Dissertations / Theses on the topic 'DYNAMIC MACHINE LEARNING METHODOLOGY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'DYNAMIC MACHINE LEARNING METHODOLOGY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Early, Kirstin. "Dynamic Question Ordering: Obtaining Useful Information While Reducing User Burden." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1117.
Full textZhang, Bo. "Machine Learning on Statistical Manifold." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/110.
Full textHöstklint, Niklas, and Jesper Larsson. "Dynamic Test Case Selection using Machine Learning." Thesis, KTH, Hälsoinformatik och logistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296634.
Full textTestning av kod är en avgörande del för alla mjukvaruproducerande företag, för att säkerställa att ingen felaktig kod som kan ha skadlig påverkan publiceras. Hos Ericsson är testning av kod innan det ska publiceras en väldigt dyr process som kan ta flera timmar. Vid tiden denna rapport skrivs så körs varenda test för all inlämnad kod. Denna rapport har som mål att lösa/reducera problemet genom att bygga en modell med maskininlärning som avgör vilka tester som ska köras, så onödiga tester lämnas utanför vilket i sin tur sparar tid och resurser. Dock är det viktigt att hitta alla misslyckade tester, eftersom att tillåta dessa passera till produktionen kan innebära alla möjliga olika ekonomiska, miljömässiga och sociala konsekvenser. Resultaten visar att det finns stor potential i flera olika typer av modeller. En linjär regressionsmodell hittade 92% av alla fel inom att 25% av alla test kategorier körts. Den linjära modellen träffar dock en platå innan den hittar de sista felen. Om det är essentiellt att hitta 100% av felen, så visade sig en support vector regressionsmodell vara mest effektiv, då den var den enda modellen som lyckades hitta 100% av alla fel inom att 90% alla test kategorier hade körts.
Rowe, Michael C. (Michael Charles). "A Machine Learning Method Suitable for Dynamic Domains." Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc278720/.
Full textKelly, Michael A. "A methodology for software cost estimation using machine learning techniques." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from the National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA273158.
Full textThesis advisor(s): Ramesh, B. ; Abdel-Hamid, Tarek K. "September 1993." Bibliography: p. 135. Also available online.
Narmack, Kirilll. "Dynamic Speed Adaptation for Curves using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233545.
Full textMorgondagens fordon kommer att vara mer sofistikerade, intelligenta och säkra än dagens fordon. Framtiden lutar mot fullständigt autonoma fordon. Detta examensarbete tillhandahåller en datadriven lösning för ett hastighetsanpassningssystem som kan beräkna ett fordons hastighet i kurvor som är lämpligt för förarens körstil, vägens egenskaper och rådande väder. Ett hastighetsanpassningssystem för kurvor har som mål att beräkna en fordonshastighet för kurvor som kan användas i Advanced Driver Assistance Systems (ADAS) eller Autonomous Driving (AD) applikationer. Detta examensarbete utfördes på Volvo Car Corporation. Litteratur kring hastighetsanpassningssystem samt faktorer som påverkar ett fordons hastighet i kurvor studerades. Naturalistisk bilkörningsdata samlades genom att köra bil samt extraherades från Volvos databas och bearbetades. Ett nytt hastighetsanpassningssystem uppfanns, implementerades samt utvärderades. Hastighetsanpassningssystemet visade sig vara kapabelt till att beräkna en lämplig fordonshastighet för förarens körstil under rådande väderförhållanden och vägens egenskaper. Två olika artificiella neuronnätverk samt två matematiska modeller användes för att beräkna fordonets hastighet. Dessa metoder jämfördes och utvärderades.
Sîrbu, Adela-Maria. "Dynamic machine learning for supervised and unsupervised classification." Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0002/document.
