Academic literature on the topic 'Dynamic pressure sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic pressure sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic pressure sensor"
Tian, Bian, Yulong Zhao, Zhe Niu, and Jiang Zhuangde. "Micro-pressure sensor dynamic performance analysis." Sensor Review 34, no. 4 (August 26, 2014): 367–73. http://dx.doi.org/10.1108/sr-11-2013-748.
Full textTsung, Tsing Tshih, Lee Long Han, Liang Chia Chen, and Ho Chang. "Performance Characterization of Pressure Sensors Using an Improved Pressure Square Wave Generator." Key Engineering Materials 295-296 (October 2005): 533–38. http://dx.doi.org/10.4028/www.scientific.net/kem.295-296.533.
Full textOkojie, Robert S., Roger D. Meredith, Clarence T. Chang, and Ender Savrun. "High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, HITEC (January 1, 2014): 000047–52. http://dx.doi.org/10.4071/hitec-ta25.
Full textGao, Rui, Wenjun Zhang, Junmin Jing, Zhiwei Liao, Zhou Zhao, Bin Yao, Huiyu Zhang, et al. "Design, Fabrication, and Dynamic Environmental Test of a Piezoresistive Pressure Sensor." Micromachines 13, no. 7 (July 19, 2022): 1142. http://dx.doi.org/10.3390/mi13071142.
Full textCai, Sikang, Guicong Wang, Yingjun Li, and Xiaoqi Yang. "Research on material selection of force-sensitive element for high-frequency dynamic piezoelectric pressure sensor." MATEC Web of Conferences 355 (2022): 01026. http://dx.doi.org/10.1051/matecconf/202235501026.
Full textGeng, Xingguang, Su Liu, Yitao Zhang, Shaolong Zhang, Jiena Hou, Jun Zhang, Muhammad Asif, and Hai-Ying Zhang. "Adjacent Channel Interference Modeling of Single Vibration Point on Multichannel Dynamic Pressure Sensors." Journal of Sensors 2020 (February 12, 2020): 1–8. http://dx.doi.org/10.1155/2020/1953506.
Full textSzczerba, Zygmunt, Piotr Szczerba, Kamil Szczerba, and Krzysztof Pytel. "Acceleration-Insensitive Pressure Sensor for Aerodynamic Analysis." Energies 16, no. 7 (March 27, 2023): 3040. http://dx.doi.org/10.3390/en16073040.
Full textZhang, Jun Xiang, Kun Shan Ge, Zhan Bao Gao, and Shao Peng Dong. "Online Dynamic Compensation of Pressure Sensor." Applied Mechanics and Materials 775 (July 2015): 420–25. http://dx.doi.org/10.4028/www.scientific.net/amm.775.420.
Full textSvete, Andrej, Francisco Javier Hernández Castro, and Jože Kutin. "Effect of the Dynamic Response of a Side-Wall Pressure Measurement System on Determining the Pressure Step Signal in a Shock Tube Using a Time-of-Flight Method." Sensors 22, no. 6 (March 9, 2022): 2103. http://dx.doi.org/10.3390/s22062103.
Full textGobi, K., B. Kannapiran, D. Devaraj, and K. Valarmathi. "Design, performance evaluation and analysis of the inlet tube of pressure sensor for chamber pressure measurement." Sensor Review 39, no. 4 (July 15, 2019): 612–21. http://dx.doi.org/10.1108/sr-12-2017-0260.
Full textDissertations / Theses on the topic "Dynamic pressure sensor"
Xu, Juncheng. "High Temperature High Bandwidth Fiber Optic Pressure Sensors." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/25988.
Full textPh. D.
Jones, Sarah. "The application of enhanced fluid dynamic gauging as a fouling sensor for pressure driven membrane separations in the food industry." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.557823.
Full textRuhweza, Mugisha Macbeth. "Development of a Mechanical System to Dynamically Calibrate Pressure Sensors using a Vibrating Liquid Column." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-62134.
