Academic literature on the topic 'Dynamic processes in machines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic processes in machines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic processes in machines"
Ivshin, Igor Vladimirovich, Andrey Michailovich Kopylov, and Alfred Robertovich Safin. "Numerical Modeling of Dynamic Processes of the Reciprocating Reversible Electrical Machine." Applied Mechanics and Materials 792 (September 2015): 134–42. http://dx.doi.org/10.4028/www.scientific.net/amm.792.134.
Full textKuklina, Irina Gennadevna. "AUTOMATION OF DESIGN PROCESSES WHEN CREATING AND OPERATING SPECIAL CARS." Computational nanotechnology 6, no. 4 (December 30, 2019): 9–17. http://dx.doi.org/10.33693/2313-223x-2019-6-4-9-17.
Full textAlimkhodjaev, Kamoliddin, Murakam Mirsaidov, Malika Khalikova, and Jasurbek Nizamov. "Transient processes of vibration machines with inertial electric drives." E3S Web of Conferences 216 (2020): 01121. http://dx.doi.org/10.1051/e3sconf/202021601121.
Full textAgarwal, Praveen, Amandeep Singh, and Adem Kilicman. "Development of key-dependent dynamic S-Boxes with dynamic irreducible polynomial and affine constant." Advances in Mechanical Engineering 10, no. 7 (July 2018): 168781401878163. http://dx.doi.org/10.1177/1687814018781638.
Full textTverdokhlib, Igor, and Oleg Omelyanov. "CURRENT STATE OF SCIENTIFIC AND TECHNICAL DEVELOPMENTS IN THE FIELD OF IMPROVING THE EFFICIENCY OF VIBRATION EQUIPMENT AND TECHNOLOGIES." ENGINEERING, ENERGY, TRANSPORT AIC, no. 3(114) (September 28, 2021): 75–90. http://dx.doi.org/10.37128/2520-6168-2021-3-9.
Full textWoźniak, Adam, and Grzegorz Krajewski. "CMM Dynamic Properties of the Scanning Measurement of a 2D Profile." International Journal of Automation Technology 9, no. 5 (September 5, 2015): 530–33. http://dx.doi.org/10.20965/ijat.2015.p0530.
Full textGrischenko, Volodimir Mikolayovich, and Kateryna Serhiivna Leonova. "Application of computer systems for modeling dynamic processes of lifting machines." Bulletin of the National Technical University «KhPI» Series: Dynamics and Strength of Machines, no. 2 (December 31, 2021): 69–77. http://dx.doi.org/10.20998/2078-9130.2021.2.249498.
Full textNesmiyan, Andrey, Lyudmila Kravchenko, Vladimir Khizhnyak, and Elena Zubrilina. "Probabilistic modeling for dynamic processes." E3S Web of Conferences 175 (2020): 05019. http://dx.doi.org/10.1051/e3sconf/202017505019.
Full textNikitina, I., and A. Polyakov. "SPECIFIC FEATURES OF THERMAL PROCESSES IN DOUBLE-SIDED FACE GRINDING MACHINES." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 6, no. 1 (February 4, 2021): 82–94. http://dx.doi.org/10.34031/2071-7318-2021-6-1-82-94.
Full textChen, Shuxian, Zongqiang Ren, Xikai Yu, and Ao Huang. "A Dynamic Model of Evolutionary Knowledge and Capabilities Based on Human-Machine Interaction in Smart Manufactures." Computational Intelligence and Neuroscience 2022 (April 26, 2022): 1–10. http://dx.doi.org/10.1155/2022/8584888.
Full textDissertations / Theses on the topic "Dynamic processes in machines"
Gupta, Sujasha. "Development and Utilization of a Novel Synaptic Transistor to Detect Dynamic Neuronal Processes." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1590765716831174.
Full textZang, Peng. "Scaling solutions to Markov Decision Problems." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42906.
