Academic literature on the topic 'Dynamic stiffne'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic stiffne.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dynamic stiffne"

1

Bakshi, S., A. Sarkar, and S. Chakraborty. "Dynamic Response Control of Stiffened Plate with Hole in Stiffener: A Novel Concept of Additional Open Branched Stiffeners." Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, no. 1 (December 19, 2022): 1033–39. http://dx.doi.org/10.38208/acp.v1.617.

Full text
Abstract:
Modern day structures have found diverse applications of stiffened plates in civil, mechanical, aerospace, marine and offshore engineering. The stiffeners, mainly in the form of beams in these stiffened plates are often exposed to unfavourable environmental and service loads, inducing localized damage to the stiffeners. Sometimes, holes are deliberately made on the stiffeners for passing service pipes, cables etc. Both of the events cause localised loss of stiffness, finally affecting the global dynamic performances. One of the practised techniques to recover the lost stiffness and to safeguard the damaged site is to introduce enclosed prismatic stiffeners around the hole. However, this often fails to critically readjust the localised stiffness loss. A constructive alternate to alleviate such situation, is to provide open branched configurations of additional stiffeners within the near vicinity of the damage. The present research work deals with the demonstration of the suitability of the above solution through numerical modelling of dynamic behaviour of a rectangular isotropic stiffened plate with a central longitudinal stiffener using finite element software ANSYS. The damage, represented equivalently as a circular cut-out in the stiffener, is considered to be located arbitrarily. Free vibration characteristics viz. natural frequencies and mode shapes of the plate in undamaged and damaged conditions have been determined by solving eigenvalue problem employing Block Lanczos algorithm. Various configurations of open-branched stiffeners around the circular cut-out, placed at specified locations have been explored. The sensitivities of relevant geometric parameters, such as the distance of the branching from the damage site, orientations of the branching etc. indicate that it is possible to design a system of open branched stiffeners around a damaged site of a stiffener to keep the overall dynamic responses practically unchanged. Such idea of branched stiffener is novel and has potential practical applications towards damage mitigation of various engineering infrastructures.
APA, Harvard, Vancouver, ISO, and other styles
2

Yin, Xuewen, Wenwei Wu, Kuikui Zhong, and Hui Li. "Dynamic stiffness formulation for the vibrations of stiffened plate structures with consideration of in-plane deformation." Journal of Vibration and Control 24, no. 20 (October 19, 2017): 4825–38. http://dx.doi.org/10.1177/1077546317735969.

Full text
Abstract:
A dynamic stiffness method is presented for the vibrations of plate structures that are reinforced by eccentric stiffeners. The model incorporates both out-of-plane and in-plane deformations of the plates and the stiffeners. Based on the relationship between the forces and displacements along the common edges of the plate or beam elements, the dynamic stiffness formulae for the plate and the beam elements are derived, respectively. The globally assembled dynamic stiffness matrix is then obtained using the finite element method so that the dynamics of built-up stiffened plates can be readily addressed by using the present method. Compared to the conventional finite element model, the dynamic stiffness model can provide very accurate solutions using only one element over each uniform plate and beam member, regardless of its geometry.
APA, Harvard, Vancouver, ISO, and other styles
3

SRIVASTAVA, A. K. L., P. K. DATTA, and A. H. SHEIKH. "VIBRATION AND DYNAMIC INSTABILITY OF STIFFENED PLATES SUBJECTED TO IN-PLANE HARMONIC EDGE LOADING." International Journal of Structural Stability and Dynamics 02, no. 02 (June 2002): 185–206. http://dx.doi.org/10.1142/s0219455402000518.

Full text
Abstract:
The vibration and dynamic instability behavior of a stiffened plate subjected to uniform in-plane edge loading is studied using finite element analysis. The method of Hill's infinite determinants is applied to analyze the dynamic instability regions. Rectangular stiffened plates possessing different boundary conditions, aspect ratios, varying mass and stiffness properties and varying number of stiffeners have been analyzed for dynamic instability. The results are obtained considering the bending displacements of the plate and the stiffener. Eccentricity of the stiffeners give rise to axial and bending displacement in the middle plane of the plate. The results show that the principal instability regions have a significant effect considering and neglecting in-plane displacements. Comparison with published results indicates good agreement.
APA, Harvard, Vancouver, ISO, and other styles
4

Le, Nam Bich, Cuong Manh Nguyen, and Thinh Ich Tran. "CONTINUOUS ELEMENT FORMULATIONS FOR COMPOSITE RING-STIFFENED CYLINDRICAL SHELLS." Vietnam Journal of Science and Technology 56, no. 4 (August 6, 2018): 515. http://dx.doi.org/10.15625/2525-2518/56/4/10987.