Full textDenna rapport beskriver ett enkelt mekaniskt system som utvecklas för att producera dynamiska tryck upp till 50 kPa från noll-till-topp och över frekvensområdet 0-58 Hz. Systemet är konstruerat för dynamisk kalibrering av trycksensor och består av öppet rör 30 cm höjd monteras vertikalt på stödplattan. Stödplattan är ansluten till vibrationsexcite dvs, den yttre cylindern som drivs av en kolv, en vevstake, skiva och axel och en elmotor. Trycksensorn som skall kalibreras är monterad vertikalt vid botten av det öppna röret så att membranet hos sensorn är i kontakt med arbetsvätskan i röret. När systemet startas, ger rörelsen hos kolven som ger vibrationer till det öppna röret och kalibrering uppnås. De olika delarna av systemet är utformade med hjälp av NX Siemens. MatLab används för att bestämma resultaten och diagram härledda från ekvationerna. Analysen visar att den förskjutning, hastighet och acceleration av systemet är i hög grad påverkade av avståndet mellan skivans centrum och skivtappen, och rotationshastigheten hos systemet. Längdn av vevstaken påverkar inte försjutningen och påverkar knappt hastigheten och accelerationen hos systemet. Den totala kraften, vridmomentet och kraften i systemet användes för attvälja de andra komponenterna i systemet dvs, den elektriska motorn och frekvensomvandlaren.
Mori, Hideo, Tomohide Niimi, Madoka Hirako, and Hiroyuki Uenishi. "Pressure Sensitive Paint Suitable to High Knudsen Number Regime." IOP, 2006. http://hdl.handle.net/2237/6960.
Full textLarson-Robl, Kylie M. "PORE PRESSURE MEASUREMENT INSTRUMENTATION RESPONSE TO BLASTING." UKnowledge, 2016. http://uknowledge.uky.edu/mng_etds/30.
Full textDUVET, LUDOVIC. "Instrumentation pour l'etude in-situ des atmospheres neutres et ionises planetaires et cometaires : idm (ion dynamics monitor) et cops (comet pressure sensor)." Paris 6, 2001. http://www.theses.fr/2001PA066296.
Full textThomsen, Maiken. "Perception de l'arôme du fromage à pâte pressée non cuite." Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS120.
Full textPerception of the aroma of food products depends both the chemical composition of food and human neurophysiology. The perception of food flavour, including cheese often relies on the perception of several aroma compounds in mixture in balanced proportions. Perceptual interactions among aroma compounds in mixtures and also the release of aroma compounds from the food product are the main factors that influence the global perceived aroma of food. Hence, the objective of this PhD study was to investigate the mixture of aroma compounds representing the aroma of semi-hard cheese by taking into account perceptual interactions among odorants and the dynamic release of the compounds by the cheese matrix. A strategy involving a complete characterisation of the cheeses followed by a recombination and investigation of the role of the key-aroma compounds and the dynamic release of the aroma compounds from the cheese matrix was taken into account. Comparison of the sensory and instrumental characteristics was made in order to highlight relationships between sensory perception of the aroma and the volatile composition of the cheeses and thus point out the molecular origins of the perceived cheese aroma. Recombination of selected aroma compounds was tested, in order to study the role of each aroma compound within the mixture. Especially 12 compounds seemed important for the semi-hard cheese aroma. To investigate the odour-odour interactions, different odour-stimulation tools were applied and dynamic release of aroma compounds was taken into account by incorporating the aroma compounds into a cheese matrix by different techniques allowing measuring the quantities released as function of time
Veley, Emma Michelle. "Measurement of Unsteady Characteristics of Endwall Vortices Using Surface-Mounted Hot-Film Sensors." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1534450563500249.
Full textLin, Guan-Chen, and 林冠辰. "STRUCTURE DESIGN, DYNAMIC TESTING AND ANALYSIS ON THE MICRO PIEZOELECTRIC PRESSURE SENSOR." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/73023592567697696681.