Full textDeb, Abhishek. "HW/SW mechanisms for instruction fusion, issue and commit in modern u-processors." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/81561.
Full textEn aquesta tesis hem explorat el paradigma de les màquines issue i commit per processadors actuals. Hem implementat una màquina virtual que tradueix binaris x86 a micro-ops de tipus RISC. Aquestes traduccions es guarden com a superblocks, que en realitat no és més que una traça de virtuals co-dissenyades. En particular, hem proposat mecanismes hw/sw per a la fusió d’instruccions, blocs bàsics. Aquests superblocks s’optimitzen utilitzant optimizacions especualtives i d’altres no speculatives. En cas de les optimizations especulatives es consideren mecanismes per a la gestió de errades en l’especulació. Al llarg d’aquesta tesis s’han fet les següents contribucions: Primer, hem proposat una nova unitat functional programmable (PFU) per tal de millorar l’execució d’aplicacions de proposit general. La PFU està formada per un conjunt d’unitats funcionals, similar al CCA, amb un banc de registres intern a la PFU distribuït a les unitats funcionals que la composen. Les entrades de la macro-operació que s’executa en la PFU es mouen del banc de registres físic convencional al intern fent servir un conjunt de moves i loads. Un algorisme de fusió combina més micro-operacions en temps d’execució. Aquest algorisme es basa en un pas de planificació que mesura el benefici de les decisions de fusió. Les micro operacions corresponents a la macro operació s’emmagatzemen com a senyals de control en una configuració. Les macro-operacions tenen associat un identificador de configuració que ajuda a localitzar d’aquestes. Una petita cache de configuracions està present dintre de la PFU per tal de guardar-les. En cas de que la configuració no estigui a la cache, les configuracions es carreguen de la cache d’instruccions. Per altre banda, per tal de donar support al commit atòmic dels superblocks que sobrepassen el tamany del ROB s’ha proposat un mecanisme de commit especulatiu. Per aquest mecanisme hem proposat una taula de mapeig especulativa dels registres, que es copia a la taula no especulativa quan totes les instruccions del superblock han comitejat. Segon, hem proposat un processador en order co-dissenyat que combina dos tipus d’acceleradors. Aquests acceleradors executen un parell d’instruccions fusionades. S’han considerat dos tipus de fusió d’instructions. Primer, combinem un parell de loads independents formant loads vectorials i els executem en una unitat vectorial. Segon, fusionem parells d’instruccions simples d’alu que són dependents i que s’executaran en una Interlock Collapsing ALU (ICALU). Per altra aquestes tecniques les hem evaluat conjuntament amb diverses optimizacions com list scheduling, load-store telescoping i hoisting de loads, entre d’altres. Aquesta proposta ha estat comparada amb un processador fora d’ordre. Tercer, hem proposat un processador fora d’ordre co-dissenyat efficient reduint-ne la complexitat en dos areas principals. En primer lloc, hem co-disenyat el mecanisme de commit per tal de permetre un eficient commit atòmic del superblocks. En aquesta solució hem substituït el ROB convencional, i en lloc hem introduït el Superblock Ordering Buffer (SOB). El SOB manté l’odre de programa a granularitat de superblock. L’estat del programa consisteix en registres i memòria. L’estat dels registres es manté en una taula per superblock, mentre que l’estat de memòria es guarda en un buffer i s’actulitza atòmicament. La segona gran area de reducció de complexitat considerarada és l’ús de FIFOs a la lògica d’issue. En aquest últim àmbit hem proposat una heurística de distribució que solventa les ineficiències de l’heurística basada en dependències anteriorment proposada. Finalment, i junt amb les FIFOs, s’ha proposat un mecanisme per alliberar les entrades de la FIFO anticipadament.