Full text
Abstract:
This research studies the free vibration of composite ring-stiffened cylindrical shells by the continuous element method (CEM). The dynamic stiffness matrix (DSM) of the investigated structure has been constructed based on the analytical solutions of the governing equations of motion for composite cylindrical shells and annular plates. By applying the powerful assembly procedure of continuous elements method, natural frequencies and harmonic responses of composite ring-stiffened cylindrical shells have been obtained. In addition, the proposed model allows extracting exactly ring-stiffener vibration modes by choosing appropriate points of response. Numerical examples have confirmed many advantages of the developed model.
APA, Harvard, Vancouver, ISO, and other styles
5

Gupta, Mohit, and Massimo Ruzzene. "Dynamics of Quasiperiodic Beams." Crystals 10, no. 12 (December 16, 2020): 1144. http://dx.doi.org/10.3390/cryst10121144.

Full text
Abstract:
Quasiperiodic metastrucures are characterized by edge localized modes of topological nature, which can be of significant technological interest. We here investigate such topological modes for stiffened and sandwich beams, which can be employed as structural members with inherent vibration localization capabilities. Quasiperiodicity is achieved by altering the geometric properties and material properties of the beams. Specifically, in the stiffened beams, the geometric location of stiffeners is modulated to quasiperiodic patterns, while, in the sandwich beams, the core’s material properties are varied in a step-wise manner to generate such patterns. The families of periodic and quasiperiodic beams for both stiffened and sandwich-type are obtained by varying a projection parameter that governs the location of the center of the stiffener or the alternating core, respectively. The dynamics of stiffened quasiperiodic beams is investigated through 3-D finite element simulations, which leads to the observation of the fractal nature of the bulk spectrum and the illustration of topological edge modes that populate bulk spectral bandgaps. The frequency spectrum is further elucidated by employing polarization factors that distinguish multiple contributing modes. The frequency response of the finite stiffened cantilever beams confirms the presence of modes in the non-trivial bandgaps and further demonstrates that those modes are localized at the free edge. A similar analysis is conducted for the analysis of sandwich composite beams, for which computations rely on a dynamic stiffness matrix approach. This work motivates the use of quasiperiodic beams in the design of stiffened and sandwich structures as structural members in applications where vibration isolation is combined with load-carrying functions.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Xue-Qin, Guang-Chen Bai, Lu-Kai Song, and Wei Zhang. "Nonlinear Vibration Analysis for Stiffened Cylindrical Shells Subjected to Electromagnetic Environment." Shock and Vibration 2021 (July 19, 2021): 1–26. http://dx.doi.org/10.1155/2021/9983459.

Full text
Abstract:
The nonlinear vibration behaviors of stiffened cylindrical shells under electromagnetic excitations, transverse excitations, and in-plane excitations are studied for the first time in this paper. Given the first-order shear deformation theory and Hamilton principle, the nonlinear partial differential governing equations of motion are derived with considering the von Karman geometric nonlinearity. By employing the Galerkin discretization procedure, the partial differential equations are diverted to a set of coupled nonlinear ordinary differential equations of motion. Based on the case of 1 : 2 internal resonance and principal resonance-1/2 subharmonic parametric resonance, the multiscale method of perturbation analysis is employed to precisely acquire the four-dimensional nonlinear averaged equations. From the resonant response analysis and nonlinear dynamic simulation, we discovered that the unstable regions of stiffened cylindrical shells can be narrowed by decreasing the external excitation or increasing the magnetic intensity, and their working frequency range can be expanded by reducing the in-plane excitation. Moreover, the different nonlinear dynamic responses of the stiffened cylindrical shell are acquired by controlling stiffener number, stiffener size, and aspect ratio. The presented approach in this paper can provide an efficient analytical framework for nonlinear dynamics theories of stiffened cylindrical shells and will shed light on complex structure design in vibration test engineering.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Xue-Qin, Wei Zhang, Xiao-Dong Yang, and Lu-Kai Song. "A Unified Approach of Free Vibration Analysis for Stiffened Cylindrical Shell with General Boundary Conditions." Mathematical Problems in Engineering 2019 (July 10, 2019): 1–14. http://dx.doi.org/10.1155/2019/4157930.

Full text
Abstract:
A unified approach of free vibration analysis for stiffened cylindrical shell with general boundary conditions is presented in this paper. The vibration of stiffened cylindrical shell is modeled mathematically involving the first-order shear deformation shell theory. The improved Fourier series is selected as the admissible displacement function while the arbitrary boundary conditions are simulated by adjusting the equivalent spring stiffness. The natural frequencies and modal shapes of the stiffened shell are obtained by solving the dynamic model with the Rayleigh-Ritz procedure. Various numerical results of free vibration analysis for stiffened cylindrical shell are obtained, including natural frequencies and modes under simply supported, free, and clamped boundary conditions. Moreover, the effects of stiffener on natural frequencies are discussed. Compared with several state-of-the-art methods, the feasibility and validity of the proposed method are verified.
APA, Harvard, Vancouver, ISO, and other styles
8

Tounsi, D., J. B. Casimir, S. Abid, I. Tawfiq, and M. Haddar. "Dynamic stiffness formulation and response analysis of stiffened shells." Computers & Structures 132 (February 2014): 75–83. http://dx.doi.org/10.1016/j.compstruc.2013.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Jing, and Xing Hua Shi. "Dynamic Response of Stiffened Plate under Underwater Contact Explosions." Advanced Materials Research 255-260 (May 2011): 1665–70. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.1665.

