Academic literature on the topic 'Dynamic membranes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic membranes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic membranes"
Madmoune, Y., M. Benhamou, H. Kaïdi, and M. Chahid. "Dynamic properties of troubled fluid membranes." International Journal of Academic Research 5, no. 5 (October 10, 2013): 5–13. http://dx.doi.org/10.7813/2075-4124.2013/5-5/a.1.
Full textBezanilla, Magdalena, Amy S. Gladfelter, David R. Kovar, and Wei-Lih Lee. "Cytoskeletal dynamics: A view from the membrane." Journal of Cell Biology 209, no. 3 (May 11, 2015): 329–37. http://dx.doi.org/10.1083/jcb.201502062.
Full textMatkó, Janos, Janos Szöllösi, Lajos Trón, and Sandor Damjanovich. "Luminescence spectroscopic approaches in studying cell surface dynamics." Quarterly Reviews of Biophysics 21, no. 4 (November 1988): 479–544. http://dx.doi.org/10.1017/s0033583500004637.
Full textLiu, Chuang, and Linan Fan. "Evolutionary algorithm based on dynamical structure of membrane systems in uncertain environments." International Journal of Biomathematics 09, no. 02 (January 14, 2016): 1650017. http://dx.doi.org/10.1142/s1793524516500170.
Full textGupta, Sudipta, and Rana Ashkar. "The dynamic face of lipid membranes." Soft Matter 17, no. 29 (2021): 6910–28. http://dx.doi.org/10.1039/d1sm00646k.
Full textAltman, Marc, David Hasson, and Raphael Semiat. "REVIEW OF DYNAMIC MEMBRANES." Reviews in Chemical Engineering 15, no. 1 (January 1999): 1–40. http://dx.doi.org/10.1515/revce.1999.15.1.1.
Full textJaksch, Sebastian, Alexandros Koutsioubas, Stefan Mattauch, Olaf Holderer, and Henrich Frielinghaus. "Measurements of Dynamic Contributions to Coherent Neutron Scattering." Colloids and Interfaces 2, no. 3 (August 7, 2018): 31. http://dx.doi.org/10.3390/colloids2030031.
Full textColom, Adai, Lorena Redondo-Morata, Nicolas Chiaruttini, Aurélien Roux, and Simon Scheuring. "Dynamic remodeling of the dynamin helix during membrane constriction." Proceedings of the National Academy of Sciences 114, no. 21 (May 8, 2017): 5449–54. http://dx.doi.org/10.1073/pnas.1619578114.
Full textLima-Rodriguez, Antonia, Antonio Gonzalez-Herrera, and Jose Garcia-Manrique. "Study of the Dynamic Behaviour of Circular Membranes with Low Tension." Applied Sciences 9, no. 21 (November 5, 2019): 4716. http://dx.doi.org/10.3390/app9214716.
Full textKanagabasai, Lenin. "Factual power loss reduction by dynamic membrane evolutionary algorithm." International Journal of Advances in Applied Sciences 10, no. 2 (June 1, 2021): 99. http://dx.doi.org/10.11591/ijaas.v10.i2.pp99-106.
Full textDissertations / Theses on the topic "Dynamic membranes"
Magi, Ross. "Dynamic behavior of biological membranes." Thesis, The University of Utah, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3680576.
Full textBiological membranes are important structural units in the cell. Composed of a lipid bilayer with embedded proteins, most exploration of membranes has focused on the proteins. While proteins play a vital role in membrane function, the lipids themselves can behave in dynamic ways which affect membrane structure and function. Furthermore, the dynamic behavior of the lipids can affect and be affected by membrane geometry. A novel fluid membrane model is developed in which two different types of lipids flow in a deforming membrane, modelled as a two-dimensional Riemannian manifold that resists bending. The two lipids behave like viscous Newtonian fluids whose motion is determined by realistic physical forces. By examining the stability of various shapes, it is shown that instability may result if the two lipids forming the membrane possess biophysical qualities, which cause them to respond differently to membrane curvature. By means of numerical simulation of a simplified model, it is shown that this instability results in curvature induced phase separation. Applying the simplified model to the Golgi apparatus, it is hypothesized that curvature induced phase separation may occur in a Golgi cisterna, aiding in the process of protein sorting.