Ковальов, Сергій Федорович, Сергей Федорович Ковалев, Serhii Fedorovych Kovalov, Михайло Сергійович Овчаренко, Михаил Сергеевич Овчаренко, Mykhailo Serhiiovych Ovcharenko, Андрій Анатолійович Папченко, Андрей Анатольевич Папченко, Andrii Anatoliiovych Papchenko, and Ю. О. Видиш. "Розроблення та дослідження роторно-динамічного агрегата-гомогенізатора для технології виробництва згущеного молока." Thesis, Сумський державний університет, 2016. http://essuir.sumdu.edu.ua/handle/123456789/45621.
Full textHall, Otto. "Inference of buffer queue times in data processing systems using Gaussian Processes : An introduction to latency prediction for dynamic software optimization in high-end trading systems." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214791.
Full textDenna studie undersöker huruvida Gaussian Process Regression kan appliceras för att utvärdera buffer-kötider i storskaliga dataprocesseringssystem. Dessutom utforskas ifall dataströmsfrekvenser kan generaliseras till en liten delmängd av utfallsrymden. Medmålet att erhålla en grund för dynamisk mjukvaruoptimering introduceras en lovandestartpunkt för fortsatt forskning. Studien riktas mot Direct Market Access system för handel på finansiella marknader, somprocesserar enorma mängder marknadsdata dagligen. På grund av vissa begränsningar axlas ett naivt tillvägagångssätt och väntetider modelleras som en funktion av enbartdatagenomströmning i åtta små historiska tidsinterval. Tränings- och testdataset representeras från ren marknadsdata och pruning-tekniker används för att krympa dataseten med en ungefärlig faktor om 0.0005, för att uppnå beräkningsmässig genomförbarhet. Vidare tas fyra olika implementationer av Gaussian Process Regression i beaktning. De resulterande algorithmerna presterar bra på krympta dataset, med en medel R2 statisticpå 0.8399 över sex testdataset, alla av ungefär samma storlek som träningsdatasetet. Tester på icke krympta dataset indikerar vissa brister från pruning, där input vektorermotsvararande låga latenstider är associerade med mindre exakthet. Slutsatsen dras att beroende på applikation kan dessa brister göra modellen obrukbar. För studiens syftefinnes emellertid att latenstider kan sannerligen modelleras av regressionsalgoritmer. Slutligen diskuteras metoder för förbättrning med hänsyn till både pruning och GaussianProcess Regression, och det öppnas upp för lovande vidare forskning.
Костенко, Юрий Викторович. "Анализ параметров динамических процессов в виброударных машинах с изменяющимися массово-жесткостными характеристиками." Thesis, НТУ "ХПИ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19912.
Full textThe thesis on competition of a scientific degree of Candidate of technical Science on a specialty 05.02.09 – dynamic and strength of machines. – National Technical University "Kharkiv polytechnical institute", Kharkiv, 2016. This thesis is devoted to the development of approaches, methods and models for investigation of dynamic processes in vibroimpact systems with variable mass of the weight and nonlinear rigidness of elastic supports. In this paper new approach to the accounting of the variable mass influence on the character of dynamical processes in vibroimpact systems was presented. The dependences, that describes the mass change character, based on experimental researches and dependence from dissipated energy were proposed. It was found that the realization of sybharmonical modes became possible because of elastic supports nonlinearity and design features. The realization of subharmonical modes lead to growth of impact interaction force. The approach, based on corresponding values for phase variables at the beginning and the end of period was proposed to periodic solutions search. The criteria for tuning from resonance frequencies that can appear on perturbing force with multiple (partite) frequency were formulated. The machine body designed with taking to the account previously formulated recommen-dations was created. The investigation of stress-strain status was performed and found that improved machine body satisfies strength requirements. The comparison of numerical and experimental data was done. The accuracy and authenticity of numerical investigations was confirmed.
Костенко, Юрій Вікторович. "Аналіз параметрів динамічних процесів у віброударних машинах зі змінними масово-жорсткісними характеристиками." Thesis, ФО-П Дуюнова Т. В, 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19909.