Full text國立中興大學
精密工程學系所
102
In this paper reports a novel full-range vacuum sensing device, capable of exceeding the sensing range of most gauges and reducing the volume by a factor of 10. The device gauges the free decay rate of a micro-cantilever beam which provides uniform in-plane stress across the surface of the beam, and a thick square plate connected to the trapezoid beam deflected using Piezoelectric Thin-Film Pb(Zr,Ti)O3(PZT) used to determine the free decay rate of the sensing beam with respect to deflection force and vacuum pressure. In the beginning,the paddle cantilever vibrated by the piezoelectric actuators, and then the decay rate of the deflected beam in vacuum environment was measured by piezoelectric sensor. We found that the free decay rate of the deflected beam is linearly proportional to the vacuum pressure. This rapid response in pressure ranges demonstrates that the device has high degree of sensitivity. The proposed device represents a considerable advancement in the development of miniature full-range pressure gauges as well as the applicability of micro-electromechanical systems.
Ferreira, Armando José Barros. "Development of a pressure sensor network system for static and dynamic pressure measurements: application to the limb/prosthesis pressure mapping." Doctoral thesis, 2014. http://hdl.handle.net/1822/35850.
Full textThe present work relates to the development of a sensors network for mapping the pressure fields at the externa! prosthesis socket/stump interface, in particular at lower limbs. The project consists on the design and implementation of a sensor array from piezoresistive polymer based materiais to measure quasi-static and dynamic deformations. The sensors were prepared from poly(vinylidene fluoride) - PVDF and epoxy nanocomposites with carbon nanotubes or nanofibres. The development of thin film-based stretchable electrodes was carried out using the GLancing Angle Deposition, GLAD, technique. A specific electronic circuit for signal processing was used with a wireless data acquisition system. Finally, a prototype was designed , constructed and tested in four IO\.ver limb amputees, in laboratory conditions , under different types of solicitations at the Vocational Rehabilitation Center - CRPG (Centro de Reabilitação Profissional de Vila Nova de Gaia). The piezoresistive-based sensors were developed using two different approaches; a) nanocomposites composed of poly(vinylidene~ fluoride) filled with carbon nanotubes (CNT/PVDF); and b) epoxy resins filled with carbon nanotubes or nanofibres (CNT/EPOXY). The PVDF samples were prepared by hot pressing and spray printing with CNT sample concentrations up to loadings of 1 O wt.%. The phase present in the composites CNT/PVDF was the alfa-phase. Due to the fact that externa! limb prostheses must sustain cyclic loading and unloading during normal walking conditions, the correlation between the electrical resisitivity and mechanical solicitations was obtained for differents mechanical solicitations, including variations in deformation , temperature and velocity. ln relation to CNT/EPOXY, the electrical response is linear over a wide strain range and the values of the maximum gauge factor is ~2 . 8 . The stability of the signal over 32 cycles, the time response to deformatoins from 0.1 to 50 mm min- 1 and the stable temperature behaviour up to 60 °C shows the viability of these materiais to be used as piezoresistive sensors. ln the sarne way, the electrical and piezoresistive response of CNT/PVDF composites has been studied. The piezoresistive response, quantitatively analysed by the gauge factor, is maximized at concentrations around the percolation threshold, around 2 wt.% loading, and the maximum value of the gauge factor is ~6.2. The piezoresistive response is stable with the number of cycles and reversible up to temperatures below 100 °C. The linearity of the response over a wide strain range shows the viability of these materiais to be used as piezoresistive sensors. The development of stretchable electrodes was carried out using columnar Ti-Ag thin films with a Ag content of 8 at.