Full text
Abstract:
In order to study the dynamic responses of stiffened plate under underwater contact explosions, the FEM code LS-DYNA is used to discuss the problem, six different stiffened plates are included. The stiffened plate’s distortion, the size of crevasses in the numerical simulation are analyzed. The position where the maximum plastic strain appears, the effective stress and acceleration are also described. It is revealed that the deformation of stiffened plate is different with the position of the stiffener, but the stiffener can harmonize and reduce the deformation of plate, and the whole structure will be more safety when it is subjected to explosions. So the research of this paper can be help to the design of steel structure explode resistance.
APA, Harvard, Vancouver, ISO, and other styles
10

Hill, C. M., T. Kageyama, M. G. Conzemius, G. K. Smith, and F. M. Little. "Bending properties of stainless steel dynamic compression plates and limited contact dynamic compression plates." Veterinary and Comparative Orthopaedics and Traumatology 14, no. 02 (2001): 64–68. http://dx.doi.org/10.1055/s-0038-1632677.

Full text
Abstract:
SummaryThe equivalent bending stiffness and bending strength of the stainless steel DCP and stainless steel LC-DCP were compared. Three plates, of each size, were tested destructively in ‘four point bending’. All of the LC-DCP were significantly less stiff and less strong than the comparable size DCP, with the exception of the 4.5 mm narrow LC-DCP which was significantly stronger and more stiff than the 4.5 mm narrow DCP (p <.01). The design advantages of the LC-DCP are ease and versatility of plate application and improved cortical blood flow which one assumes promotes fracture healing. Also, the lower recorded stiffness of the LC-DCP may be advantageous in that it decreases the stress protection of the plated bone. Since optimal strength and stiffness of bone plates are currently unknown, the clinical relevance of the decreased strength and stiffness of the LC-DCP has yet to be determined.Stainless steel LC-DCP and DCP of various sizes were tested in four point bending to ascertain equivalent bending stiffness and bending strength of each type of plate. The LC-DCP were consistently less stiff and strong than their DCP counterparts (p <.01) with the exception of the 4.5 mm Narrow LC-DCP which was stronger and more stiff than the 4.5 mm Narrow DCP. In general, as plate size increased. the difference between the two plate designs decreased. If it can be shown that there is not any detrimental effect on fracture healing, the design features of the LC-DCP make it a desirable choice for most fracture applications.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dynamic stiffne"

1

RAGNI, DAVIDE. "Dynamic testing for the characterisation of bituminous interlayers." Doctoral thesis, Università Politecnica delle Marche, 2020. http://hdl.handle.net/11566/274616.

Full text
Abstract:
Il carico di traffico trasferito sulle pavimentazioni stradali include sia sollecitazioni verticali che orizzontali. Queste ultime diventano particolarmente critiche nelle zone soggette a frequenti frenate, in curva o con pendenze elevate. Poiché la pavimentazione stradale è una struttura multistrato, l'esistenza di uno scarso collegamento all’interfaccia tra gli strati bituminosi potrebbe influire negativamente sulle prestazioni e funzionalità della pavimentazione. Pertanto, una corretta valutazione del grado di collegamento tra gli strati è di fondamentale importanza. Finora, tale valutazione viene effettuata misurando la resistenza a taglio dell'interfaccia utilizzando prove di laboratorio statiche. Un miglioramento significativo dell'attuale approccio di prova è lo sviluppo di dispositivi dinamici, che potrebbero simulare in modo più realistico le condizioni in sito. La presente Tesi di dottorato descrive le attività sperimentali svolte presso l'Università Politecnica delle Marche, la North Carolina State University e l'University of Limoges nell'ambito del Task Group 3 "Pavement multilayer system" del RILEM TC 272-PIM. Le attività si sono concentrate sulla progettazione e lo sviluppo di un nuovo dispositivo di prova per l'esecuzione di prove dinamiche all’interfaccia presso l'Università Politecnica delle Marche e sull’esecuzione di prove dinamiche con altri dispositivi esistenti. Il comportamento a taglio delle interfacce è stato studiato sia con prove di taglio diretto che di torsione su campioni carotati da lastre bistrato compattate in laboratorio e preparate con un'unica miscela bituminosa. I risultati presentati in questa tesi, sia in termini di rigidità che di danno cumulativo, hanno dimostrato che le prove di taglio dinamico possono essere utilizzate con successo per valutare le prestazioni delle interfacce bituminose e fornire un notevole aiuto per definire la vita utile delle pavimentazioni in modo più realistico rispetto alle prove di taglio statico.
The traffic loading on pavement structures includes both vertical and horizontal stresses (normal and tangent to the pavement surface). The latter become critical in regions that are prone to frequent braking, cornering or on steep grades. Since bituminous pavement is a multilayer structure, the existence of a poor interlayer bonding between bituminous layers could adversely affect the pavement performance and serviceability. Hence, a proper evaluation of the interlayer bonding has the utmost importance in pavement performance. The evaluation of interlayer bonding in bituminous pavements is typically carried out by measuring the interlayer shear strength (ISS) at failure using static laboratory tests. A significant improvement of the current testing approach is the development of dynamic testing devices, which could simulate the field conditions more realistically since the traffic loads applied to the pavement are dynamic. In this context, this PhD thesis describes the experimental activities carried out at Università Politecnica delle Marche, North Carolina State University and University of Limoges within the Task Group 3 “Pavement multilayer system” of the RILEM TC 272-PIM. The activities focused on the design and development of a new testing device for performing dynamic interlayer bond testing at Università Politecnica delle Marche along with carrying out dynamic bond testing using other existing devices. The interlayer behaviour has been investigated through both direct shear and torque tests on double-layered specimens extracted from laboratory compacted slabs prepared using a single bituminous mixture. The stimulating results presented in this thesis, reported both in terms of stiffness and cumulative damage, showed that dynamic bond testing can successfully be used to evaluate the bituminous interlayer performance and can provide a noticeable help for defining the service life of the pavement sections realistically compared to the static bond tests.
APA, Harvard, Vancouver, ISO, and other styles
2

