Academic literature on the topic 'Dynamic structural equation models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic structural equation models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic structural equation models"
Asparouhov, Tihomir, Ellen L. Hamaker, and Bengt Muthén. "Dynamic Structural Equation Models." Structural Equation Modeling: A Multidisciplinary Journal 25, no. 3 (December 27, 2017): 359–88. http://dx.doi.org/10.1080/10705511.2017.1406803.
Full textGrimm, Kevin J., and Nilam Ram. "Latent Growth and Dynamic Structural Equation Models." Annual Review of Clinical Psychology 14, no. 1 (May 7, 2018): 55–89. http://dx.doi.org/10.1146/annurev-clinpsy-050817-084840.
Full textFontanella, Lara, Luigi Ippoliti, and Pasquale Valentini. "Environmental pollution analysis by dynamic structural equation models." Environmetrics 18, no. 3 (2007): 265–83. http://dx.doi.org/10.1002/env.835.
Full textShina, Arya Fendha Ibnu. "ESTIMASI PARAMETER PADA SISTEM MODEL PERSAMAAN SIMULTAN DATA PANEL DINAMIS DENGAN METODE 2 SLS GMM-AB." MEDIA STATISTIKA 11, no. 2 (December 30, 2018): 79–91. http://dx.doi.org/10.14710/medstat.11.2.79-91.
Full textCziráky, Dario. "Estimation of dynamic structural equation models with latent variables." Advances in Methodology and Statistics 1, no. 1 (January 1, 2004): 185–204. http://dx.doi.org/10.51936/toxt5757.
Full textMcNeish, Daniel. "Two-Level Dynamic Structural Equation Models with Small Samples." Structural Equation Modeling: A Multidisciplinary Journal 26, no. 6 (March 28, 2019): 948–66. http://dx.doi.org/10.1080/10705511.2019.1578657.
Full textWang, Yulin, Yu Luo, Hulin Wu, and Hongyu Miao. "Dynamic structural equation models for directed cyclic graphs: the structural identifiability problem." Statistics and Its Interface 12, no. 3 (2019): 365–75. http://dx.doi.org/10.4310/sii.2019.v12.n3.a2.
Full textWang, Yulin, Yu Luo, Hulin Wu, and Hongyu Miao. "Dynamic structural equation models for directed cyclic graphs: the structural identifiability problem." Statistics and Its Interface 12, no. 3 (2019): 365–75. http://dx.doi.org/10.4310/18-sii550.
Full textAfonin, S. M. "Structural Schemes and Structural-Parametric Models of Electroelastic Actuators for Nanomechatronics Systems." Mekhatronika, Avtomatizatsiya, Upravlenie 20, no. 4 (April 10, 2019): 219–29. http://dx.doi.org/10.17587/mau.20.219-229.
Full textSagan, Adam. "Dynamic Structural Equation Models in Momentary Assessment in Consumer Research." Marketing i Zarządzanie 54 (2018): 61–73. http://dx.doi.org/10.18276/miz.2018.54-05.
Full textDissertations / Theses on the topic "Dynamic structural equation models"
Ciraki, Dario. "Dynamic structural equation models : estimation and interference." Thesis, London School of Economics and Political Science (University of London), 2007. http://etheses.lse.ac.uk/2937/.
Full textJung, Kwang Hee. "Dynamic GSCA generalized structured component analysis: a structural equation model for analyzing effective connectivity in functional neuroimaging." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106488.