% prepared by D.C. magnetron sputtering on CNT/PVDF piezoresistive composites. The Ti-Ag system was chosen to coat the polymers due to some important points related to its characteristics. First of ali, Ti-Ag thin films combine the excellent biocompatibility of Ti with the Ag antimicrobial properties, offering also good thermal, electrical , chemical and mechanical properties, together with good wear and corrosion resistance. Secondly, the addition of Ag was also thought in order to tailor the elasticity of the Ti films, allowing a better response of the coated polymer under any particular deformation or stretching of the composite sensor when in-service. Additionally, the deposition of the films by GLancing Angel Deposition , GLAD, instead of conventional Magnetron Sputtering Deposition , MSD, was also carried to allow and even extend this elasticity resistance. ln fact, by depositing films with some particular architectures , inclined, zigzag, etc., there is a real possibility to deposit thin films with extended capacities to resist to stretching or any common deformation that a polymeric-based sensor induce when in-service. Furthermore, there is also the possibility to improve the electrical response of the system and this, ali together, to improve the response and the adequacy of the ali sensor arrangement in this particular type of applications . By changing the typical columnar growth microstructure, obtained by conventional sputtering, the goal was to tune the mechanical and electrical responses of the materiais. Upon uniaxial stretching of the prepared zigzag thin films, the resistance of the thin film starts increasing smoothly for strains up to 3%. Above 10% strain a sharp increase of the electrical resistance is observed due to film mechanical failure and therefore interruption of the electrical conductivity pathways. The best results were obtained when the polymer was coated with intermediate incident angles (a = 60°). The results show that the electrodes structure has a pronounced influence on the overall sensor response leading to values of the GF up to 85 mainly due to the electromechanical contribution of the thin film, which stability has to be studied for potential use for sensor applications itself. Human study was conducted at the Vocational Rehabilitation Center- CRPG (Centro de Reabilitação Profissional de Vila Nova de Gaia). The subjects transfemoral (TF) and transtibial (TI) amputees , walked for 2 minutes in a crosswalk at a relatively comfortable speed of 0.33 m/s. During this time it was possible to simulate a normal walk of approximately 40 m and the results provided good indications that it is possible to identify areas of criticai pressure. Thus, it is expected that the present method will become helpful for comprehensively evaluating the biomechanical conditions of the residual limb and prosthesis interface. The system developed in this project may allow monitoring of the process of rehabilitation with a new prosthesis and will support clinical decisions in relation to the potential effects of modifications on the socket, when adjustments are required.
O presente trabalho descreve o desenvolvimento de uma matriz de sensores para mapear as pressão exercidas em próteses externas dos membros inferiores, na interface coto/prótese, baseados em materiais piezoresistivos para medir as deformações dinâmicas e quasi-estáticas . Os sensores foram preparados a partir de nanocompósitos de poli(fluoreto de vinilideno) - PVDF e resinas epoxy com nanotubos- CNT ou nanofibras- CNF de carbono. Adicionalmente, foram desenvolvidos elétrodos estiráveis baseados em filmes finos através da técnica de pulverização catódica GLAD, Glancing Angle Deposition. O circuito electrónico usado para o processamento de sinal foi desenvolvido com um sistema de aquisição de dados sem fios. Finalmente, foi construído um protótipo que foi testado em quatro pacientes amputados dos membros inferiores em condições de laboratório, sob diferentes tipos de solicitações no centro de reabilitação vocacional - CRPG (Centro de Reabilitação Profissional de Vila Nova de Gaia). Com base no efeito piezoresistivo , os sensores foram obtidos usando duas diferentes ... abordagens; a) compósitos de poli(fluoreto de vinilideno) com nanotubos de carbono (CNT/PVDF); e b) compósitos de resinas epóxi com nanotubos de carbono ou nanofibras (CNT/epóxi). As amostras de PVDF foram preparadas por prensagem a quente e/ou