Full textThe research direction we are focusing on in the thesis is applying dynamic machine learning models to salve supervised and unsupervised classification problems. We are living in a dynamic environment, where data is continuously changing and the need to obtain a fast and accurate solution to our problems has become a real necessity. The particular problems that we have decided te approach in the thesis are pedestrian recognition (a supervised classification problem) and clustering of gene expression data (an unsupervised classification. problem). The approached problems are representative for the two main types of classification and are very challenging, having a great importance in real life.The first research direction that we approach in the field of dynamic unsupervised classification is the problem of dynamic clustering of gene expression data. Gene expression represents the process by which the information from a gene is converted into functional gene products: proteins or RNA having different roles in the life of a cell. Modern microarray technology is nowadays used to experimentally detect the levels of expressions of thousand of genes, across different conditions and over time. Once the gene expression data has been gathered, the next step is to analyze it and extract useful biological information. One of the most popular algorithms dealing with the analysis of gene expression data is clustering, which involves partitioning a certain data set in groups, where the components of each group are similar to each other. In the case of gene expression data sets, each gene is represented by its expression values (features), at distinct points in time, under the monitored conditions. The process of gene clustering is at the foundation of genomic studies that aim to analyze the functions of genes because it is assumed that genes that are similar in their expression levels are also relatively similar in terms of biological function.The problem that we address within the dynamic unsupervised classification research direction is the dynamic clustering of gene expression data. In our case, the term dynamic indicates that the data set is not static, but it is subject to change. Still, as opposed to the incremental approaches from the literature, where the data set is enriched with new genes (instances) during the clustering process, our approaches tackle the cases when new features (expression levels for new points in time) are added to the genes already existing in the data set. To our best knowledge, there are no approaches in the literature that deal with the problem of dynamic clustering of gene expression data, defined as above. In this context we introduced three dynamic clustering algorithms which are able to handle new collected gene expression levels, by starting from a previous obtained partition, without the need to re-run the algorithm from scratch. Experimental evaluation shows that our method is faster and more accurate than applying the clustering algorithm from scratch on the feature extended data set
Salazar, González Fernando. "A machine learning based methodology for anomaly detection in dam behaviour." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405808.
Full textEl comportamiento estructural de las presas de embalse es difícil de predecir con precisión. Los modelos numéricos para el cálculo estructural resuelven las ecuaciones de la mecánica de medios continuos, pero están sujetos a una gran incertidumbre en cuanto a la caracterización de los materiales, especialmente en lo que respecta a la cimentación. Como consecuencia, frecuentemente estos modelos no son capaces de calcular el comportamiento de las presas con suficiente precisión. Así, es difícil discernir si un estado que se aleja en cierta medida de la normalidad supone o no una situación de riesgo estructural. Por el contrario, muchas de las presas en operación cuentan con un gran número de aparatos de auscultación, que registran la evolución de diversos indicadores como los movimientos, el caudal de filtración, o la presión intersticial, entre otros. Aunque hoy en día hay muchas presas con pocos datos observados, hay una tendencia clara hacia la instalación de un mayor número de aparatos que registran el comportamiento con mayor frecuencia. Como consecuencia, se tiende a disponer de un volumen creciente de datos que reflejan el comportamiento de la presa, lo cual hace interesante estudiar la capacidad de herramientas desarrolladas en otros campos para extraer información útil a partir de variables observadas. En particular, en el ámbito del Aprendizaje Automático (Machine Learning), se han desarrollado algoritmos muy potentes para entender fenómenos cuyo mecanismo es poco conocido, acerca de los cuales se dispone de grandes volúmenes de datos. En la tesis se ha hecho un análisis de las posibilidades de las técnicas más recientes de aprendizaje automático para su aplicación al análisis estructural de presas basado en los datos de auscultación. Para ello se han tenido en cuenta las características habituales de las series de datos disponibles en las presas, en cuanto a su naturaleza, calidad y cantidad. Se ha realizado una revisión crítica de la bibliografía existente, a partir de la cual se han identificado los aspectos clave a tener en cuenta para implementación de estos algoritmos en la seguridad de presas. Se ha realizado un estudio comparativo de la precisión de un conjunto de algoritmos para la predicción del comportamiento de presas considerando desplazamientos radiales, tangenciales y filtraciones. Para ello se han utilizado datos reales de una presa bóveda. Los resultados sugieren que el algoritmo denominado ``Boosted Regression Trees'' (BRTs) es el más adecuado, por ser más preciso en general, además de flexible y relativamente fácil de implementar. En una etapa posterior, se han identificado las posibilidades de interpretación del citado algoritmo para extraer la forma e intensidad de la asociación entre las variables exteriores y la respuesta de la presa, así como el efecto del tiempo. Las herramientas empleadas se han aplicado al mismo caso piloto, y han permitido identificar el efecto del tiempo con más precisión que el método estadístico tradicional. Finalmente, se ha desarrollado una metodología para la aplicación de modelos de predicción basados en BRTs en la detección de anomalías en tiempo real. Esta metodología se ha implementado en una herramienta informática interactiva que ofrece información sobre el comportamiento de la presa, a través de un conjunto de aparatos seleccionados. Permite comprobar a simple vista si los datos reales de cada uno de estos aparatos se encuentran dentro del rango de funcionamiento normal de la presa.