周婉娥 and Wan-E. Zhou. "The dynamic stiffness method." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31235487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leung, A. Y. T. "Dynamic stiffness and substructures." Thesis, Aston University, 1993. http://publications.aston.ac.uk/21737/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Wan-E. "The dynamic stiffness method /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19668612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alley, Ferryl. "Dynamic ankle stiffness during upright standing." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110417.

Full text
Abstract:
Studies of upright stance commonly model its biomechanics as an inverted pendulum, defining an overall postural stiffness, generated by the ankle joints, needed to overcome gravity's destabilizing effects. This model assumes symmetric left and right ankle stiffness, fixed throughout upright stance. However, the relative contributions of the intrinsic and reflex components of dynamic stiffness and how lower limbs interact during upright standing is not well understood. This thesis estimated the dynamic stiffness in both ankles simultaneously during upright standing and examined coordination between the two limbs. During bilateral perturbation trials, where angular position perturbations were applied to both ankles simultaneously, a strong intrinsic and reflex response was observed. For all subjects, intrinsic stiffness was lower than the required postural stiffness to maintain standing. Dynamic ankle stiffness also changed for different levels of postural sway torque, such that intrinsic and reflex stiffness was higher during forward lean and lower when leaning back. Contralateral responses were observed between input ankle position and the torques generated from the opposite ankle. These findings suggest that the overall postural control is not a simple summation of independent, fixed intrinsic stiffness responses from individual ankles. Intrinsic elastic stiffness is not sufficient for maintaining balance and contributing stiffness pathways are modulated throughout upright standing sway. Upright standing models must incorporate dynamic ankle stiffness measurements, variable stiffness parameters, and interactions between each supporting limbs.
Les études de la posture érigée sont couramment fondées sur le modèle biomécanique du pendule inversé définissant une raideur posturale générale produite par les articulations des chevilles et nécessaire pour compenser les effets déstabilisants de la gravité. Ce modèle est basé sur l'hypothèse d'une raideur symétrique des chevilles gauche et droite qui demeure fixe pendant la tenue de la posture érigée. Toutefois, les contributions relatives des composantes intrinsèques et réflexes de la raideur dynamique ainsi que l'interaction des membres inférieurs pendant la position érigée debout ne sont pas bien comprises. Ce mémoire fait état d'une estimation de la raideur dynamique des deux chevilles simultanément durant la position érigée debout, ainsi que d'une étude de la coordination entre les deux membres. Au cours de tests de perturbation bilatérale, pendant lesquels des perturbations de la position angulaire ont été appliquées aux deux chevilles simultanément, une nette réponse intrinsèque et réflexe a été observée. Chez tous les sujets, la raideur intrinsèque était inférieure à la raideur posturale nécessaire pour maintenir la station debout. La raideur dynamique des chevilles a également évolué en fonction de différents niveaux du couple du balancement postural, de telle sorte que la raideur intrinsèque et réflexe était plus élevée pendant l'inclinaison avant et moins élevée pendant l'inclinaison arrière. Des réponses controlatérales ont été observées entre la position de départ de la cheville et les couples générés depuis la cheville opposée. Ces résultats donnent à penser que le contrôle postural général ne consiste pas en la simple sommation de réponses indépendantes fixes de raideur intrinsèque des chevilles individuelles. La raideur élastique intrinsèque ne suffit pas pour maintenir l'équilibre, et les voies de raideur contributives sont modulées pendant le balancement de la position érigée debout. Les modèles de la position érigée debout doivent intégrer des mesures de la raideur dynamique des chevilles, des paramètres variables de la raideur et des interactions entre les membres d'appui.
APA, Harvard, Vancouver, ISO, and other styles
6