por spray com concentrações de CNT até 10 % em peso. A fase cristalina presente nos compósitos CNT/PVDF foi a fase alfa-PVDF. Foi obtida a correlação entre a resistividade elétrica e as diferentes solicitações mecânicas, através da deformação , da variação da temperatura, da velocidade e do tempo de resposta do compósito. Em relação aos compósitos de CNT/epóxi, obteve-se uma resposta elétrica linear e os valores de sensibilidade máxima (gauge factor) foram de ~ 2.8. Através das diferentes solicitações mecânicas , a estabilidade do sinal para mais de 32 ciclos, o tempo de resposta para deformações de 0.1 a 50 mm min· 1 e a estabilidade com a temperatura até 60 oc mostram a viabilidade destes materiais para serem utilizados como sensores piezoresistivos. Da mesma forma , a resposta elétrica e piezoresistiva dos compósitos de CNT/PVDF foi estudada. A resposta piezoresisitiva foi quantitativamente analisada pela sensibilidade do material (gauge factor) e verificou-se que é máxima para concentrações em tomo do limiar de percolação, ~2 % de CNT em peso, e o valor máximo obtido foi de ~ 6.2. A resposta piezoresistiva é estável em função do número de ciclos e reversível até temperaturas inferiores a 100 °C. A linearidade da resposta com a deformação mostra a viabilidade destes materiais para serem utilizados como sensores piezoresistivos. O desenvolvimento de elétrodos estiráveis foi realizado usando filmes finos com estrutura colunar de titânio e prata - Ti-Ag com um teor de Ag de 8 at.% preparados por pulverização catódica em compósitos piezoresistivos de CNT/PVDF. O sistema Ti-Ag foi escolhido para revestir os polímeros devido a alguns pontos importantes relacionados com as suas características. Primeiro de tudo , filmes finos de Ti-Ag combinam a excelente biocompatibilidade do titânio com as propriedades anti-microbianas da prata, oferecendo deste modo boas propriedades químicas, mecânicas e elétricas, juntamente com boas propriedades de resistência ao desgaste e corrosão. Segundo, a adição de prata também foi incluída com o objetivo de promover a elasticidade do filme de modo a permitir uma melhor adaptação do filme ao polímero. Por outro lado, o sistema GLAD teve por grande objetivo este mesmo propósito: melhorar a resposta elétrica e a elasticidade do sistema de modo a permitir uma melhor adequação à deposição dos elétrodos em materiais flexíveis. A técnica de GLAD foi usada para alterar a microestrutura típica de crescimento colunar obtida por pulverização catódica convencional , Magnetron Sputtering Deposition, MSD, em diferentes arquiteturas de crescimento , tais como colunas inclinadas e em ziguezague, a fim de ajustar as respostas meéânicas e elétricas dos materiais. Após estiramento uniaxial dos filmes finos em ziguezague, a resistência eléctrica do filme fino começa a aumentar tenuemente para tensões até 3%. Acima de 10% de estiramento dá-se um aumento acentuado da resistência eléctrica que é observado devido à falha mecânica do filme . Os melhores resultados foram obtidos quando o polímero foi revestido com filmes depositados com ângulos incidentes intermédios (a = 60 °). Os resultados mostram que a estrutura dos elétrodos tem uma acentuada influência sobre a resposta global do sensor levando a valores de sensibilidade até 85. Esta contribuição deve-se essencialmente à contribuição eletromecânica do filme fino. O estudo com Pacientes foi realizado no centro de reabilitação profissional- CRPG (Centro de Reabilitação Profissional de Gaia), com amputados transfemoral (TF) e amputados transtibial (TT), que caminharam durante 2 minutos numa passadeira eléctrica com uma velocidade relativamente confortável de 0,33 rn/s. Durante este tempo , foi possível simular uma marcha normal de aproximadamente 40m. Deste modo demonstrou-se que é possível identificar as áreas criticas de pressão. Espera-se que, o presente método, se tome útil para avaliar exaustivamente as interações biomecânicas entre o membro amputado e a prótese. O sistema desenvolvido neste projeto poderá permitir o monitoramento durante o processo de reabilitação e apoiar em decisões clínicas em relação aos potenciais efeitos e modificações do encaixe da prótese no coto .
Fundação para a Ciência e a Tecnologia (FCT) for the financial support (SFRH/BD/69796/2010).