Winikoff, Steven M. "Incorporating the simplicity first methodology into a machine learning genetic algorithm." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ39118.pdf.
Full textBrun, Yuriy 1981. "Software fault identification via dynamic analysis and machine learning." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17939.
Full textIncludes bibliographical references (p. 65-67).
I propose a technique that identifies program properties that may indicate errors. The technique generates machine learning models of run-time program properties known to expose faults, and applies these models to program properties of user-written code to classify and rank properties that may lead the user to errors. I evaluate an implementation of the technique, the Fault Invariant Classifier, that demonstrates the efficacy of the error finding technique. The implementation uses dynamic invariant detection to generate program properties. It uses support vector machine and decision tree learning tools to classify those properties. Given a set of properties produced by the program analysis, some of which are indicative of errors, the technique selects a subset of properties that are most likely to reveal an error. The experimental evaluation over 941,000 lines of code, showed that a user must examine only the 2.2 highest-ranked properties for C programs and 1.7 for Java programs to find a fault-revealing property. The technique increases the relevance (the concentration of properties that reveal errors) by a factor of 50 on average for C programs, and 4.8 for Java programs.
by Yuriy Brun.
M.Eng.
Emani, Murali Krishna. "Adaptive parallelism mapping in dynamic environments using machine learning." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10469.
Full textDahlberg, Love. "Dynamic algorithm selection for machine learning on time series." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72576.
Full textEhramikar, Soheila. "The enhancement of credit card fraud detection systems using machine learning methodology." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0023/MQ50338.pdf.
Full textBotlani-Esfahani, Mohsen. "Modeling of Dynamic Allostery in Proteins Enabled by Machine Learning." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6804.
Full textZorello, Ligia Maria Moreira. "Dynamic CPU frequency scaling using machine learning for NFV applications." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-30012019-100044/.
Full textO crescimento do setor de Tecnologia da Informação e Comunicação está aumentando a necessidade de melhorar a qualidade de serviço e a eficiência energética, pois o setor já ultrapassou a marca de 12% do consumo energético global em 2017. Data centers correspondem a grande parte desse consumo, representando cerca de 15% dos gastos com energia do setor Tecnologia Informação e Comunicação; além disso, o subsistema que gera mais custos para operadores de data centers é o de servidores e armazenamento. Muitas soluções foram propostas a fim de reduzir o consumo de energia com servidores, como o uso de escalonamento dinâmico de tensão e frequência, uma tecnologia que permite adaptar o consumo de energia à carga de trabalho, embora atualmente não sejam otimizadas para o processamento do tráfego de rede. Nessa dissertação, foi desenvolvido um método de controle usando um mecanismo de previsão baseado na análise do tráfego que chega aos servidores. Os algoritmos de aprendizado de máquina baseados em Redes Neurais e em Máquinas de Vetores de Suporte foram utilizados, e foi verificado que é possível reduzir o consumo de energia em até 12% em servidores com processador Intel Sandy Bridge e em até 21% em servidores com processador Intel Haswell quando comparado com a frequência máxima, que é atualmente a solução mais utilizada na indústria.
Caceres, Carlos Antonio. "Machine Learning Techniques for Gesture Recognition." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/52556.
Full textMaster of Science
Tian, Renran. "Validity and reliability of dynamic virtual interactive design methodology." Master's thesis, Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-09242007-080500.
Full textYang, Donghai, and 杨东海. "Dynamic planning and scheduling in manufacturing systems with machine learning approaches." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41757968.
Full textArslan, Oktay. "Machine learning and dynamic programming algorithms for motion planning and control." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54317.
Full textXu, Jin. "Machine Learning – Based Dynamic Response Prediction of High – Speed Railway Bridges." Thesis, KTH, Bro- och stålbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278538.
Full textGyawali, Sanij. "Dynamic Load Modeling from PSSE-Simulated Disturbance Data using Machine Learning." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100591.