Full textThe thesis on competition of a scientific degree of Candidate of technical Science on a specialty 05.02.09 – dynamic and strength of machines. – National Technical University "Kharkiv polytechnical institute", Kharkiv, 2016. This thesis is devoted to the development of approaches, methods and models for investigation of dynamic processes in vibroimpact systems with variable mass of the weight and nonlinear rigidness of elastic supports. In this paper new approach to the accounting of the variable mass influence on the character of dynamical processes in vibroimpact systems was presented. The dependences, that describes the mass change character, based on experimental researches and dependence from dissipated energy were proposed. It was found that the realization of sybharmonical modes became possible because of elastic supports nonlinearity and design features. The realization of subharmonical modes lead to growth of impact interaction force. The approach, based on corresponding values for phase variables at the beginning and the end of period was proposed to periodic solutions search. The criteria for tuning from resonance frequencies that can appear on perturbing force with multiple (partite) frequency were formulated. The machine body designed with taking to the account previously formulated recommen-dations was created. The investigation of stress-strain status was performed and found that improved machine body satisfies strength requirements. The comparison of numerical and experimental data was done. The accuracy and authenticity of numerical investigations was confirmed.
Hakala, Tim. "Settling-Time Improvements in Positioning Machines Subject to Nonlinear Friction Using Adaptive Impulse Control." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/1061.
Full textCupertino, Thiago Henrique. "Machine learning via dynamical processes on complex networks." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25032014-154520/.
Full textA extração de conhecimento útil a partir de conjuntos de dados é um conceito chave em sistemas de informação modernos. Por conseguinte, a necessidade de técnicas eficientes para extrair o conhecimento desejado vem crescendo ao longo do tempo. Aprendizado de máquina é uma área de pesquisa dedicada ao desenvolvimento de técnicas capazes de permitir que uma máquina \"aprenda\" a partir de conjuntos de dados. Muitas técnicas já foram propostas, mas ainda há questões a serem reveladas especialmente em pesquisas interdisciplinares. Nesta tese, exploramos as vantagens da representação de dados em rede para desenvolver técnicas de aprendizado de máquina baseadas em processos dinâmicos em redes. A representação em rede unifica a estrutura, a dinâmica e as funções do sistema representado e, portanto, é capaz de capturar as relações espaciais, topológicas e funcionais dos conjuntos de dados sob análise. Desenvolvemos técnicas baseadas em rede para os três paradigmas de aprendizado de máquina: supervisionado, semissupervisionado e não supervisionado. O processo dinâmico de passeio aleatório é utilizado para caracterizar o acesso de dados não rotulados às classes de dados configurando uma nova heurística no paradigma supervisionado, a qual chamamos de facilidade de acesso. Também propomos uma técnica de classificação de dados que combina a visão de alto nível dos dados, por meio da caracterização topológica de rede, com relações de baixo nível, por meio de medidas de similaridade, em uma estrutura geral. Ainda no aprendizado supervisionado, as medidas de rede modularidade e centralidade Katz são aplicadas para classificar conjuntos de múltiplas observações, e um método de construção evolutiva de rede é aplicado ao problema de redução de dimensionalidade. O paradigma semissupervisionado é abordado por meio da extensão da heurística de facilidade de acesso para os casos em que apenas algumas amostras de dados rotuladas e muitas amostras não rotuladas estão disponíveis. É também proposta uma técnica semissupervisionada baseada em forças de interação, para a qual fornecemos heurísticas para selecionar parâmetros e uma análise de estabilidade mediante uma função de Lyapunov. Finalmente, uma técnica não supervisionada baseada em rede utiliza os conceitos de controle pontual e tempo de consenso de processos dinâmicos para derivar uma medida de similaridade usada para agrupar dados. Os dados são representados por uma rede conectada e esparsa na qual os vértices são elementos dinâmicos. Simulações com dados de referência e comparações com técnicas de aprendizado de máquina conhecidas são fornecidos para todas as técnicas propostas. As vantagens da representação de dados em rede e de processos dinâmicos para o aprendizado de máquina são evidenciadas em todos os casos
Göl, Özdemir. "Dynamic modelling of induction machines /." Title page, contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phg595.pdf.