Books on the topic "Dynamic pressure sensor"
P, Skobelev O., and Rzevski G. 1932-, eds. Pressure sensor dynamics. Samara: IBT, 1993.
Find full textUnited States. Federal Motor Carrier Safety Administration. Office of Bus and Truck Standards and Operations. Commercial motor vehicle tire pressure sensors. Washington, DC: U.S. Dept of Transportation, Federal Motor Carrier Safety Administration, Office of Bus and Truck Standards and Operations, 2005.
Find full textGrigory, Adamovsky, Floyd Bertram, and NASA Glenn Research Center, eds. Demodulation system for fiber optic Bragg grating dynamic pressure sensing. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full text- and NASA Glenn Research Center, eds. Pressure probe designs for dynamic pressure measurements in a supersonic flow field. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textJ, Petersen Brian, Scott David D, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1996.
Find full textSkobelev, O. P. Pressure Sensor Dynamics (Sensor Synamics). WIT Press (UK), 2001.
Find full textSkobelev, O. P. Sensor Dynamics Volume 1: Pressure Sensor Dynamics. Wit Pr/Computational Mechanics, 1996.
Find full textLei, Yuan. Ventilator Monitoring. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198784975.003.0011.
Full textMee, Sarah, and Zoe Clift. Hand Therapy. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757689.003.0002.
Full textSchmidgen, Henning. Horn, or The Counterside of Media. Translated by Nils F. Schott. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478022343.
Full textBook chapters on the topic "Dynamic pressure sensor"
Erben, Andreas, Alexander Geist, Immanuel Voigt, Björn Senf, Thomas Mäder, Janine Glänzel, Steffen Ihlenfeldt, and Welf-Guntram Drossel. "Smart Pressure Film Sensor for Machine Tool Optimization and Characterization of the Dynamic Pressure Field on Machine Surfaces." In Lecture Notes in Production Engineering, 179–91. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_14.
Full textLi, Tao, Ying Wu, and Yanxi Yu. "Research on Dynamic Pressure Sensor Based on ZigBee Technology." In Computational and Experimental Simulations in Engineering, 331–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-02097-1_24.
Full textDruţa, Paul Florin, Calin Gozman-Pop, Dorin Simoiu, Ion Crâştiu, and Liviu Bereteu. "The Analysis of the Dynamic Behavior of a Tire Pressure Sensor." In New Advances in Mechanisms, Mechanical Transmissions and Robotics, 496–503. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60076-1_45.
Full textCulliver, Steven, Mark N. Nabarro, Bruce Milthorpe, Alberto Cimmino, William J. Cumming, and Klaus Schindhelm. "Developing a Sensor for the Dynamic Measurement of Joint Pressure Distributions." In Clinical Biomechanics and Related Research, 103–12. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-66859-6_11.
Full textBurkhardt, O., U. G. S. Dinata, and W. Nitsche. "Surface Fence with an Integrated, Piezoresistive Pressure Sensor for Measurements of Static and Dynamic Wall Shear Stress." In New Results in Numerical and Experimental Fluid Mechanics III, 411–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-45466-3_48.
Full textYang, Fan, Chuanrong Zhao, Hongzhen Zhu, and Deren Kong. "Study on Mathematical Model and Dynamic Compensation of Oil Down-Hole Pressure Sensor Based on BP Neural Network." In Conference Proceedings of 2022 2nd International Joint Conference on Energy, Electrical and Power Engineering, 374–79. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4334-0_46.
Full textChevallier, G., H. Festjens, F. Renaud, and J. L. Dion. "Pressure Measurement Sensor for Jointed Structures." In Special Topics in Structural Dynamics, Volume 6, 383–88. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6546-1_41.
Full textLemnitzer, Anne, Lisa Star, Lohrasb Keykhosropour, Antonio Marinucci, and Steve Keowen. "Large Diameter Soil Pressure Sensors Employed in Dynamic Shallow Foundation Testing." In Proceedings of GeoShanghai 2018 International Conference: Multi-physics Processes in Soil Mechanics and Advances in Geotechnical Testing, 327–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0095-0_37.