Full textLa Modélisation par Équations Structurelles (MES) est souvent utilisée dans les études d'imagerie cérébrales fonctionnelles afin d'investiguer la connectivité effective. La modélisation de connectivité effective est une approche dans laquelle certaines régions cérébrales, appelées régions d'intérêts (RIs), sont spécifiquement sélectionnées à partir de connaissances établies sur ces régions, et des hypothèses sur les possibles liens directionnels (causals) entre les RIs sont formulées et testées. Par contre, les méthodes de MES existantes sont sérieusement limitées par leur capacité computationelle et le nombre et l'étendue des modèles qui peuvent être spécifiés. Afin d'adresser ces difficultés, je propose ici une nouvelle méthode de MES afin d'analyser la connectivité effective, appelée Analyse en Composantes Structurée Généralisée (ACSG) Dynamique. Cette méthode est une méthode basée sur les composantes, combinant la version originale des ACSGs et un modèle auto-régresseur multi-variable afin de tenir compte de la nature dynamique des données recueillies à différent temps. Les ACSG Dynamiques peuvent accommoder des modèles structurels plus complexes pour décrire les relations entre les RIs. De plus, comparé aux méthodes traditionnelles de MES, les ACSG Dynamiques sont moins susceptible de succomber aux difficultés computationelles, comme les solutions inappropriées et l'échec d'identification de modèle. Afin d'illustrer l'utilisation de la méthode proposée, des résultats d'études empiriques basées sur des données synthétiques et réelles sont présentées. Des extensions possibles des ACSG Dynamiques sont aussi discutées, incluant des composantes de plus haut niveau, la comparaison de plusieurs échantillons, l'analyse multi-niveau, et les interactions latentes.
Yang, Yang. "Two-dimensional dynamic analysis of functionally graded structures by using meshfree boundary-domain integral equation method." Thesis, University of Macau, 2015. http://umaclib3.umac.mo/record=b3335354.
Full textZhou, Lixing. "Dynamic generalized (multiple-set) structured canonical correlation analysis (dynamic GCANO): a structural equation model for simultaneous analysis of multiple-subject effective connectivity in functional neuroimaging studies." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123190.
Full textSuivant les méthodes d'imagerie fonctionnelle cérébrale, une connectivité efficace est définie comme influence dépendant de causalité temporelle qu'une certaine région d'intérêt du cerveau (ROI) exerce sur une autre. La modélisation par équation structurelle (SEM) est régulièrement utilisée pour analyser la connectivité efficace. Ces dernières années, diverses méthodes de SEM ont été proposées pour la modélisation de la connectivité efficace. Cependant, il y a eu peu de tentative pour développer des méthodes de SEM pour analyser les modèles communs de connectivité efficace sur-sujets, malgré la prédominance de recherche sur des sujets multiples pour analyser la connectivité efficace. Cette thèse propose une méthode qui comble cette lacune. Cette méthode est appelée dynamique généralisée (multiples ensemble) structuré l'analyse de corrélation canonique (dynamique GCANO). Elle combine généralisée (multiples ensemble) structuré l'analyse de corrélation canonique (GCANO) avec multivariée des séries chronologiques autorégressif dans un cadre unifié. Cette thèse commence par un bref sommaire sur les techniques existantes de SEM et souligne leurs limites pour analyser les données de plusieurs sous réserve pour la connectivité efficace, ce qui a mené à développer la dynamique GCANO. Les techniques de base de la méthode proposée sont ensuite énumérées, y compris les spécifications du cadre de modélisation et un critère d'optimisation pour l'estimation de paramètres, qui est réduit par alternant algorithme des moindres carrés. L'efficacité du dynamique GCANO est démontrée par l'analyse des ensembles de données synthétiques et réels. Les données synthétiques montrent une récupération raisonnable de paramètre par la méthode proposée, alors que les données réelles montrent l'utilité de la méthode dans les recherches empiriques. Plusieurs fonctionnalités du dynamique sont mises en évidence par le biais de ces exemples. En conclusion, la thèse propose des extensions possibles de la méthode proposée.
Hu, Shanshan. "AFFECT, MOTIVATION, AND ENGAGEMENT IN THE CONTEXT OF MATHEMATICS EDUCATION: TESTING A DYNAMIC MODEL OF INTERACTIVE RELATIONSHIPS." UKnowledge, 2018. https://uknowledge.uky.edu/edp_etds/71.
Full textHan, Sukho Brown D. Scott. "The impact analysis of structural change in Korean agriculture with respect to the Korean-United States free trade agreement dynamic simultaneous equation model approach /." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6969.
Full textBocaccio, Alessandro Antunes. "A inteligência como capacidade dinâmica : uma relação entre processo de monitoramento de ambiente externo e vantagem competitiva." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/163858.