郭騰川 and Tang-chuen Nick Kwok. "Dynamic stiffness method for curved structures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31212359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kwok, Tang-chuen Nick. "Dynamic stiffness method for curved structures /." Hong Kong : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19672421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vega, González Myraida Angélica. "Dynamic study of tunable stiffness scanning microscope probe." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32967.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
Includes bibliographical references (leaf 31).
This study examines the dynamic characteristics of the in-plane tunable stiffness scanning microscope probe for an atomic force microscope (AFM). The analysis was carried out using finite element analysis (FEA) methods for the micro scale device and its macro scale counterpart, which was designed specifically for this study. Experimental system identification testing using sound wave and high-speed camera recordings was clone on the macro scale version to identify trends that were then verified in the micro scale predictions. The results for the micro scale device followed the trends predicted by the macro scale experimental data. The natural frequencies of the device corresponded to the three normal directions of motion, in ascending order from the vertical direction, the out-of- plane direction, and the horizontal direction. The numerical values for these frequencies in the micro scale are 81.314 kHz, 51.438 kHz, and 54.899 kHz for the X, Y, and Z directions of vibration respectively. The error associated with these measurements is 6.6% and is attributed to the high tolerance necessary for measurements in the micro scale, which was not matched by the macro scale data acquisition methods that predict the natural frequency range.
(cont.) The vertical vibrations are therefore the limiting factor in the scanning speed of the probe across a sample surface, thus requiring the AFM to scan at an effective frequency of less than 81.3 kHz to avoid resonance.
by Myraida Angélica Vega González.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
9

Black, Thomas Andrew. "Spectral Element Analysis of Bars, Beams, and Levy Plates." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/33260.

Full text
Abstract:
This thesis is primarily concerned with the development and coding of a Levy-type spectral plate element to analyze the harmonic response of simply supported plates in the mid to high frequency range. The development includes the governing PDE, displacement field, shape function, and dynamic stiffness matrix. A two DOF spectral Love bar element and both a four DOF spectral Euler-Bernoulli and a four DOF spectral Timoshenko beam element are also developed to gain insight into the performance of spectral elements. A cantilever beam example is used to show how incorporating eigenfunctions for the dynamic governing PDE into the displacement field enables spectral beam elements to represent the structural dynamics exactly. A simply supported curved beam example is used to show that spectral beam elements can converge the effects of curved geometry with up to a 50% reduction in the number of elements when compared to conventional FE. The curved beam example is also used to show that the rotatory inertia and shear deformation, from Timoshenkoâ s beam theory, can result in up to a 28% shift in natural frequency over the first three bending modes. Finally, a simply supported Levy-plate model is used to show that the spectral Levy-type plate element converges the dynamic solution with up to three orders of magnitude fewer DOF then the conventional FE plate formulation. A simply-supported plate example problem is used to illustrate how the coefficients of the Fourier series expansion can be used as edge DOF for the spectral Levy-plate element. The Levy-plate element development gives insight to future research developing a general spectral plate element.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
10

Black, T. Andrew. "Spectral Element Analysis of Bars, Beams, and Levy Plates." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/33260.

Full text
Abstract:
This thesis is primarily concerned with the development and coding of a Levy-type spectral plate element to analyze the harmonic response of simply supported plates in the mid to high frequency range. The development includes the governing PDE, displacement field, shape function, and dynamic stiffness matrix. A two DOF spectral Love bar element and both a four DOF spectral Euler-Bernoulli and a four DOF spectral Timoshenko beam element are also developed to gain insight into the performance of spectral elements. A cantilever beam example is used to show how incorporating eigenfunctions for the dynamic governing PDE into the displacement field enables spectral beam elements to represent the structural dynamics exactly. A simply supported curved beam example is used to show that spectral beam elements can converge the effects of curved geometry with up to a 50% reduction in the number of elements when compared to conventional FE. The curved beam example is also used to show that the rotatory inertia and shear deformation, from Timoshenkoâ s beam theory, can result in up to a 28% shift in natural frequency over the first three bending modes. Finally, a simply supported Levy-plate model is used to show that the spectral Levy-type plate element converges the dynamic solution with up to three orders of magnitude fewer DOF then the conventional FE plate formulation. A simply-supported plate example problem is used to illustrate how the coefficients of the Fourier series expansion can be used as edge DOF for the spectral Levy-plate element. The Levy-plate element development gives insight to future research developing a general spectral plate element.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Dynamic stiffne"

1

Leung, Andrew Y. T. Dynamic Stiffness and Substructures. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leung, Andrew Y. T. Dynamic Stiffness and Substructures. London: Springer London, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dynamic stiffness and substructures. London: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pedro, Arduino, University of Washington. Dept. of Civil Engineering., Washington State Transportation Center, Washington (State). Dept. of Transportation., United States. Federal Highway Administration., and Washington State Transportation Commission, eds. Dynamic stiffness of piles in liquefiable soils. Seattle, Wash: The Center, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Handbook on stiffness & damping in mechanical design. New York: ASME Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

United States. National Aeronautics and Space Administration., ed. Experiments on dynamic stiffness and damping of tapered bore seals. [Washington, DC: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rivin, Eugene I. Stiffness and damping in mechanical design. New York: Marcel Dekker, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