Full textBooks on the topic "Dynamic processes in machines"
Astashev, V. K. Ultrasonic processes and machines: Dynamics, control and applications. Berlin: Springer, 2007.
Find full textDenkena, Berend. Process Machine Interactions: Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textNagaev, R. F. Mechanical processes with repeated attenuated impacts. Edited by Kremer E. B. Singapore: World Scientific, 1999.
Find full textOhta, Nobuo, Colin M. MacLeod, and Bob Uttl, eds. Dynamic Cognitive Processes. Tokyo: Springer Tokyo, 2005. http://dx.doi.org/10.1007/b139064.
Full textHuda, Zainul. Machining Processes and Machines. First edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003081203.
Full textThomas, Marion Y., Thomas M. Mitchell, and Harsha S. Bhat, eds. Fault Zone Dynamic Processes. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119156895.
Full textSingh, Lakhbinder. Dynamic simulation of chemical processes. Birmingham: Aston University. Department of Chemical Engineering and Applied Chemistry, 1991.
Find full textBakker, Johan Willem. Dynamic visualization of chemical processes. [Leiden: University of Leiden, 1998.
Find full textTamaru, Kenzi, ed. Dynamic Processes on Solid Surfaces. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1636-5.
Full textHiermaier, Stefan, ed. Predictive Modeling of Dynamic Processes. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0727-1.
Full textBook chapters on the topic "Dynamic processes in machines"
Zhang, June, and José M. F. Moura. "Dynamic Processes on Complex Networks." In Signal Processing and Machine Learning for Biomedical Big Data, 177–91. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351061223-9.
Full textCera, Márcia C., Guilherme P. Pezzi, Elton N. Mathias, Nicolas Maillard, and Philippe O. A. Navaux. "Improving the Dynamic Creation of Processes in MPI-2." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 247–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11846802_37.
Full textAstashev, V. K. "Nonlinear Dynamics and Control of Ultrasonic Technology Processes and Systems." In Advanced Dynamics and Model-Based Control of Structures and Machines, 19–26. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0797-3_3.
Full textGraniero, Paolo, and Marco Gärtler. "Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis." In Machine Learning for Cyber Physical Systems, 53–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-62746-4_6.
Full textGorkunov, E. S. "Magnetoelastic Effect as Applied to Estimating Elastic-Plastic Strains in Steels and Optimization of Technological Processes." In Advanced Dynamics and Model-Based Control of Structures and Machines, 83–91. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0797-3_10.
Full textMühlbauer, Matthias, Hubert Würschinger, Dominik Polzer, and Nico Hanenkamp. "Energy Profile Prediction of Milling Processes Using Machine Learning Techniques." In Machine Learning for Cyber Physical Systems, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-62746-4_1.
Full textGottbrath, Christopher, Brian Barrett, Bill Gropp, Ewing “Rusty” Lusk, and Jeff Squyres. "An Interface to Support the Identification of Dynamic MPI 2 Processes for Scalable Parallel Debugging." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 115–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11846802_22.
Full textShatokhin, Vladimir, Boris Granko, Vladimir Sobol, Victor Stasiuk, Maksat Kalimoldayev, Waldemar Wójcik, Aigul Iskakova, and Kuanysh Muslimov. "Mathematical modeling of dynamic processes in the turning mechanism of the tracked machine with hydrovolume transmission." In Mechatronic Systems 1, 53–64. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003224136-5.
Full textGermann, Thiemo, Daniel M. Martin, Christian Kubik, and Peter Groche. "Mastering Uncertain Operating Conditions in the Development of Complex Machine Elements by Validation Under Dynamic Superimposed Operating Conditions." In Lecture Notes in Mechanical Engineering, 236–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_19.