Full textOrganizations are exposed to an increasing amount and variability of information. The ability to anticipate trends and adapt to the environment becomes, besides a source of competitive advantage, a necessary factor for survival. In this reality, organizations frequently present difficulties in reading their environment and adapting to them. We believe in the need to develop an internal capacity of the organization for the monitoring of the environment to be established, as well as analysis of opportunities, planning of actions of improvement and reconfiguration of the organization. This study sought to verify the relationship of Intelligence - as a process of monitoring the environment - as a Dynamic Capabilities, and how this can contribute to the generation of competitive advantage. A research model was created, using the models of Rios (2010) and Teece (2014), relating the concepts of Dynamic Intelligence and Capacity, and these with the Competitive Advantage. By means of a questionnaire, a Survey Research was conducted, where responses were collected from employees and / or partners of Brazilian companies, regardless of size or segment. For the analysis, it was used the Modeling of Structural Equations, and it was possible to demonstrate that the Intelligence influences positively in the Dynamic Capacities of the Transforming subgroup, in the Strategy and the Competitive Advantage. In this way the developed model, having presented good reliability and adhesion, can also be validated.
Konarski, Roman. "Sensitivity analysis for structural equation models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22893.pdf.
Full textCerqueira, Pedro Henrique Ramos. "Structural equation models applied to quantitative genetics." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-05112015-145419/.
Full textModelos causais têm sido muitos utilizados em estudos em diferentes áreas de conhecimento, a fim de compreender as associações ou relações causais entre variáveis. Durante as últimas décadas, o uso desses modelos têm crescido muito, especialmente estudos relacionados à sistemas biológicos, uma vez que compreender as relações entre características são essenciais para prever quais são as consequências de intervenções em tais sistemas. Análise do grafo (AG) e os modelos de equações estruturais (MEE) são utilizados como ferramentas para explorar essas relações. Enquanto AG nos permite buscar por estruturas causais, que representam qualitativamente como as variáveis são causalmente conectadas, ajustando o MEE com uma estrutura causal conhecida nos permite inferir a magnitude dos efeitos causais. Os MEE também podem ser vistos como modelos de regressão múltipla em que uma variável resposta pode ser vista como explanatória para uma outra característica. Estudos utilizando MEE em genética quantitativa visam estudar os efeitos genéticos diretos e indiretos associados aos indivíduos por meio de informações realcionadas aos indivíduas, além das característcas observadas, como por exemplo o parentesco entre eles. Neste contexto, é tipicamente adotada a suposição que as características observadas são relacionadas linearmente. No entanto, para alguns cenários, relações não lineares são observadas, o que torna as suposições mencionadas inadequadas. Para superar essa limitação, este trabalho propõe o uso de modelos de equações estruturais de efeitos polinomiais mistos, de segundo grau ou seperior, para modelar relações não lineares. Neste trabalho foram desenvolvidos dois estudos, um de simulação e uma aplicação a dados reais. O primeiro estudo envolveu a simulação de 50 conjuntos de dados, com uma estrutura causal completamente recursiva, envolvendo 3 características, em que foram permitidas relações causais lineares e não lineares entre as mesmas. O segundo estudo envolveu a análise de características relacionadas ao gado leiteiro da raça Holandesa, foram utilizadas relações entre os seguintes fenótipos: dificuldade de parto, duração da gestação e a proporção de morte perionatal. Nós comparamos o modelo misto de múltiplas características com os modelos de equações estruturais polinomiais, com diferentes graus polinomiais, a fim de verificar os benefícios do MEE polinomial de segundo grau ou superior. Para algumas situações a suposição inapropriada de linearidade resulta em previsões pobres das variâncias e covariâncias genéticas diretas, indiretas e totais, seja por superestimar, subestimar, ou mesmo atribuir sinais opostos as covariâncias. Portanto, verificamos que a inclusão de um grau de polinômio aumenta o poder de expressão do MEE.
Jung, Sunho. "Regularized structural equation models with latent variables." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66858.