Full textMaster of Science
Independent system Operators (ISO) and Distribution system operators (DSO) have a responsibility to provide uninterrupted power supply to consumers. That along with the longing to keep operating cost minimum, engineers and planners study the system beforehand and seek to find the optimum capacity for each of the power system elements like generators, transformers, transmission lines, etc. Then they test the overall system using power system models, which are mathematical representation of the real components, to verify the stability and strength of the system. However, the verification is only as good as the system models that are used. As most of the power systems components are controlled by the operators themselves, it is easy to develop a model from their perspective. The load is the only component controlled by consumers. Hence, the necessity of better load models. Several studies have been made on static load modeling and the performance is on par with real behavior. But dynamic loading, which is a load behavior dependent on time, is rather difficult to model. Some attempts on dynamic load modeling can be found already. Physical component-based and mathematical transfer function based dynamic models are quite widely used for the study. These load structures are largely accepted as a good representation of the systems dynamic behavior. With a load structure in hand, the next task is estimating their parameters. In this research, we tested out some new machine learning methods to accurately estimate the parameters. Thousands of simulated data are used to train machine learning models. After training, we validated the models on some other unseen data. This study finally goes on to recommend better methods to load modeling.
Yang, Donghai. "Dynamic planning and scheduling in manufacturing systems with machine learning approaches." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41757968.
Full textRenner, Michael Robert. "Machine Learning Simulation: Torso Dynamics of Robotic Biped." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34602.
Full textMaster of Science
Jackson, John Taylor. "Improving Swarm Performance by Applying Machine Learning to a New Dynamic Survey." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1857.
Full textHammami, Seif Eddine. "Dynamic network resources optimization based on machine learning and cellular data mining." Thesis, Evry, Institut national des télécommunications, 2018. http://www.theses.fr/2018TELE0015/document.
Full textReal datasets of mobile network traces contain valuable information about the network resources usage. These traces may be used to enhance and optimize the network performances. A real dataset of CDR (Call Detail Records) traces, that include spatio-temporal information about mobile users’ activities, are analyzed and exploited in this thesis. Given their large size and the fact that these are real-world datasets, information extracted from these datasets have intensively been used in our work to develop new algorithms that aim to revolutionize the infrastructure management mechanisms and optimize the usage of resource. We propose, in this thesis, a framework for network profiles classification, load prediction and dynamic network planning based on machine learning tools. We also propose a framework for network anomaly detection. These frameworks are validated using different network topologies such as wireless mesh networks (WMN) and drone-cell based networks. We show that using advanced data mining techniques, our frameworks are able to help network operators to manage and optimize dynamically their networks
Sathyan, Anoop. "Intelligent Machine Learning Approaches for Aerospace Applications." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1491558309625214.
Full textDalgren, Anton, and Ylva Lundegård. "GreenML : A methodology for fair evaluation of machine learning algorithms with respect to resource consumption." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159837.
Full textMagnedal, Holmgren Andreas, and Victor Sellstedt. "Risk Free Credit: Estimating Risk of Debt Delinquency on Credit Cards : Using Machine Learning Methodology." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259747.
Full textEn välfungerande ekonomi behöver en stabil kreditmarknad. Maskininlärningsmetoder har potential att reducera osäkerheten på marknaden. Rapporten undersöker fyra olika metoder för att beräkna sannolikheten att en låntagare återbetalar sin kreditkortsskuld baserat på kreditkortsdata från Taiwan. Metoderna som valdes var Linear Discriminant Analysis, Support Vector Machines, Arti- ficiella Neurala Nätverk och Djupa Neurala Nätverk. Modellerna utvärderades med avseende på fem olika metoder: Area Under the Curve for the Receiver Operating Characteristic, nogrannhet, precision, sensitivitet och specificitet. Resultaten visade att alla modeller presterade bättre än slump med liknande resultat utom för Support Vector Machines som i vår testkonfiguration felaktigt klassificerade nästintill alla låntagare som inte skulle återbetala. Även om ingen modell var tydligt bättre än de andra visade resultaten att Djupa Neurala Nätverk och Linear Discriminant Analysis är metoderna som visar mest potential.
Lee, Michael. "Rapid Prediction of Tsunamis and Storm Surges Using Machine Learning." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103154.