Full textGerling, Dieter. "Fundamentals of Dynamic Operation." In Electrical Machines, 255–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-17584-8_9.
Full textConference papers on the topic "Dynamic processes in machines"
Rikhsieva, B. B., and B. E. Khusanov. "On Solution of Static Elastoplastic Problems Considering Dynamic Processes." In 2021 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2021. http://dx.doi.org/10.1109/dynamics52735.2021.9653697.
Full textGirshin, S. S., V. N. Gorjunov, A. Ya Bigun, E. V. Petrova, and E. A. Kuznetsov. "Overhead power line heating dynamic processes calculation based on the heat transfer quadratic model." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819013.
Full textNaumenko, A. P., I. S. Kudryavtseva, and A. I. Odinets. "Evaluation of Peak Values of the Oscillation Processes Parameters." In 2018 Dynamics of Systems, Mechanisms and Machines. IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601451.
Full textPavlov, G. I., and O. R. Sitnikov. "Modeling of dynamic processes in automotive engines noise mufflers." In 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). IEEE, 2020. http://dx.doi.org/10.1109/dvm49764.2020.9243873.
Full textMalysheva, Nadezhda N., and Aleksandr A. Pavlov. "Determination of probabilistic descriptions and stochastic processes of changes loads." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819045.
Full textMalysheva, Nadezhda N., and Aleksandr A. Pavlov. "Determination of probabilistic descriptions and stochastic processes of changes loads." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239485.
Full textKozlov, A. G., and E. A. Fadina. "Analysis of electrophysical processes in system of interdigitated microelectrodes used in microchannels." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819032.
Full textKaygorodtseva, N. V., and M. N. Odinets. "From Idea to 3D-model. The continuous design automation of petrochemical processes equipment." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005657.
Full textLyubchenko, Alexander, Joaquin A. Pacheco, Vasilii A. Maystrenko, Evgeny Y. Kopytov, Sergey S. Lutchenko, and Igor V. Bogachkov. "Quantitative analysis of diagnosis errors in the models of electronics preventive maintenance processes." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239483.
Full textKovalev, V. Z., V. O. Bessonov, Ye M. Kuznetsov, and V. V. Anikin. "Electromagnetic Processes in the Energy-Efficient Phase Switch of an Electrical Submersible Motor." In 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601450.
Full textReports on the topic "Dynamic processes in machines"
Myers, Michael Thomas. Toward understanding dynamic annealing processes in irradiated ceramics. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1062206.
Full textСоловйов, Володимир Миколайович, Наталя Володимирівна Моісеєнко, and Олена Юріївна Тарасова. Complexity theory and dynamic characteristics of cognitive processes. Springer, January 2020. http://dx.doi.org/10.31812/123456789/4143.
Full textJohnson, Mark. Dynamic Scaling in Cellular Automata Simulations of Deposition Processes. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada375200.
Full textPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.
Full textSykora, Milan, and Edward Martin Kober. MaRIE: Probing Dynamic Processes in Soft Materials Using Advanced Light Sources. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1238139.
Full textTimlin, Jerilyn Ann, Howland D. T. Jones, Aaron M. Collins, Anne M. Ruffing, Kylea Joy Parchert, Christine Alexandra Trahan, Omar Fidel Garcia, et al. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1055623.
Full textSonnerup, Bengt U., and William Lotko. Dynamic Processes at the Outer Boundary of the Magnetosphere, Including Coupling to the Ionosphere. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada282038.
Full textShen, Lian. Dynamic Simulations of Realistic Upper-Ocean Flow Processes to Support Measurement and Data Analysis. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada615929.
Full textChen, Xiao, Jaisree Iyer, and Susan Carroll. Dynamic reduced order modelling (ROM) of chemical and mechanical processes in CO2-cement systems. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1476178.
Full textKabius, Bernd C., Nigel D. Browning, Suntharampillai Thevuthasan, Barbara L. Diehl, and Eric A. Stach. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1069215.
Full text