K, Ghosh A. Evaluation of dynamic stiffness and damping factor of a hydraulic damper. Mumbai: Bhabha Atomic Research Centre, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lawrence, Charles. A global approach for the identification of structural connection properties. [Washington, D.C.]: NASA, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A, Huckelbridge Arthur, and United States. National Aeronautics and Space Administration., eds. A global approach for the identification of structural connection properties. [Washington, D.C.]: NASA, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dynamic stiffne"

1

Leung, Andrew Y. T. "Dynamic Substructures." In Dynamic Stiffness and Substructures, 53–132. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leung, Andrew Y. T. "Dynamic Stiffness." In Dynamic Stiffness and Substructures, 133–88. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leung, Andrew Y. T. "Harmonic Analysis." In Dynamic Stiffness and Substructures, 1–19. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leung, Andrew Y. T. "Finite Elements and Continuum Elements." In Dynamic Stiffness and Substructures, 21–51. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leung, Andrew Y. T. "General Formulation." In Dynamic Stiffness and Substructures, 189–240. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mukhopadhyay, Madhujit. "Dynamic Direct Stiffness Method." In Structural Dynamics, 395–423. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69674-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bolton, M. D., and J. M. R.Wilson. "Soil stiffness and damping." In Structural Dynamics, 209–16. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hagedorn, Peter, Klaus Kelkel, and Jörg Wallaschek. "Dynamic stiffness of rectangular plates." In Lecture Notes in Engineering, 28–144. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82906-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schabauer, Martin, Andreas Hackl, Christoph Scherndl, Wolfgang Hirschberg, and Cornelia Lex. "Experimental Validation of a Semi-physical Modelling Approach of the Influence of Tyre Rotation on the Vertical Tyre Force Transmission and Tyre Kinematics." In Lecture Notes in Mechanical Engineering, 954–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07305-2_88.

Full text
Abstract:
AbstractPerformance, development and validation of vehicle dynamics applications such as anti-lock braking systems (ABS) or indirect tyre pressure monitoring systems (iTPMS) rely on a sufficiently accurate consideration of tyre properties such as transient dynamics and tyre kinematics. Previous investigations showed that the tyre rotation has a distinct effect on the vertical tyre stiffness as well as on the three characteristic tyre radii, the unloaded, static and effective (dynamic) tyre radius. Based on the fundamentals of the TMeasy 5 handling tyre model, an enhanced semi-physical modelling approach was developed to consider rotational speed dependent tyre stiffness and tyre radii in an effective and numerically efficient manner. In the present study, a detailed experimental validation is conducted to verify, evaluate and validate the previously identified rotational speed induced effects and the developed enhanced modelling approach. Based on the results of an extensive tyre testing series, it is shown that the rotational speed induced tyre behaviour can be taken into account effectively by considering a linear dependence of the vertical tyre stiffness and a non-linear progressive one of the unloaded radius on the rotational speed. The resulting rotational speed induced behaviour of the static and effective tyre radius is approximated with sufficient accuracy by the enhanced model. With the presented semi-physical modelling approach and identified rotational speed induced tyre behaviour, applications such as ABS, iTPMS or driving simulators can be enhanced.
APA, Harvard, Vancouver, ISO, and other styles
10

Lepert, P., and J. L. Briaud. "Dynamic non destructive testing of footing stiffness." In Structural Dynamics, 237–43. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-35.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dynamic stiffne"

1

Bhatia, Manav, and Rakesh Kapania. "Stiffener Effectiveness Approach for Optimal Stiffener Placement on Curvilinear Stiffened Panel." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Watson, Andrew, Carol Featherston, and David Kennedy. "Optimization of Postbuckled Stiffened Panels with Multiple Stiffener Sizes." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

AMBUR, DAMODAR, and LAWRENCE REHFIELD. "Effect of stiffness characteristics on the response of composite grid-stiffened structures." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coburn, Broderick H., Zhangming Wu, and Paul Weaver. "Buckling analysis and optimization of blade stiffened variable stiffness panels." In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KASSAPOGLOU, CHRISTOS. "STRESS DETERMINATION AT SKIN-STIFFENER INTERFACES OF COMPOSITE STIFFENED PANELS UNDER GENERALIZED LOADING." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

COLLIER, CRAIG. "STIFFNESS, THERMAL EXPANSION, AND THERMAL BENDING FORMULATION OF STIFFENED, FIBER-REINFORCED COMPOSITE PANELS." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ambur, Damodar, James Starnes, Jr., Carlos Davila, Erik Phillips, Damodar Ambur, James Starnes, Jr., Carlos Davila, and Erik Phillips. "Response of composite panels with stiffness gradients due to stiffener terminations and cutouts." In 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Flegel, C., K. Singal, and R. Rajamani. "A Handheld Noninvasive Sensing Method for the Measurement of Compartment Pressures." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3847.