Full textDoctor of Philosophy
Tsunami and storm surge can cause extensive damage to coastal communities; to reduce this damage, accurate and fast computer models are needed that can predict the water level change caused by these coastal hazards. The problem is that existing physics-based computer models are either accurate but slow or less accurate but fast. In this dissertation, three new computer models are developed using statistical and machine learning techniques that can rapidly predict a tsunami and storm surge without substantial loss of accuracy compared to the accurate physics-based computer models. Three computer models are as follows: (1) A computer model that can rapidly predict the maximum ground elevation wetted by the tsunami along the coastline from earthquake information, (2) A computer model that can reversely predict a tsunami source and its impact from the observations of the maximum ground elevation wetted by the tsunami, (3) A computer model that can rapidly predict peak storm surges across a wide range of coastal areas from the tropical cyclone's track position over time. These new computer models have the potential to improve forecasting capabilities, advance understanding of historical tsunami and storm surge events, and lead to better preparedness plans for possible future tsunamis and storm surges.
Madjar, Nicole, and Filip Lindblom. "Machine Learning implementation for Stress-Detection." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280897.
Full textDetta projekt handlar om att försöka applicera maskininlärningsmodeller på ett urval av datapunkter för att ta reda på huruvida en förbättring av nuvarande praxis inom stressdetektering och åtgärdshantering kan vara applicerbart för företaget Linkura AB. Linkura AB är ett medicintekniskt företag baserat i Linköping och hanterar bland annat stressmätning hos andra företags anställda, samt hälso-coachning för att ta fram åtgärdspunkter för förbättring. I denna rapport experimenterar vi med olika metoder under samlingsnamnet oövervakad maskininlärning för att identifiera synbara mönster och beteenden inom datapunkter, och vidare analyseras detta i förhållande till den mängden data vi fått tillgodosett. De modeller som har använts under projektets gång har varit “K-Means algoritm” samt en dynamisk hierarkisk klustermodell. Korrelationen mellan olika datapunktsparametrar analyseras för att optimera resurshantering, samt experimentering med olika antal parametrar inkluderade i datan testas och diskuteras med expertis inom hälso-coachning. Resultaten påvisade att båda algoritmerna kan generera kluster för riskgrupper, men där den dynamiska modellen tydligt påvisar antalet kluster som ska användas för optimalt resultat. Efter konsultering med mentorer samt expertis inom hälso-coachning så drogs en slutsats om att den dynamiska modellen levererar tydligare riskkluster för att representera riskgrupper för stress. Slutsatsen för projektet blev att maskininlärningsmodeller kan kategorisera datapunkter med stressrelaterade korrelationer, vilket är användbart för åtgärdsbestämmelser. Framtida arbeten bör göras med ett större mängd data för mer optimerade resultat, där detta projekt kan ses som en grund för dessa implementeringar.
Wenerstrom, Brent K. "Temporal Data Mining in a Dynamic Feature Space." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/761.
Full textCurtis, Brian J. "Machine Learning and Cellular Automata| Applications in Modeling Dynamic Change in Urban Environments." Thesis, The George Washington University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10785215.
Full textThere have been several studies advocating the need for, and the feasibility of, using advanced techniques to support decision makers in urban planning and resource monitoring. One such advanced technique includes a framework that leverages remote sensing and geospatial information systems (GIS) in conjunction with cellular automata (CA) to monitor land use / land change phenomena like urban sprawling. Much research has been conducted using various learning techniques spanning all levels of complexity - from simple logistical regression to advance artificial intelligence methods (e.g., artificial neural networks). In a high percentage of the published research, simulations are performed leveraging only one or two techniques and applied to a case study of a single geographical region. Typically, the findings are favorable and demonstrate the studied methods are superior. This work found no research being conducted to compare the performance of several machine learning techniques across an array of geographical locations. Additionally, current literature was found lacking in investigating the impact various scene parameters (e.g., sprawl, urban growth) had on the simulation results. Therefore, this research set out to understand the sensitivities and correlations associated with the selection of machine learning methods used in CA based models. The results from this research indicate more simplistic algorithms, which are easier to comprehend and implement, have the potential to perform equally as well as compared to more complicated algorithms. Also, it is shown that the quantity of urbanization in the studied area directly impacts the simulation results.
Tahkola, M. (Mikko). "Developing dynamic machine learning surrogate models of physics-based industrial process simulation models." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906042313.
Full textWenerstrom, Brent. "Temporal data mining in a dynamic feature space /." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1317.pdf.