Full textDans les modèles d'équations structurales avec des variables latentes, l'estimation demaximum devraisemblance est la méthode d'estimation la plus utilisée. Par contre, la méthode de maximum devraisemblance souvent ne réussit pas á fournir des solutions exactes, par exemple lorsque les échantillons sont petits, les données ne sont pas normale, ou lorsque le modèle est mal specifié. L'estimation des moindres carrés á deux-phases est asymptotiquement sans distribution et robuste contre mauvaises spécifications, mais elle manque de robustesse quand les chantillons sont petits. Afin de surmonter les trois difficultés mentionnés ci-dessus et d'obtenir une estimation plus exacte, des extensions régularisées des moindres carrés á deux phases sont proposé á qui incorporent directement un type de régularisation dans les modèles d'équations structurales avec des variables latentes. Deux études de simulation et deux applications empiriques démontrent que la méthode propose est une alternative prometteuse aux méthodes de maximum vraisemblance et de l'estimation des moindres carrés á deux-phases. Un paramètre de régularisation valeur optimale a été trouvé par la technique de validation croisé d'ordre K. Une méthode non-paramétrique Bootstrap est utilisée afin d'évaluer la stabilité des solutions. Une mesure d'adéquation est utilisée pour estimer l'adéquation globale.
Books on the topic "Dynamic structural equation models"
Westland, J. Christopher. Structural Equation Models. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12508-0.
Full textWestland, J. Christopher. Structural Equation Models. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16507-3.
Full textA, Bollen Kenneth, and Long J. Scott, eds. Testing structural equation models. Newbury Park: Sage Publications, 1993.
Find full textvan Montfort, Kees, Johan Oud, and Albert Satorra, eds. Recent Developments on Structural Equation Models. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-1958-6.
Full textStronge, W. J. Dynamic models for structural plasticity. London: Springer Verlag, 1993.
Find full textStronge, William James, and Tongxi Yu. Dynamic Models for Structural Plasticity. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-0397-4.
Full textP, Wang B., American Society of Mechanical Engineers. Applied Mechanics Division., and Symposium on Reanalysis of Structural Dynamic Models (1986 : Anaheim, Calif.), eds. Reanalysis of structural dynamic models. New York, N.Y. (345 E. 47th St., New York 10017): ASME, 1986.
Find full text1941-, Yu T. X., ed. Dynamic models for structural plasticity. London: Springer-Verlag, 1993.
Find full textMcArdle, John J., and John R. Nesselroade. Longitudinal data analysis using structural equation models. Washington: American Psychological Association, 2014. http://dx.doi.org/10.1037/14440-000.
Full text1965-, Curran Patrick J., ed. Latent curve models: A structural equation perspective. Hoboken, NJ: John Wiley & Sons, 2005.
Find full textBook chapters on the topic "Dynamic structural equation models"
McArdle, John J., and John R. Nesselroade. "Dynamic processes over groups." In Longitudinal data analysis using structural equation models., 307–14. Washington: American Psychological Association, 2014. http://dx.doi.org/10.1037/14440-027.
Full textMcArdle, John J., and John R. Nesselroade. "Dynamic influences over groups." In Longitudinal data analysis using structural equation models., 315–17. Washington: American Psychological Association, 2014. http://dx.doi.org/10.1037/14440-028.
Full textSaccomani, Maria Pia, and Karl Thomaseth. "Structural vs Practical Identifiability of Nonlinear Differential Equation Models in Systems Biology." In Dynamics of Mathematical Models in Biology, 31–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45723-9_3.
Full textLi, Ze-yu, Xue-bo Chen, and Qiubai Sun. "Dynamic Analysis of Enterprise Security System Based on Multi-level Analysis and Structural Equation Model." In Advances in Intelligent Systems and Computing, 217–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94589-7_22.
Full textHilbert, Sven, and Matthias Stadler. "Structural Equation Models." In Encyclopedia of Personality and Individual Differences, 5253–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_1285.
Full textBauldry, Shawn. "Structural Equation Models." In Encyclopedia of Gerontology and Population Aging, 1–3. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69892-2_566-1.
Full textRaghunathan, Trivellore, Patricia A. Berglund, and Peter W. Solenberger. "Structural Equation Models." In Multiple Imputation in Practice, 110–19. Boca Raton, Florida : CRC Press, [2019] | Authors have developed a software for analyzing mathematical data, IVEware.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315154275-7.
Full textHershberger, Scott L. "Structural Equation Models." In International Encyclopedia of Statistical Science, 1552–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_576.
Full textHilbert, Sven, and Matthias Stadler. "Structural Equation Models." In Encyclopedia of Personality and Individual Differences, 1–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28099-8_1285-1.
