Academic literature on the topic 'DYNAMIC MACHINE LEARNING METHODOLOGY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DYNAMIC MACHINE LEARNING METHODOLOGY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DYNAMIC MACHINE LEARNING METHODOLOGY"
Barr, Joseph R., Eden A. Ellis, Antonio Kassab, Christian L. Redfearn, Narayanan Nani Srinivasan, and Kurtis B. Voris. "Home Price Index: A Machine Learning Methodology." International Journal of Semantic Computing 11, no. 01 (March 2017): 111–33. http://dx.doi.org/10.1142/s1793351x17500015.
Full textPérez Moreno, F., V. F. Gómez Comendador, R. Delgado-Aguilera Jurado, M. Zamarreño Suárez, D. Janisch, and R. M. Arnaldo Valdés. "Dynamic sector characterisation model with the application of machine learning techniques." IOP Conference Series: Materials Science and Engineering 1226, no. 1 (February 1, 2022): 012018. http://dx.doi.org/10.1088/1757-899x/1226/1/012018.
Full textNavarro, Osvaldo, Jones Yudi, Javier Hoffmann, Hector Gerardo Muñoz Hernandez, and Michael Hübner. "A Machine Learning Methodology for Cache Memory Design Based on Dynamic Instructions." ACM Transactions on Embedded Computing Systems 19, no. 2 (March 17, 2020): 1–20. http://dx.doi.org/10.1145/3376920.
Full textPRIORE, PAOLO, DAVID DE LA FUENTE, ALBERTO GOMEZ, and JAVIER PUENTE. "DYNAMIC SCHEDULING OF MANUFACTURING SYSTEMS WITH MACHINE LEARNING." International Journal of Foundations of Computer Science 12, no. 06 (December 2001): 751–62. http://dx.doi.org/10.1142/s0129054101000849.
Full textIskhakov, Fedor, John Rust, and Bertel Schjerning. "Machine learning and structural econometrics: contrasts and synergies." Econometrics Journal 23, no. 3 (August 29, 2020): S81—S124. http://dx.doi.org/10.1093/ectj/utaa019.
Full textKo, Jeong Hoon. "Machining Stability Categorization and Prediction Using Process Model Guided Machine Learning." Metals 12, no. 2 (February 9, 2022): 298. http://dx.doi.org/10.3390/met12020298.
Full textGarcía Plaza, Eustaquio, Pedro Jose Núñez López, Angel Ramon Martín, and E. Beamud. "Virtual Machining Applied to the Teaching of Manufacturing Technology." Materials Science Forum 692 (July 2011): 120–27. http://dx.doi.org/10.4028/www.scientific.net/msf.692.120.
Full textHewawasam, Hasitha, Gayan Kahandawa, and Yousef Ibrahim. "Machine Learning-Based Agoraphilic Navigation Algorithm for Use in Dynamic Environments with a Moving Goal." Machines 11, no. 5 (April 28, 2023): 513. http://dx.doi.org/10.3390/machines11050513.
Full textLu, M., L. Groeneveld, D. Karssenberg, S. Ji, R. Jentink, E. Paree, and E. Addink. "GEOMORPHOLOGICAL MAPPING OF INTERTIDAL AREAS." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2021 (June 28, 2021): 75–80. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2021-75-2021.
Full textCarputo, Francesco, Danilo D’Andrea, Giacomo Risitano, Aleksandr Sakhnevych, Dario Santonocito, and Flavio Farroni. "A Neural-Network-Based Methodology for the Evaluation of the Center of Gravity of a Motorcycle Rider." Vehicles 3, no. 3 (July 15, 2021): 377–89. http://dx.doi.org/10.3390/vehicles3030023.
Full textDissertations / Theses on the topic "DYNAMIC MACHINE LEARNING METHODOLOGY"
Early, Kirstin. "Dynamic Question Ordering: Obtaining Useful Information While Reducing User Burden." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1117.
Full textZhang, Bo. "Machine Learning on Statistical Manifold." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/110.
Full textHöstklint, Niklas, and Jesper Larsson. "Dynamic Test Case Selection using Machine Learning." Thesis, KTH, Hälsoinformatik och logistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296634.
Full textTestning av kod är en avgörande del för alla mjukvaruproducerande företag, för att säkerställa att ingen felaktig kod som kan ha skadlig påverkan publiceras. Hos Ericsson är testning av kod innan det ska publiceras en väldigt dyr process som kan ta flera timmar. Vid tiden denna rapport skrivs så körs varenda test för all inlämnad kod. Denna rapport har som mål att lösa/reducera problemet genom att bygga en modell med maskininlärning som avgör vilka tester som ska köras, så onödiga tester lämnas utanför vilket i sin tur sparar tid och resurser. Dock är det viktigt att hitta alla misslyckade tester, eftersom att tillåta dessa passera till produktionen kan innebära alla möjliga olika ekonomiska, miljömässiga och sociala konsekvenser. Resultaten visar att det finns stor potential i flera olika typer av modeller. En linjär regressionsmodell hittade 92% av alla fel inom att 25% av alla test kategorier körts. Den linjära modellen träffar dock en platå innan den hittar de sista felen. Om det är essentiellt att hitta 100% av felen, så visade sig en support vector regressionsmodell vara mest effektiv, då den var den enda modellen som lyckades hitta 100% av alla fel inom att 90% alla test kategorier hade körts.