Full textBhardwaj, Ananya. "Biomimetic Detection of Dynamic Signatures in Foliage Echoes." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/102299.
Full textMaster of Science
Horseshoe bats (family Rhinolophidae) are an echolocating bat species, i.e., they emit sound waves and use the corresponding echoes received from the environment to gather information for navigation. This species of bats demonstrate the behavior of deforming their emitter (noseleaf), and ears (pinna), while emitting or receiving echolocation signals. Horseshoe bats are adept at navigating in the dark through dense foliage. Their impressive navigational abilities are of interest to researchers, as their biology can inspire solutions for autonomous drone navigation in foliage and underwater. Prior research, through numerical studies and experimental reproductions, has found that these deformations can introduce time-dependent changes in the emitted and received signals. Furthermore, recent research using a biomimetic robot has found that echoes received from simple shapes, such as cube and sphere, also contain time-dependent changes. However, prior studies have not used foliage echoes in their analysis, which are more complex, since they include a large number of randomly distributed targets (leaves). Foliage echoes also constitute a large share of echoes from the bats' habitats, hence an understanding of the effects of the dynamic deformations on these foliage echoes is of interest. Since echolocation signals exist within bat brains as neural spikes, it is also important to understand if these dynamic effects can be identified within such signal representations, as that would indicate that these effects are available to the bats' brains. In this study, a biomimetic robot that mimicked the dynamic pinna and noseleaf deformation was used to collect a large dataset (>55,000) of echoes from foliage. A signal processing model that mimicked the auditory processing of these bats and generated simulated spike responses was also developed. Supervised machine learning was used to classify these simulated spike responses into two groups based on the presence or absence of these dynamics' effects. The success of the machine learning classifiers of up to 80% accuracy suggested that the dynamic effects exist within foliage echoes and also spike-based representations. The machine learning classifier was more accurate when classifying echoes from a small confined area, as compared to echoes distributed over a larger area with varying foliage. This result suggests that any potential benefits from these effects might be location-specific if the bat brain similarly fails to generalize over the variation in echoes from different locations.
Jin, Wenjing. "Modeling of Machine Life Using Accelerated Prognostics and Health Management (APHM) and Enhanced Deep Learning Methodology." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1479821186023747.
Full textLyubchyk, Leonid, Oleksy Galuza, and Galina Grinberg. "Ranking Model Real-Time Adaptation via Preference Learning Based on Dynamic Clustering." Thesis, ННК "IПСА" НТУУ "КПI iм. Iгоря Сiкорського", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/36819.
Full textNguyen, Dang Quang. "Multi-Agent Learning in Highly Dynamic and Uncertain Environments." Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/30020.
Full textClark, Mark A. "Dynamic Voltage/Frequency Scaling and Power-Gating of Network-on-Chip with Machine Learning." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1544105215810566.
Full textAlmannaa, Mohammed Hamad. "Optimizing Bike Sharing Systems: Dynamic Prediction Using Machine Learning and Statistical Techniques and Rebalancing." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/100737.
Full textDoctor of Philosophy
Conradsson, Emil, and Vidar Johansson. "A MODEL-INDEPENDENT METHODOLOGY FOR A ROOT CAUSE ANALYSIS SYSTEM : A STUDY INVESTIGATING INTERPRETABLE MACHINE LEARNING METHODS." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160372.
Full textIdag upplever företag som Volvo GTO en stor ökning av data och en förbättrad förmågaatt bearbeta den. Detta gör det möjligt att, med hjälp av maskininlärningsmodeller,skapa ett rotorsaksanalyssystem för att förutspå, förklara och förebygga defekter. Detfinns dock en balans mellan modellprestanda och förklaringskapacitet, där båda ärväsentliga för ett sådant system.Detta examensarbete har som mål att, med hjälp av maskininlärningsmodeller, under-söka förhållandet mellan sensordata från målningsprocessen och strukturdefektenorangepeel. Målet är även att utvärdera hur konsekventa olika förklaringsmetoder är.Efter att datat förarbetats och nya variabler skapats, t.ex. förändringar som gjorts, trä-nades och testades tre maskinlärningsmodeller. En linjär modell kan tolkas genomdess koefficienter. En vanlig metod för att globalt förklara trädbaserade modeller ärMDI. SHAP är en modern modelloberoende metod som kan förklara modeller bådeglobalt och lokalt. Dessa tre förklaringsmetoder jämfördes sedan för att utvärdera hurkonsekventa de var i sina förklaringar. Om SHAP skulle vara konsekvent med de andrapå en global nivå, kan det argumenteras för att SHAP kan användas lokalt i en rotorsak-analys.Studien visade att koefficienterna och MDI var konsekventa med SHAP då den över-gripande korrelationen mellan dem var hög samt att metoderna tenderade att viktavariablerna på ett liknande sätt. Genom denna slutsats utvecklades en rotorsakanalysal-goritm med SHAP som lokal förklaringsmetod. Slutligen går det inte att dra någonslutsats om att det finns ett samband mellan sensordatat ochorange peel, eftersom förän-dringarna i processen var de mest betydande variablerna.
