Academic literature on the topic 'Dynamic treatment regimes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic treatment regimes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic treatment regimes"
Chakraborty, Bibhas, and Susan A. Murphy. "Dynamic Treatment Regimes." Annual Review of Statistics and Its Application 1, no. 1 (January 3, 2014): 447–64. http://dx.doi.org/10.1146/annurev-statistics-022513-115553.
Full textLavori, Philip W., and Ree Dawson. "Dynamic treatment regimes: practical design considerations." Clinical Trials 1, no. 1 (February 2004): 9–20. http://dx.doi.org/10.1191/1740774504cn002oa.
Full textMurphy, S. A. "Optimal dynamic treatment regimes." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65, no. 2 (April 25, 2003): 331–55. http://dx.doi.org/10.1111/1467-9868.00389.
Full textZhang, Yichi, Eric B. Laber, Marie Davidian, and Anastasios A. Tsiatis. "Interpretable Dynamic Treatment Regimes." Journal of the American Statistical Association 113, no. 524 (October 2, 2018): 1541–49. http://dx.doi.org/10.1080/01621459.2017.1345743.
Full textMoodie, Erica E. M., Thomas S. Richardson, and David A. Stephens. "Demystifying Optimal Dynamic Treatment Regimes." Biometrics 63, no. 2 (February 26, 2007): 447–55. http://dx.doi.org/10.1111/j.1541-0420.2006.00686.x.
Full textZhao, Ying-Qi, and Eric B. Laber. "Estimation of optimal dynamic treatment regimes." Clinical Trials: Journal of the Society for Clinical Trials 11, no. 4 (May 28, 2014): 400–407. http://dx.doi.org/10.1177/1740774514532570.
Full textLavori, Philip W., and Ree Dawson. "Dynamic treatment regimes: practical design considerations." Clinical Trials 1, no. 1 (February 1, 2004): 9–20. http://dx.doi.org/10.1191/1740774s04cn002oa.
Full textJohnson, Brent A. "Treatment-competing events in dynamic regimes." Lifetime Data Analysis 14, no. 2 (September 9, 2007): 196–215. http://dx.doi.org/10.1007/s10985-007-9051-3.
Full textLizotte, Daniel J., and Arezoo Tahmasebi. "Prediction and tolerance intervals for dynamic treatment regimes." Statistical Methods in Medical Research 26, no. 4 (July 11, 2017): 1611–29. http://dx.doi.org/10.1177/0962280217708662.
Full textMurphy, S. A., and D. Bingham. "Screening Experiments for Developing Dynamic Treatment Regimes." Journal of the American Statistical Association 104, no. 485 (March 2009): 391–408. http://dx.doi.org/10.1198/jasa.2009.0119.
Full textDissertations / Theses on the topic "Dynamic treatment regimes"
Moodie, Erica E. M. "Inference for optimal dynamic treatment regimes /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/9605.
Full textMohamed, Nur Anisah. "Optimal dynamic treatment regimes : regret-regression method with myopic strategies." Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/2242.
Full textYazzourh, Sophia. "Apprentissage par renforcement et outcome-weighted learning bayésien pour la médecine de précision : Intégration de connaissances médicales dans les algorithmes de décision." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES139.
Full textPrecision medicine aims to tailor treatments to the characteristics of each patient by relying on the frameworks of Individualized Treatment Regimes (ITR) and Dynamic Treatment Regimes (DTR). ITRs involve a single therapeutic decision, while DTRs allow for the adaptation of treatments over time through a sequence of decisions. For these approaches to be effective, they must be capable of handling complex data and integrating medical knowledge, which is essential for enabling realistic and safe clinical use. This work presents three research projects. First, a state-of-the-art review of methods for integrating medical knowledge into Reinforcement Learning (RL) models was conducted, considering the context of DTR and their specific constraints for application to observational data. Second, a probabilistic method for constructing rewards was developed for RL models, based on the preferences of medical experts. Illustrated by case studies on diabetes and cancer, this method generates data-driven rewards, avoiding the biases of "manual" construction and ensuring consistency with medical objectives in learning treatment recommendation strategies. Third, a Bayesian framework for the Outcome-Weighted Learning (OWL) method was proposed to quantify uncertainty in treatment recommendations, thereby enhancing the robustness of therapeutic decisions, and was illustrated through simulations studies. This contributions aim to improve the reliability of decision-making tools in precision medicine, by integrating medical knowledge into RL models on one hand, and proposing a Bayesian framework to quantify uncertainty in the OWL model on the other. This work is part of a global perspective of interdisciplinary collaboration, particularly among the fields of machine learning, medical sciences, and statistics
Young, Katherine W. "Dynamic treatment regimens for congestive heart failure." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129847.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 59-60).