Full textBauldry, Shawn. "Structural Equation Models." In Encyclopedia of Gerontology and Population Aging, 4789–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-22009-9_566.
Full textConference papers on the topic "Dynamic structural equation models"
Baingana, Brian, Gonzalo Mateos, and Georgios B. Giannakis. "Dynamic structural equation models for tracking topologies of social networksy." In 2013 IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2013. http://dx.doi.org/10.1109/camsap.2013.6714065.
Full textBaingana, Brian, and Georgios B. Giannakis. "Switched dynamic structural equation models for tracking social network topologies." In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2015. http://dx.doi.org/10.1109/globalsip.2015.7418283.
Full textLeishear, Robert A., and Jeffrey H. Morehouse. "Dynamic Stresses During Structural Impacts." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55475.
Full textAkhavan, S., and H. Soltanian-Zadeh. "Topology tracking of static and dynamic networks based on structural equation models." In 2017 Artificial Intelligence and Signal Processing Conference (AISP). IEEE, 2017. http://dx.doi.org/10.1109/aisp.2017.8324119.
Full textHemez, Francois. "Identifying Models of Truncation Error When Modified Equation Analysis is Intractable." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2281.
Full textLund, Erik, Henrik Møller, and Lars Aaes Jakobsen. "Shape Optimization of Fluid-Structure Interaction Problems Using Two-Equation Turbulence Models." In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1478.
Full textFeng, Zhipeng, Qian Huang, Shuai Liu, Fengchun Cai, Xi Lv, and Xiaozhou Jiang. "Study on Dynamic Characteristics and Flow Induced Vibration of Tube Bundles Based on the Fluid Structure Coupling Method." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81342.
Full textLiu, Baixi, Hongzhao Liu, and Daning Yuan. "Five Parameters Structural Damping Constitution and Its Application." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58047.
Full textMORADI, SARVIN, SAEED (YASHAR) EFTEKHAR AZAM, and MASSOOD MOFID. "PHYSICS-INFORMED NEURAL NETWORK APPROACH FOR IDENTIFICATION OF DYNAMIC SYSTEMS." In Structural Health Monitoring 2021. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/shm2021/36352.
Full textZaman, Bakht, Luis Miguel Lopez Ramos, and Baltasar Beferull-Lozano. "Dynamic Regret Analysis for Online Tracking of Time-varying Structural Equation Model Topologies." In 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2020. http://dx.doi.org/10.1109/iciea48937.2020.9248365.
Full textReports on the topic "Dynamic structural equation models"
Chen, Le-Yu. Identification of structural dynamic discrete choice models. Institute for Fiscal Studies, May 2009. http://dx.doi.org/10.1920/wp.cem.2009.0809.
Full textKuether, Robert J., Jonel Ortiz, and Mark Chen. Model Order Reduction of Nonviscously Damped Structural Dynamic Models. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475503.
Full textCanova, Fabio, and Filippo Ferroni. Mind the gap! Stylized Dynamic Facts and Structural Models. Federal Reserve Bank of Chicago, 2020. http://dx.doi.org/10.21033/wp-2020-29.
Full textKalouptsidi, Myrto, Paul Scott, and Eduardo Souza-Rodrigues. Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models. Cambridge, MA: National Bureau of Economic Research, October 2018. http://dx.doi.org/10.3386/w25134.
Full textXin, Yi, and Yingyao Hu. Identification and estimation of dynamic structural models with unobserved choices. The IFS, June 2019. http://dx.doi.org/10.1920/wp.cem.2019.3519.
Full textBiezad, Daniel J. Investigation of Dynamic Structural Models Suitable for the Simulation of Large Aircraft. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada383217.
Full textCampbell, R. L. Fluid Film Bearing Dynamic Coefficients and Their Application to Structural Finite Element Models. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada465781.
Full textKimhi, Ayal, Barry Goodwin, Ashok Mishra, Avner Ahituv, and Yoav Kislev. The dynamics of off-farm employment, farm size, and farm structure. United States Department of Agriculture, September 2006. http://dx.doi.org/10.32747/2006.7695877.bard.
Full textSnyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Full textOden, J. T. Computational Methods for Nonlinear Dynamics Problems in Solid and Structural Mechanics: Models of Dynamic Frictional Phenomena in Metallic Structures. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada174585.
Full text