Rihani, Mohamad-Al-Fadl. "Management of Dynamic Reconfiguration in a Wireless Digital Communication Context." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0030/document.
Full textToday, wireless devices generally feature multiple radio access technologies (LTE, WiFi, WiMax, ...) to handle a rich variety of standards or technologies. These devices should be intelligent and autonomous enough in order to either reach a given level of performance or automatically select the best available wireless standard. On the hardware side, System on Chip (SoC) devices integrate processors and FPGA logic fabrics on the same chip with fast inter-connection. This allows designing Software/Hardware systems. In these devices, Dynamic Partial Reconfiguration (DPR) constitutes a well-known technique for reconfiguring only a specific area within the FPGA while other parts continue to operate independently. To evaluate when it is advantageous to perform DPR, adaptive techniques have been proposed. They consist in reconfiguring parts of the system automatically according to specific parameters. In this thesis, an intelligent wireless communication system aiming at implementing an adaptive OFDM based transmitter is presented. An unified physical layer for WiFi-WiMax networks is also proposed. An intelligent Vertical Handover Algorithm (VHA) based on Neural Networks (NN) was proposed to select best available wireless standard in heterogeneous network. The system was implemented and tested on a ZedBoard which features a Xilinx Zynq-7000-SoC. The performance of the system is described and simulation results are presented in order to validate the proposed architecture. Real time power measurements have been applied to compute the overhead power for the PR operation. In addition demonstrations have been performed to test and validate the implemented system
Tamascelli, Nicola. "A Machine Learning Approach to Predict Chattering Alarms." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textMoffett, Jeffrey P. "Applying Causal Models to Dynamic Difficulty Adjustment in Video Games." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/320.
Full textFang, Chunsheng. "Novel Frameworks for Mining Heterogeneous and Dynamic Networks." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1321369978.
Full textTempleton, Julian. "Designing Robust Trust Establishment Models with a Generalized Architecture and a Cluster-Based Improvement Methodology." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42556.
Full textFent, Thomas. "Using genetics based machine learning to find strategies for product placement in a dynamic market." SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 1999. http://epub.wu.ac.at/694/1/document.pdf.
Full textSeries: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Souriau, Rémi. "machine learning for modeling dynamic stochastic systems : application to adaptive control on deep-brain stimulation." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG004.
Full textThe past recent years have been marked by the emergence of a large amount of database in many fields like health. The creation of many databases paves the way to new applications. Properties of data are sometimes complex (non linearity, dynamic, high dimensions) and require to perform machine learning models. Belong existing machine learning models, artificial neural network got a large success since the last decades. The success of these models lies on the non linearity behavior of neurons, the use of latent units and the flexibility of these models to adapt to many different problems. Boltzmann machines presented in this thesis are a family of generative neural networks. Introduced by Hinton in the 80's, this family have got a large interest at the beginning of the 21st century and new extensions are regularly proposed.This thesis is divided into two parts. A first part exploring Boltzmann machines and their applications. In this thesis the unsupervised learning of intracranial electroencephalogram signals on rats with Parkinson's disease for the control of the symptoms is studied.Boltzmann machines gave birth to Diffusion networks which are also generative model based on the learning of a stochastic differential equation for dynamic and stochastic data. This model is studied again in this thesis and a new training algorithm is proposed. Its use is tested on toy data as well as on real database
Gray, David Philip Harry. "Software defect prediction using static code metrics : formulating a methodology." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/11067.
Full textAlShammeri, Mohammed. "Dynamic Committees for Handling Concept Drift in Databases (DCCD)." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23498.
Full text