Each year, millions of patients are hospitalized with a diagnosis of congestive heart failure (CHF). This condition is characterized by inadequate tissue perfusion resulting from an inability of the heart to provide enough blood to meet the body's metabolic demands. Patients with CHF remain at a greater risk for mortality and other adverse events. A primary symptom of CHF is fluid overload ("congestion"), which is routinely treated with diuretic therapy. However, choosing a diuretic therapy that maximizes the therapeutic effects while minimizing harmful side effects remains a challenge. In order to assess a patient's response to a particular therapy and guide future treatment decisions, clinicians monitor a number of variables including a patients' vital signs, glomerular filtration rate (GFR, a measure of renal function), and fluctuations in volume status. Nevertheless, these variables are typically insufficient by themselves to ensure that a given therapy is optimal for a given patient. Current guidelines for heart failure management were developed, in part, from large clinical trials. However, it is not always clear how to apply these observations to a given patient, whose clinical characteristics may differ significantly from those of the patients in the original studies. Therefore, there is a need for methods that identify patient-specific treatments that would allow physicians to construct therapies that are truly personalized. This work describes an approach for building dynamic treatment regimens (DTRs) - a set of patient-specific treatment rules that optimize an outcome of interest. The method uses artificial neural networks to suggest diuretic doses that will improve a patient's volume status while simultaneously minimizing harmful side effects on renal function. This body of work suggests the potential that DTRs have in developing personalized diuretic regimens to improve the clinical outcomes of CHF patients.
by Katherine W. Young.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Rich, Benjamin. "Optimal dynamic treatment regime structural nested mean models: improving efficiency through diagnostics and re-weighting and application to adaptive individual dosing." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114179.
Full textLes régimes de traitement dynamiques sont utilisés fréquemment en médecine. Nous les retrouvons, par exemple, dans le traitement des maladies chroniques. Alors que l'information obtenue chez un patient est récupérée dans le temps, il est souhaitable d'utiliser cette information afin de pouvoir faire des décisions de traitement qui sont adaptées à chaque patient, ou de pouvoir baser des décisions de traitements sur des observations qui évoluent. Les régimes de traitement dynamiques ont fait le sujet de travaux récents dans le domaine de l'inférence causale. Plus particulièrement, des méthodes semi-paramétriques ont été développées pour estimer, à partir de données non expérimentales, la règle de traitement ou la stratégie la meilleure ou optimale. Une de ces méthodes, proposée par Robins, est le modèle moyen structurel emboîté pour régime de traitement optimal dynamique (Optimal Dynamic Treatment Regime Structural Nested Mean Model : ODTR-SNMM) et la procédure g-estimation associée. Les suppostitions impliquées dans la modèlisation sont une préoccupation importante lors de l'application de cette méthodologie. Dans cette thèse, la vérification des suppositions de modélisation en utilisant les diagnostics résiduels et d'influence, normalement réalisée dans une analyse de régression traditionelle, est étendue à l'approche ODTR-SNMM. La méthodogie est évaluée en utilisant des données simulées, obtenues à partir de différents réglages de simulation. L'approche est aussi mise en application dans une étude d'arrêt d'allaitement. Par la suite, nous considérons des modèles partiellement mal spécifiés qui engendrent une estimation cohérente mais inefficace du paramètre d'intérêt en raison de la mal spécification du modèle de nuisance. En plus de la possibilité de traiter les mal spécifications partielles par les méthodes de diagnostic proposées, la repondération est considérée comme façon d'améliorer l'efficacité des estimateurs sous ces suppositions de modélisation. Une méthode de repondération basée sur l'influence des échantillons est proposée et étudiée par simulations. Finalement, nous considérons l'application de l'estimation des régimes de traitement dynamiques optimaux sur les stratégies de dosage adaptatifs pour les médicaments ayant une marge thérapeutique étroite et un dosage hautement variable. Utilisant l'anticoagulothérapie orale en exemple, nous concevons une simulation dans laquelle les données sont réalisées à partir de modèles pharmacocinétique (PK) et pharmacodynamique (PD) réalistes. Une technique de modélisation pour l'ODTR-SNMM avec dosage continu est proposée et appliquée aux données PK et PD simulées. Nous comparons la performance de plusieurs modèles utilisant différent réglages.
Daddi, Hammou Aoumeur. "Improved theoretical treatment of the dynamics of quarkonia in the quark gluon plasma : from semiclassical approximation to unified quantum master equations between the quantum Brownian and the quantum optical regimes." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0425.
Full textHeavy quarkonia are one of the probes of Quark-Gluon Plasma (QGP) formed in Ultra-Relativistic Heavy-Ion collisions (URHIC). Over the past decade, there has been an increasing interest in the use of open quantum systems (OQS) formalism in the study of the in- QGP quarkonia dynamics. In particular, it has been shown that the Lindblad equation can result in semiclassical equations, which have been previously employed by several phenomenological models. In the first part of this thesis, we investigate the validity of the semiclassical approximation, and its ability to describe certain non-trivial quantum effects and reach the appropriate thermal limit. The second part of the thesis aims to address some theoretical challenges associated with the use of the OQS formalism in the study of in-QGP quarkonia dynamics. In particular, due to the dynamical aspect of the QGP and its time-dependent temperature, the dynamics of in- QGP quarkonia covers two different regimes of the OQS formalism, which are described by two different master equations, namely, the quantum Brownian and optical regimes. We first explore the transition between the two regimes and elucidate the link between their respective master equations. Secondly, in order to describe the complete in-QGP quarkonia time evolution with a single master equation, we apply the universal Lindblad equation (ULE) to the QGP-quarkonia system and derive a set of coupled singlet-octet universal equations
Mohammadighavam, S. (Shahram). "Hydrological and hydraulic design of peatland drainage and water treatment systems for optimal control of diffuse pollution." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526214511.
Full textTiivistelmä Turvemaiden ojitus metsätaloutta, maataloutta ja turvetuotantoa varten lisää orgaanisen aineen, kiintoaineineen ja ravinteiden huuhtoutumista alapuolisiin vesistöihin. Lisääntyneellä kuormituksella voi olla merkittäviä vaikutuksia vesiekosysteemeihin, minkä vuoksi turvetuotannon ympäristöluvissa vaaditaan valumavesien puhdistamista mm. laskeutusaltaiden ja pintavalutuskenttien avulla. Tiukentuneiden vesiensuojelumääräysten vuoksi tarvitaan uusia vesiensuojelumenetelmiä sekä tulee tehostaa jo käytössä olevien menetelmien toimintaa. Tämän työn tavoitteena on suositella uusia menetelmiä perustuen I) entistä tarkempaan hydrologiseen tietoon valunnasta ja vesistökuormituksesta ja II) kemiallisen vesienpuhdistuksen yhteydessä käytettävien laskeutusaltaiden hydrauliseen suunnitteluun. Tämä väitöstyö rakentuu maastossa ja laboratoriossa tehtyjen tutkimusten sekä hydrologisen/hydraulisen mallinnuksen varaan. Valuma-alueiden hydrologiaa tutkittiin ja mallinnettiin kolmella turvemetsäalueella ja kahdella turvetuotantoalueella Pohjois-Suomessa. Ojituksen hydrologisten vaikutusten arviointiin käytettiin DRAINMOD 6.1 ohjelmaa, jonka kalibrointia ja validointia varten kerättiin jatkuvatoimisilla antureilla aineistoa pohjaveden pinnankorkeuksista ja virtaamasta useiden vuosien ajalta. Mallin avulla voitiin pohjaveden pinnan vaihtelut kuvata yleisesti melko hyvin kaikilla tutkimusalueilla yksittäisistä sadanta-valuntatapahtuminen yli- tai aliarvioinneista huolimatta. Saadut tulokset osoittavat, että DRAINMOD 6.1 ohjelmalla voidaan riittävällä tarkkuudella simuloida pohjaveden pinnan vaihteluita kylmässä ilmastossa, kuten Pohjois-Suomessa, mutta malli ei soveltunut hyvin ojitusalueelta lähtevän valunnan tarkkaan määrittämiseen. Kemiallisen vesienpuhdistusrakenteiden optimointiin käytettiin COMSOL Multiphysics 5.1 ohjelmaa, jolla voidaan toteuttaa ja laskea veden virtauksia kolmessa dimensiossa (computational fluid dynamic, CFD, model). Mallilla arvioitiin kemikalointialtaan tuloaukon rakenteen vaikutuksia tyypillisesti kemikaloinnissa käytetyn allasrakenteen puhdistustehokkuuteen. Lisäksi mallilla mitoitettiin virtausesteitä optimaalisen sekoittumisolosuhteiden saamiseksi ja puhdistustehokkuuden parantamiseksi painovoimaisesti toimivissa flokkausaltaissa (hidas sekoitus). Saadut tulokset osoittavat, että laskeutusaltaiden tuloaukon rakenteella on merkittävä vaikutus kemikaloinnissa saavutettuun puhdistustehokkuuteen. Lisäksi työssä esitettiin optimaalisia virtausesteiden mitoituksia (geometria, esteiden välinen etäisyys, virtaussyvyys yms.) puhdistuksen kannalta parhaiden mahdollisten sekoitusolosuhteiden saavuttamiseksi
DELIU, NINA. "Reinforcement learning in modern biostatistics: benefits, challenges and new proposals." Doctoral thesis, 2021. http://hdl.handle.net/11573/1581572.
Full textBooks on the topic "Dynamic treatment regimes"
Tsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. Dynamic Treatment Regimes. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692.
Full textChakraborty, Bibhas, and Erica E. M. Moodie. Statistical Methods for Dynamic Treatment Regimes. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7428-9.
Full textChakraborty, Bibhas. Statistical methods for dynamic treatment regimes: Reinforcement learning, causal inference, and personalized medicine. New York, NY: Springer, 2013.
Find full textTsiatis, Anastasios A. Dynamic Treatment Regimes. Taylor & Francis Group, 2021.
Find full textDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway, and Eric Laber. Introduction to Dynamic Treatment Regimes. Taylor & Francis Group, 2019.
Find full textDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway, and Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Find full textDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway, and Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Find full textDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway, and Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Find full textMoodie, Erica E. M., and Bibhas Chakraborty. Statistical Methods for Dynamic Treatment Regimes: Reinforcement Learning, Causal Inference, and Personalized Medicine. Springer New York, 2015.
Find full textOrellana, Liliana del Carmen. Methodological challenges for the estimation of optimal dynamic treatment regimes from observational studies. 2007.
Find full textBook chapters on the topic "Dynamic treatment regimes"
Qian, Min, Inbal Nahum-Shani, and Susan A. Murphy. "Dynamic Treatment Regimes." In Modern Clinical Trial Analysis, 127–48. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4322-3_5.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Introduction." In Dynamic Treatment Regimes, 1–15. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-1.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Statistical Inference." In Dynamic Treatment Regimes, 515–69. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-10.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Additional Topics." In Dynamic Treatment Regimes, 571–76. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-11.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Preliminaries." In Dynamic Treatment Regimes, 17–50. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-2.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Single Decision Treatment Regimes: Fundamentals." In Dynamic Treatment Regimes, 51–97. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-3.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Single Decision Treatment Regimes: Additional Methods." In Dynamic Treatment Regimes, 99–124. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-4.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Multiple Decision Treatment Regimes: Overview." In Dynamic Treatment Regimes, 125–83. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-5.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Multiple Decision Treatment Regimes: Formal Framework." In Dynamic Treatment Regimes, 185–243. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-6.
Full textTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway, and Eric B. Laber. "Optimal Multiple Decision Treatment Regimes." In Dynamic Treatment Regimes, 245–323. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-7.