Full text
Abstract:
Compartment syndrome is a major concern in cases of extremity trauma, which occur in over 70% of military combat casualty. Without treatment, compartment syndrome can lead to paralysis, loss of limb, or death. This paper focuses on the development of a handheld sensor that can be used for the non-invasive diagnosis of compartment syndrome. Analytical development of the sensing principle is first presented in which a relation is obtained between the pressure in a fluid compartment and the stiffness experienced by a handheld probe pushing on the compartment. Then a handheld sensor that can measure stiffness of an object without requiring the use of any inertial reference is presented. The handheld sensor consists of an array of three miniature force-sensing spring loaded pistons placed together on a probe. The center spring is chosen to be significantly stiffer than the side springs. The ratio of forces between the stiff and soft springs is proportional to the stiffness of the soft object against which the probe is pushed. Small mm-sized magnets on the pistons and magnetic field measurement chips are used to measure the forces in the individual pistons. Experimental results are presented using an in-vitro test rig that replicates a fluid pressure compartment. The sensor is shown to measure pressure accurately with a resolution of 0.1 psi over the range 0.75 psi to 2.5 psi.
APA, Harvard, Vancouver, ISO, and other styles
9

Narayanan Nampy, Sreenivas, and Edward Smith. "Stiffness Analysis of Closed Cross-Section Composite Grid-Stiffened Cylinders." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sanz-Douglass, Gabriela J., and Satchi Venkataraman. "Parametric Study of Stiffener Variables on Post-Buckling Response of Frame-Stiffened Composite Panels." In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1976.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Dynamic stiffne"

1

Goodwin, M. J., and M. P. Roach. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada202902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roach M. J. /Goodwin, M. P. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada174417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goodwin, M. J., and M. P. Roach. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze Films. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada174433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Chang-Yong, Jae-Yoon Jung, Yong-Sung Kim, Jung-Hwan Lim, and Jong-Chan Park. The Topology and Size Optimization of Bus Roof Structure Considering the Dynamic Stiffness Characteristics. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bennett, J. G., P. Goldman, D. C. Williams, and C. R. Farrar. A comparison of the dynamic stiffness of the Goldcrown GC-500 grinding machine for three slide designs. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10121869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paden, Brad, and Thomas A. Trautt. Characterization of Joint Nonlinear Stiffness and Damping Behavior for Inverse Dynamics of Flexible Articulated Structures. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada330608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Qamhia, Issam, Erol Tutumluer, and Han Wang. Aggregate Subgrade Improvements Using Quarry By-products: A Field Investigation. Illinois Center for Transportation, June 2021. http://dx.doi.org/10.36501/0197-9191/21-017.

Full text
Abstract:
This report presents a case study for constructing aggregate subgrade improvement (ASI) layers using quarry by-product aggregates (QBA), a quarry mix of large primary crushed rocks (PCR) and sand-sized quarry fines. The construction took place at Larry Power Road in Bourbonnais Township in Kankakee County, Illinois, where the Illinois Department of Transportation placed two QBA mixes. The first mix (QBA_M1) consisted of 45% quarry by-products and 55% railroad ballast–sized 3×1 PCR. The second mix (QBA_M2) consisted of 31% and 69% quarry by-products and PCR, respectively. Two conventional ASI sections were also constructed conforming to Illinois Department of Transportation’s CS02 gradation. All sections consisted of a 9 in. (229 mm) QBA/PCR layer topped with a 3 in. (76 mm) dense-graded capping layer. Laboratory studies preceded the construction to recommend optimum quarry by-product content in the QBA materials and construction practice. The Illinois Center for Transportation research team monitored the quality and uniformity of the construction using nondestructive testing techniques such as dynamic cone penetrometer, lightweight deflectometer, and falling weight deflectometer. The segregation potential was monitored by visual inspection and imaging-based techniques. Short-term field evaluation of the constructed QBA layers, particularly QBA_M2 with a 31% quarry by-product content, showed no evidence of abnormal segregation and did not jeopardize the structural integrity of the QBA ASI layers, which had slightly lower but comparable strength and stiffness profiles to the conventional ASI sections. The use of QBA materials in ASI was field validated as a sustainable construction practice to provide stable pavement foundation layers.
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Peng, and Nicholas Sitar. Parallel Level-Set DEM (LS-DEM) Development and Application to the Study of Deformation and Flow of Granular Media. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, March 2023. http://dx.doi.org/10.55461/kmiz5819.