Full textChang, Ho, Mu Jnug Kao, Tsing Tshih Tsung, and J. L. Wu. "An Innovative Technology for Measuring The Dynamic Characteristics of Pressure Sensors." In Materials Science Forum, 1057–62. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-990-3.1057.
Full textFoss, Gary, Jessica Meloy, Mark Valentino, and Patrick Walter. "Sensors and their Signal Conditioning for Dynamic Acceleration, Force, Pressure, and Sound Applications." In Handbook of Experimental Structural Dynamics, 45–101. New York, NY: Springer New York, 2022. http://dx.doi.org/10.1007/978-1-4614-4547-0_33.
Full textConference papers on the topic "Dynamic pressure sensor"
Wang, Likun, Lei Qin, and Li Li. "Piezoelectric dynamic pressure sensor." In 2010 International Conference on Information and Automation (ICIA). IEEE, 2010. http://dx.doi.org/10.1109/icinfa.2010.5512134.
Full textAshauer, M., H. Glosch, H. Ashauer, H. Sandmaier, and W. Lang. "Liquid Mass Flow Sensor Using Dynamic Pressure Detection." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1279.
Full textHarpin, A. P. R. "Static and Dynamic Pressure Measurements With Temperature Correction Using High Temperature Optical Pressure Sensors." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22904.
Full textGan, Jiulin, Haiwen Cai, Jianxin Geng, ZhengQing Pan, Ronghui Qu, and Zujie Fang. "Optic fiber-based dynamic pressure sensor." In 2008 1st Asia-Pacific Optical Fiber Sensors Conference (APOS). IEEE, 2008. http://dx.doi.org/10.1109/apos.2008.5226318.
Full textKaczmarek, Cezary, Waldemar Wojcik, and Muhtar Junisbekov. "Photonic Crystal Fiber Dynamic Pressure Sensor." In 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). IEEE, 2018. http://dx.doi.org/10.1109/coe.2018.8435157.
Full textFerrara, Giovanni, Lorenzo Ferrari, and Gabriele Sonni. "Experimental Characterization of a Remoting System for Dynamic Pressure Sensors." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68733.
Full textDurgut, Yasin, Okhan Ganioglu, Bulent Aydemir, Ahmet Turk, Recep Yilmaz, Abdullah Hamarat, and Eyup Bagci. "Improvement of dynamic pressure standard for calibration of dynamic pressure transducers." In 19th International Congress of Metrology (CIM2019), edited by Sandrine Gazal. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/metrology/201927009.
Full textKober, Timo, Ingmar Stoehr, S. Sindlinger, and Roland Werthschuetzky. "B4.2 - Analyzing Amplitude and Phase Response of a Differential Pressure Sensor Using a Dynamic Pressure Source." In SENSOR+TEST Conferences 2009. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2009. http://dx.doi.org/10.5162/sensor09/v1/b4.2.
Full textQiu, Liqiang, Qi Chu, Tianfu Li, and Yongkang Dong. "Dynamic distributed Brillouin optical fiber pressure sensor." In First Optics Frontier Conference, edited by Shining Zhu, Tiejun Cui, Xiangang Luo, and Long Zhang. SPIE, 2021. http://dx.doi.org/10.1117/12.2599261.
Full textWu, David W., and Hwang Choe. "Effects of Sensor Shape on Oscillating Pressure Measurements With Wind-Tunnel Test Confirmation." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93942.
Full textReports on the topic "Dynamic pressure sensor"
Xiao, Hai, Hai-Lung Tsai, and Junhang Dong. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1171318.
Full textMcKinnon, Mark, Craig Weinschenk, and Daniel Madrzykowski. Modeling Gas Burner Fires in Ranch and Colonial Style Structures. UL Firefighter Safety Research Institute, June 2020. http://dx.doi.org/10.54206/102376/mwje4818.
Full text