Full textConference papers on the topic "Dynamic treatment regimes"
Jain, Nishan, and James Baeder. "Assessment of Turbulence Model Length Scales based on Hybrid RANS-LES Modeling of Unsteady Flow Over Airfoil." In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11393.
Full textWang, Lu, Wenchao Yu, Xiaofeng He, Wei Cheng, Martin Renqiang Ren, Wei Wang, Bo Zong, Haifeng Chen, and Hongyuan Zha. "Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes✱." In WWW '20: The Web Conference 2020. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3366423.3380248.
Full textJiang, Yushan, Wenchao Yu, Dongjin Song, Wei Cheng, and Haifeng Chen. "Interpretable Skill Learning for Dynamic Treatment Regimes through Imitation." In 2023 57th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2023. http://dx.doi.org/10.1109/ciss56502.2023.10089648.
Full textLiu, Ying, Brent Logan, Ning Liu, Zhiyuan Xu, Jian Tang, and Yangzhi Wang. "Deep Reinforcement Learning for Dynamic Treatment Regimes on Medical Registry Data." In 2017 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, 2017. http://dx.doi.org/10.1109/ichi.2017.45.
Full textYin, Changchang, Ruoqi Liu, Jeffrey Caterino, and Ping Zhang. "Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes." In KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3534678.3539413.
Full textLi, Mingyi, Xiao Zhang, Haochao Ying, Yang Li, Xu Han, and Dongxiao Yu. "Data Quality Aware Hierarchical Federated Reinforcement Learning Framework for Dynamic Treatment Regimes." In 2023 IEEE International Conference on Data Mining (ICDM). IEEE, 2023. http://dx.doi.org/10.1109/icdm58522.2023.00131.
Full textAndryushchenko, Aleksei Dmitrievitch. "Halite Precipitation in Brine Reservoirs: Prediction and Control by Numerical Model, Optimization of the Fresh Water Treatments and Well Production Regimes." In SPE Russian Petroleum Technology Conference. SPE, 2021. http://dx.doi.org/10.2118/206645-ms.
Full textMcDonald, Dale B., and Joseph O. Falade. "Parameter Identification in Ecological Systems via Discontinuous and Singular Control Regimes." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86063.
Full textAguiar, Janaina I. S., Antonio A. Pontifes, Jonathan Rogers, and Amir Mahmoudkhani. "Selecting a Product for Wax Remediation: From Characterization of Field Wax Deposits to Improvement of Treatment Sustainability." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/30951-ms.
Full textPacaldo, Renato S., Miraç Aydın, and Randell Keith Amarille. "Soil CO2 Effluxes in Post-fire and Undisturbed Pinus nigra Forests: A Soil Moisture Manipulation Study." In 3rd International Congress on Engineering and Life Science. Prensip Publishing, 2023. http://dx.doi.org/10.61326/icelis.2023.41.
Full textReports on the topic "Dynamic treatment regimes"
Neugebauer, Romain, Julie Schmittdiel, Oleg Sofrygin, Alyce Adams, Richard Grant, and Mark van der Laan. Methods to Assess the Effect of Dynamic Treatment Regimens Using Electronic Health Records. Patient-Centered Outcomes Research Institute (PCORI), June 2020. http://dx.doi.org/10.25302/06.2020.me.140312506.
Full textBanin, Amos, Joseph Stucki, and Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Full textBobashev, Georgiy, John Holloway, Eric Solano, and Boris Gutkin. A Control Theory Model of Smoking. RTI Press, June 2017. http://dx.doi.org/10.3768/rtipress.2017.op.0040.1706.
Full textAnderson, Donald M., Lorraine C. Backer, Keith Bouma-Gregson, Holly A. Bowers, V. Monica Bricelj, Lesley D’Anglada, Jonathan Deeds, et al. Harmful Algal Research & Response: A National Environmental Science Strategy (HARRNESS), 2024-2034. Woods Hole Oceanographic Institution, July 2024. http://dx.doi.org/10.1575/1912/69773.
Full textOptional dynamic treatment regimes and partial welfare ordering. Cemmap, October 2020. http://dx.doi.org/10.47004/wp.cem.2020.5020.
Full text