In addition to flowing tangentially in the membrane, lipids also flip back and forth between the two leaflets in the bilayer. While traditionally assumed to occur very slowly, recent experiments have indicated that lipid flip-flop may occur rapidly. Two models are developed that explore the effect of rapid flip-flop on membrane geometry and the effect of a pH gradient on the distribution of charged lipids in the leaflets of the bilayer. By means of a stochastic model, it is shown that even the rapid flip-flop rates observed are unlikely to be significant inducers of membrane curvature. By means of a nonlinear Poisson- Boltzmann model, it is shown that pH gradients are unlikely to be significant inducers of bilayer asymmetry under physiological conditions.
Waheed, Qaiser. "Molecular Dynamic Simulations of Biological Membranes." Doctoral thesis, KTH, Teoretisk biologisk fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102268.
Full textQC 20120913
Turkson, Abraham K. "Electro-ultrafiltration with rotating dynamic membranes." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72036.
Full textFour dynamic membranes, Zr(IV) oxide, calcium oleate, poly-2-vinylpyridine and cadmium sulfide, were used to filter bovine serum albumin (BSA) in a disodium phosphate solution at pH = 8 and Prussian blue in distilled water. Prussian blue is a particle of 0.01(mu)m diameter with a zeta potential of -41mV while BSA is a macromolecule of 69,000 molecular weight, a Stokes-Einstein radius of 0.0038(mu)m and a zeta potential of -23.3mV at pH = 8. For BSA, the flux declined with time while the rejection increased. Filtrate fluxes increased with rotation rate and electric field and declined with concentration for both feeds. The flux declined beyond N = 2000rpm and was constant above C(,0) = 5.0wt%. For Prussian blue, the rejection was greater than 90% at all levels of E, N and C(,0). For BSA, the rejection increased with rotation rate and declined with concentration. The BSA rejection declined above N = 2000rpm and was constant beyond C(,0) = 0.5wt%.
A mathematical model was derived to predict the time variation of filtrate flux and a rejection model was used to predict the effect of surface concentration on BSA rejection.
Ip, Anita Wai Ching Chemical Sciences & Engineering Faculty of Engineering UNSW. "Dynamic membranes: formation and characterisation studies." Awarded by:University of New South Wales, 2005. http://handle.unsw.edu.au/1959.4/37836.
Full textSOARES, RENATA MACHADO. "DYNAMIC ANALYSIS OF HYPERLASTIC CIRCULAR MEMBRANES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13790@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
Nesta tese são estudadas as vibrações não-lineares de membranas circulares inicialmente tracionadas sujeitas a deformações finitas. O material da membrana é modelado como um material hiperelástico neo-Hookeano, isotrópico e incompressível. Baseada na teoria de deformações finitas para membranas hiperelásticas, uma formulação variacional é desenvolvida. Primeiro a solução da membrana sob tração radial uniforme é obtida e então as equações de movimento da membrana são obtidas pelo princípio de Hamilton. A partir das equações linearizadas, as freqüências e os modos de vibração da membrana são obtidos analiticamente. Os modos naturais são usados para aproximar o campo de deformações não-linear usando o método de Galerkin e modelos de ordem reduzida são deduzidos através do método de Karhunen-Loève e de métodos analíticos. Além disso, estuda-se a influência da variação da massa específica e da espessura ao longo da direção radial da membrana nas vibrações. A seguir a mesma metodologia é utilizada para uma membrana anular. Por fim, estudam-se as vibrações não-lineares da membrana anular acoplada a uma inclusão rígida que insere tensões de tração na membrana, pois, devido ao seu peso próprio, provoca deslocamentos estáticos transversais e axissimétricos na membrana. Os mesmos problemas são analisados por elementos finitos utilizando o programa comercial Abaqus.