Full text
Abstract:
We present a systematic investigation of computational approaches to the modeling of granular materials. Granular materials are ubiquitous in everyday life and in a variety of engineering and industrial applications. Despite the apparent simplicity of the laws governing particle-scale interactions, predicting the continuum mechanical response of granular materials still poses extraordinary challenges. This is largely due to the complex history dependence resulting from continuous rearrangement of the microstructure of granular material, as well as the mechanical interlocking due to grain morphology and surface roughness. X-Ray Computed Tomography (XRCT) is used to characterize the grain morphology and the fabric of the granular media, naturally deposited sand in this study. The Level-Set based Discrete Element Method (LS-DEM) is then used to bridge the granular behavior gap between the micro and macro scale. The LS-DEM establishes a one-to-one correspondence between granular objects and numerical avatars and captures the details of grain morphology and surface roughness. However, the high-fidelity representation significantly increases the demands on computational resources. To this end a parallel version of LS-DEM is introduced to significantly decrease the computational demands. The code employs a binning algorithm, which reduces the search complexity of contact detection from O(n2) to O(n), and a domain decomposition strategy is used to elicit parallel computing in a memory- and communication-efficient manner. The parallel implementation shows good scalability and efficiency. High fidelity LS avatars obtained from XRCT images of naturally deposited sand are then used to replicate the results of triaxial tests using the new, parallel LS-DEM code. The result show that both micro- and macro-mechanical behavior of natural material is well captured and is consistent with experimental data, confirming experimental observation that the primary source of peak strength of sand is the mechanical interlocking between irregularly shaped grains. Specifically, triaxial test simulations with a flexible membrane produce a very good match to experimentally observed relationships between deviatoric stress and mobilized friction angle for naturally deposited sand. We then explore the viability of modeling dynamic problems with a new formulation of an impulse based LS-DEM. The new formulation is stable, fast, and energy conservative. However, it can be numerically stiff when the assembly has substantial mass differences between particles. We also demonstrate the feasibility of modeling deformable structures in the rigid body framework and propose several enhancements to improve the convergence of collision resolution, including a hybrid time integration scheme to separately handle at rest contacts and dynamic collisions. Finally, we extend the impulse-based LS-DEM to include arbitrarily shaped topographic surfaces and exploit its algorithmic advantages to demonstrate the feasibility of modeling realistic behavior of granular flows. The novel formulation significantly improves performance of dynamic simulations by allowing larger time steps, which is advantageous for observing the full development of physical phenomena such as rock avalanches, which we present as an illustrative example.
APA, Harvard, Vancouver, ISO, and other styles
9

Zareian, Farzin, and Joel Lanning. Development of Testing Protocol for Cripple Wall Components (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/olpv6741.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER) and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA project is to provide scientifically-based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 3.2 and focuses on Loading Protocol Development for Component Testing. It presents the background, development process, and recommendations for a quasi-static loading protocol to be used for cyclic testing of cripple wall components of wood-frame structures. The recommended loading protocol was developed for component testing to support the development of experimentally informed analytical models for cripple wall components. These analytical models are utilized for the performance-based assessment of wood-frame structures in the context of the PEER–CEA Project. The recommended loading protocol was developed using nonlinear dynamic analysis of representative multi-degree-of-freedom (MDOF) systems subjected to sets of single-component ground motions that varied in location and hazard level. Cumulative damage of the cripple wall components of the MDOF systems was investigated. The result is a testing protocol that captures the loading history that a cripple wall may experience in various seismic regions in California.
APA, Harvard, Vancouver, ISO, and other styles
10

Pullammanappallil, Pratap, Haim Kalman, and Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600038.bard.

Full text
Abstract:
Recent concerns regarding global warming and energy security have accelerated research and developmental efforts to produce biofuels from agricultural and forestry residues, and energy crops. Anaerobic digestion is a promising process for producing biogas-biofuel from biomass feedstocks. However, there is a need for new reactor designs and operating considerations to process fibrous biomass feedstocks. In this research project, the multiphase flow behavior of biomass particles was investigated. The objective was accomplished through both simulation and experimentation. The simulations included both particle-level and bulk flow simulations. Successful computational fluid dynamics (CFD) simulation of multiphase flow in the digester is dependent on the accuracy of constitutive models which describe (1) the particle phase stress due to particle interactions, (2) the particle phase dissipation due to inelastic interactions between particles and (3) the drag force between the fibres and the digester fluid. Discrete Element Method (DEM) simulations of Homogeneous Cooling Systems (HCS) were used to develop a particle phase dissipation rate model for non-spherical particle systems that was incorporated in a two-fluid CFDmultiphase flow model framework. Two types of frictionless, elongated particle models were compared in the HCS simulations: glued-sphere and true cylinder. A new model for drag for elongated fibres was developed which depends on Reynolds number, solids fraction, and fibre aspect ratio. Schulze shear test results could be used to calibrate particle-particle friction for DEM simulations. Several experimental measurements were taken for biomass particles like olive pulp, orange peels, wheat straw, semolina, and wheat grains. Using a compression tester, the breakage force, breakage energy, yield force, elastic stiffness and Young’s modulus were measured. Measurements were made in a shear tester to determine unconfined yield stress, major principal stress, effective angle of internal friction and internal friction angle. A liquid fludized bed system was used to determine critical velocity of fluidization for these materials. Transport measurements for pneumatic conveying were also assessed. Anaerobic digestion experiments were conducted using orange peel waste, olive pulp and wheat straw. Orange peel waste and olive pulp could be anaerobically digested to produce high methane yields. Wheat straw was not digestible. In a packed bed reactor, anaerobic digestion was not initiated above bulk densities of 100 kg/m³ for peel waste and 75 kg/m³ for olive pulp. Interestingly, after the digestion has been initiated and balanced methanogenesis established, the decomposing biomass could be packed to higher densities and successfully digested. These observations provided useful insights for high throughput reactor designs. Another outcome from this project was the development of low cost devices to measure methane content of biogas for off-line (US$37), field (US$50), and online (US$107) applications.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography