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-5806-1.
Full textJ, Quinn P., ed. Membrane dynamics and domains. Dordrecht: Kluwer Academic/Plenum, 2004.
Find full textKathleen, Hornsby, Yuan May, and University Consortium for Geographic Information Science., eds. Understanding dynamics of geographic domains. Boca Raton: Taylor & Francis, 2008.
Find full textMulder, Jan, Wouter A. Serdijn, Albert C. Woerd, and Arthur H. M. Roermund. Dynamic Translinear and Log-Domain Circuits. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4955-0.
Full textWolf, John P. Soil-structure-interaction analysis in time domain. Englewood Cliffs, N.J: Prentice Hall, 1988.
Find full textBook chapters on the topic "Dynamical domains"
Raugel, Geneviève. "Dynamics of partial differential equations on thin domains." In Dynamical Systems, 208–315. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0095241.
Full textLiu, Xinzhi, and Kexue Zhang. "Application to Synchronization of Dynamical Networks." In Impulsive Systems on Hybrid Time Domains, 61–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06212-5_3.
Full textLiu, Xinzhi, and Kexue Zhang. "Stabilization and Synchronization of Dynamical Networks." In Impulsive Systems on Hybrid Time Domains, 141–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06212-5_6.
Full textPilyugin, Sergei Yu. "Limit sets of domains." In The Space of Dynamical Systems with the C0-Topology, 125–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073524.
Full textShoikhet, David, and Mark Elin. "Backward Flow Invariant Domains for Semigroups." In Linearization Models for Complex Dynamical Systems, 195–219. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0509-0_8.
Full textGrüne, Lars. "7. Domains of Attraction." In Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization, 157–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-36784-0_7.
Full textRodríguez, Claudio A., and Marcelo A. S. Neves. "Domains of Parametric Roll Amplification for Different Hull Forms." In Parametric Resonance in Dynamical Systems, 107–27. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1043-0_6.
Full textWard, Michael J. "Metastable dynamics and exponential asymptotics in multi-dimensional domains." In Multiple-Time-Scale Dynamical Systems, 233–59. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0117-2_9.
Full textMielke, Alexander, Guido Schneider, and Hannes Uecker. "Stability and Diffusive Dynamics on Extended Domains." In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, 563–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56589-2_24.
Full textBaruchel, José, and Michel Schlenker. "Application of Diffraction Topography to the Study of Magnetic Domains and Phase Transitions." In X-Ray and Neutron Dynamical Diffraction, 187–97. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5879-8_12.
Full textConference papers on the topic "Dynamical domains"
Pasa, Luca, Alessandro Sperduti, and Peter Tino. "Linear dynamical based models for sequential domains." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7966122.
Full textLabrune, M., T. Daniel, and S. Hamzaoui. "Semi-Dynamical Observations Of Small Magnetic Domains." In International Topical Meeting on Image Detection and Quality, edited by Lucien F. Guyot. SPIE, 1987. http://dx.doi.org/10.1117/12.966784.
Full textGuo, Siyu, and Albert C. J. Luo. "Periodic Motions in a Discontinuous Dynamical System With Two Circular Boundaries." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97876.
Full textBelle, Vaishak, and Gerhard Lakemeyer. "Reasoning about Probabilities in Unbounded First-Order Dynamical Domains." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/115.
Full textCastillo, A´ngela, and Pedro J. Zufiria. "Computational Schemes for Optimizing Domains of Attraction in Dynamical Systems." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48158.
Full textPardo, Rosa, and Alfonso Castro. "Branches of positive solutions of subcritical elliptic equations in convex domains." In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0230.
Full textLuo, Yang, Natalie Baddour, and Ming Liang. "Dynamical Modeling of Gear Transmission Considering Gearbox Casing." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85656.
Full textSun, Jian-Qiao, Bo Song, and Jie Yang. "Global Analysis of Nonlinear Time-Delayed Dynamical Systems." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48069.
Full textChezganov, D. S., M. N. Lysakov, E. A. Pashnina, and E. A. Linker. "Dynamical scattering simulation and electron backscatter diffraction application for orientation mapping of ferroelectric domains." In XXVIII Российская конференция по электронной микроскопии и VI школа молодых учёных "Современные методы электронной, зондовой микроскопии и комплементарные методы в исследованиях наноструктур и наноматериалов". Crossref, 2020. http://dx.doi.org/10.37795/rcem.2020.55.21.004.
Full textEl-Rifai, Khalid, George Haller, and Anil K. Bajaj. "Domains of Attraction for an Autoparametric Mass-Pendulum System: A Lyapunov Exponent Map Approach." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48594.
Full textReports on the topic "Dynamical domains"
Lawton, James H., and Matthew Berger. Multi-Agent Planning in Dynamic Domains. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada482901.
Full textWoyczynski, Lauren, Christina Misunas, and Md Irfan Hossain. Building the Adolescent Indicators and Gender Gaps Dashboard. Population Council, 2022. http://dx.doi.org/10.31899/sbsr2022.1014.
Full textEastlake, D. Secure Domain Name System Dynamic Update. RFC Editor, April 1997. http://dx.doi.org/10.17487/rfc2137.
Full textWellington, B. Secure Domain Name System (DNS) Dynamic Update. RFC Editor, November 2000. http://dx.doi.org/10.17487/rfc3007.
Full textAboba, B., and S. Cheshire. Dynamic Host Configuration Protocol (DHCP) Domain Search Option. RFC Editor, November 2002. http://dx.doi.org/10.17487/rfc3397.
Full textPan, Xiaoqing. Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1187994.
Full textLee, Andrew Loyd. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/373861.
Full textThomson, S., Y. Rekhter, and J. Bound. Dynamic Updates in the Domain Name System (DNS UPDATE). Edited by P. Vixie. RFC Editor, April 1997. http://dx.doi.org/10.17487/rfc2136.
Full textKaminka, Gal. The Impact of Cultural Differences on Crowd Dynamics in Pedestrian and Evacuation Domains. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada552369.
Full textSpring, Jonathan M. Modeling Malicious Domain Name Take-down Dynamics: Why eCrime Pays. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada609796.
Full text