This work presents an analysis of the nonlinear vibration response of a prestretched hyperelastic circular membrane subjected to finite deformations. The membrane material is assumed to be isotropic, homogeneous and neo-Hookean. Based on the theory of finite deformations for hyperelastic membranes, a variational formulation is developed. First the exact solution of the membrane under a uniform radial stretch is obtained and then the equations of motion of the pre-stretched membrane are derived using the Hamilton’s principle. From the linearized equations of motion, the natural frequencies and mode shapes of the membrane are obtained analytically. Then the natural modes are used to approximate the nonlinear deformation field using the Galerkin method. Several reduced order models are tested using the Karhunen-Loève method and analytical methods. Besides, the influence of the variation of the membrane thickness and material density along the radial direction of the membrane on the vibrations is investigated. The same methodology it is used for the annular membrane. Finally, the non-linear vibrations of the annular membrane coupled to a rigid inclusion are studied. The rigid inclusion inserts traction forces in the membrane and its own weight causes static transverse and radial displacements in the membrane. The same problems are analyzed by finite elements using the commercial program Abaqus®.
McCarthy, Nicola L. C. "Imaging dynamic patterning in lipid membranes." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/44075.
Full textNandurkar, Kuldeep Pandurang. "Static and Dynamic Behavior of Stress Coated Membranes." Thesis, Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/nandurkar/NandurkarK0806.pdf.
Full textAl-Malack, Muhammad Hassan. "Applications of dynamic membranes to crossflow microfiltration of secondary effluent." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335944.
Full textThurmond, Robin Leroy. "Average and dynamic properties of membrane lipids studied by deuterium NMR spectroscopy." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185835.
Full textSaggiomo, Vittorio [Verfasser]. "Ion transport across membranes mediated by a dynamic combinatorial library / Vittorio Saggiomo." Kiel : Universitätsbibliothek Kiel, 2010. http://d-nb.info/1019984619/34.
Full textBooks on the topic "Dynamic membranes"
Transmembrane dynamic lipids. Hoboken, NJ: Wiley, 2012.
Find full textMartonosi, Anthony N. The Enzymes of Biological Membranes: Volume 1 Membrane Structure and Dynamics. Boston, MA: Springer US, 1985.
Find full textNATO Advanced Study Institute on Dynamics and Biogenesis of Membranes (1989 Cargèse, France). Dynamics and biogenesis of membranes. Berlin: Springer-Verlag, 1990.
Find full textSansom, M. S. P., and Philip Charles Biggin. Molecular simulations and biomembranes: From biophysics to function. Cambridge: Royal Society of Chemistry, 2010.
Find full textOp den Kamp, J. A. F., ed. Dynamics and Biogenesis of Membranes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74194-4.
Full textChattopadhyay, Amitabha, ed. Membrane Organization and Dynamics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66601-3.
Full textQuinn, Peter J., ed. Membrane Dynamics and Domains. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-5806-1.
Full textOp den Kamp, Jos A. F., ed. Dynamics of Membrane Assembly. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02860-5.
Full textOp den Kamp, Jos A. F., ed. Biological Membranes: Structure, Biogenesis and Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78846-8.
Full textWirtz, K. W. A., ed. Membrane Receptors, Dynamics, and Energetics. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5335-5.
Full textBook chapters on the topic "Dynamic membranes"
Park, Chi Hoon. "Dynamic Mechanical Analysis." In Encyclopedia of Membranes, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_1093-5.
Full textKovács, Zoltán. "Dynamic-Volume Diafiltration." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_665-3.
Full textJaffrin, M. Y. "Dynamic Membrane Microfiltration." In Encyclopedia of Membranes, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_957-2.
Full textKovács, Zoltán. "Dynamic-Volume Diafiltration." In Encyclopedia of Membranes, 620–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_665.
Full textJaffrin, Michel. "Dynamic Membrane Microfiltration." In Encyclopedia of Membranes, 616–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_957.
Full textPark, Chi Hoon. "Dynamic Mechanical Analysis." In Encyclopedia of Membranes, 607–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1093.
Full textYampolskii, Yuri. "Dynamic Free Volume." In Encyclopedia of Membranes, 606. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_193.
Full textPiacentini, Emma, Alessandra Imbrogno, and Richard G. Holdich. "Dynamic Membrane Emulsification." In Encyclopedia of Membranes, 610–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_194.
Full textYampolskii, Yuri. "Dynamic Free Volume." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_193-4.
Full textPiacentini, E., A. Imbrogno, and R. G. Holdich. "Dynamic Membrane Emulsification." In Encyclopedia of Membranes, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_194-1.
Full textConference papers on the topic "Dynamic membranes"
Hossain, N., Kyeongsik Woo, and Christopher Jenkins. "Dynamic Response of Systematically Creased Membranes." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1806.
Full textFox, Jason W., and Nakhiah C. Goulbourne. "Nonlinear dynamic characteristics of dielectric elastomer membranes." In The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Yoseph Bar-Cohen. SPIE, 2008. http://dx.doi.org/10.1117/12.776692.
Full textKoombua, Kittisak, Ramana M. Pidaparti, P. Worth Longest, and Gary M. Atkinson. "Micropump With Six Vibrating Membranes: Design Analysis." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49487.
Full textShi, Hongyang, Thassyo Pinto, Xinda Qi, Demetris Coleman, Silvia Matt, Weilin Hou, and Xiaobo Tan. "Dynamic Modeling of Voice Coil Motor-Actuated Flexible Membranes." In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3321.
Full textRomero, T., and W. Me´rida. "Transient Water Transport in Nafion Membranes Under Activity Gradients." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33317.
Full textYoung, Leyland, and Perngjin Pai. "Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes." In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1618.
Full textCastro-Román, Francisco, Mauricio Carbajal, Luis Manuel Montaño, Oscar Rosas-Ortiz, Sergio A. Tomas Velazquez, and Omar Miranda. "Dynamic Structure of Lipid Membranes: Lamellar Diffraction in Concert with Molecular Dynamics Simulations." In Advanced Summer School in Physics 2007. AIP, 2007. http://dx.doi.org/10.1063/1.2825115.
Full textCheddie, Denver. "Dynamic Modeling of Water Sorption in PEM Fuel Cells." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85016.
Full textKolsti, Kyle, and Donald Kunz. "Dynamic Simulation of Geometrically Nonlinear Membranes Using Hermite Time Interpolation." In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1973.
Gerbach, R., F. Naumann, M. Ebert, J. Bagdahn, J. Klattenhoff, and C. Rembe. "Dynamic Analyses of Membranes and Thin Films on Wafer Level." In 2007 IEEE International Conference on Microelectronic Test Structures. IEEE, 2007. http://dx.doi.org/10.1109/icmts.2007.374486.
Full textReports on the topic "Dynamic membranes"
Wolfe, W. P., J. M. Nelsen, R. S. Baty, G. A. Laguna, F. J. Mello, C. E. Hailey, and N. T. Snyder. A gridless technique for fluid/structural dynamic coupling on flexible membranes. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/201803.
Full textParikh, Atul N., Sunil K. Sinha, Jeremy Sanborn, Mira Patel, Viviane Ngassam, Doug Gettel, Thomas Wilkop, et al. Dynamical Self-Assembly: Constrained phase separation and mesoscale dynamics in lipid membranes (Final Report). Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1525891.
Full textWoolf, Thomas B., Paul Stewart Crozier, and Mark Jackson Stevens. Molecular dynamics of membrane proteins. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/919637.
Full textGutman, Menachem. Probing of Membrane's Surface by Dynamic Measurements of Proton Diffusion. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada230747.
Full textDutta, Prabir K. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/809077.
Full textGodfrey, Thomas A. Verification of Dynamic Load Factor for Analysis of Airblast-Loaded Membrane Shelter Panels by Nonlinear Finite Element Calculations. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada238939.
Full textHaskins, William E., Michael D. Leavell, Pamela Lane, Richard B. Jacobsen, Joohee Hong, Marites J. Ayson, Nichole L. Wood, et al. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/922763.
Full textTiburu, Elvis K. Determination of the Dynamics, Structure, and Orientation of the Transmembrane Segment of ErbB2 in Model Membranes Using Solid-State NMR Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada482328.
Full text