Rowe, Michael C. (Michael Charles). "A Machine Learning Method Suitable for Dynamic Domains." Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc278720/.
Full textKelly, Michael A. "A methodology for software cost estimation using machine learning techniques." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from the National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA273158.
Full textThesis advisor(s): Ramesh, B. ; Abdel-Hamid, Tarek K. "September 1993." Bibliography: p. 135. Also available online.
Narmack, Kirilll. "Dynamic Speed Adaptation for Curves using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233545.
Full textMorgondagens fordon kommer att vara mer sofistikerade, intelligenta och säkra än dagens fordon. Framtiden lutar mot fullständigt autonoma fordon. Detta examensarbete tillhandahåller en datadriven lösning för ett hastighetsanpassningssystem som kan beräkna ett fordons hastighet i kurvor som är lämpligt för förarens körstil, vägens egenskaper och rådande väder. Ett hastighetsanpassningssystem för kurvor har som mål att beräkna en fordonshastighet för kurvor som kan användas i Advanced Driver Assistance Systems (ADAS) eller Autonomous Driving (AD) applikationer. Detta examensarbete utfördes på Volvo Car Corporation. Litteratur kring hastighetsanpassningssystem samt faktorer som påverkar ett fordons hastighet i kurvor studerades. Naturalistisk bilkörningsdata samlades genom att köra bil samt extraherades från Volvos databas och bearbetades. Ett nytt hastighetsanpassningssystem uppfanns, implementerades samt utvärderades. Hastighetsanpassningssystemet visade sig vara kapabelt till att beräkna en lämplig fordonshastighet för förarens körstil under rådande väderförhållanden och vägens egenskaper. Två olika artificiella neuronnätverk samt två matematiska modeller användes för att beräkna fordonets hastighet. Dessa metoder jämfördes och utvärderades.
Sîrbu, Adela-Maria. "Dynamic machine learning for supervised and unsupervised classification." Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0002/document.
Full textThe research direction we are focusing on in the thesis is applying dynamic machine learning models to salve supervised and unsupervised classification problems. We are living in a dynamic environment, where data is continuously changing and the need to obtain a fast and accurate solution to our problems has become a real necessity. The particular problems that we have decided te approach in the thesis are pedestrian recognition (a supervised classification problem) and clustering of gene expression data (an unsupervised classification. problem). The approached problems are representative for the two main types of classification and are very challenging, having a great importance in real life.The first research direction that we approach in the field of dynamic unsupervised classification is the problem of dynamic clustering of gene expression data. Gene expression represents the process by which the information from a gene is converted into functional gene products: proteins or RNA having different roles in the life of a cell. Modern microarray technology is nowadays used to experimentally detect the levels of expressions of thousand of genes, across different conditions and over time. Once the gene expression data has been gathered, the next step is to analyze it and extract useful biological information. One of the most popular algorithms dealing with the analysis of gene expression data is clustering, which involves partitioning a certain data set in groups, where the components of each group are similar to each other. In the case of gene expression data sets, each gene is represented by its expression values (features), at distinct points in time, under the monitored conditions. The process of gene clustering is at the foundation of genomic studies that aim to analyze the functions of genes because it is assumed that genes that are similar in their expression levels are also relatively similar in terms of biological function.The problem that we address within the dynamic unsupervised classification research direction is the dynamic clustering of gene expression data. In our case, the term dynamic indicates that the data set is not static, but it is subject to change. Still, as opposed to the incremental approaches from the literature, where the data set is enriched with new genes (instances) during the clustering process, our approaches tackle the cases when new features (expression levels for new points in time) are added to the genes already existing in the data set. To our best knowledge, there are no approaches in the literature that deal with the problem of dynamic clustering of gene expression data, defined as above. In this context we introduced three dynamic clustering algorithms which are able to handle new collected gene expression levels, by starting from a previous obtained partition, without the need to re-run the algorithm from scratch. Experimental evaluation shows that our method is faster and more accurate than applying the clustering algorithm from scratch on the feature extended data set
Salazar, González Fernando. "A machine learning based methodology for anomaly detection in dam behaviour." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405808.
Full textEl comportamiento estructural de las presas de embalse es difícil de predecir con precisión. Los modelos numéricos para el cálculo estructural resuelven las ecuaciones de la mecánica de medios continuos, pero están sujetos a una gran incertidumbre en cuanto a la caracterización de los materiales, especialmente en lo que respecta a la cimentación. Como consecuencia, frecuentemente estos modelos no son capaces de calcular el comportamiento de las presas con suficiente precisión. Así, es difícil discernir si un estado que se aleja en cierta medida de la normalidad supone o no una situación de riesgo estructural. Por el contrario, muchas de las presas en operación cuentan con un gran número de aparatos de auscultación, que registran la evolución de diversos indicadores como los movimientos, el caudal de filtración, o la presión intersticial, entre otros. Aunque hoy en día hay muchas presas con pocos datos observados, hay una tendencia clara hacia la instalación de un mayor número de aparatos que registran el comportamiento con mayor frecuencia. Como consecuencia, se tiende a disponer de un volumen creciente de datos que reflejan el comportamiento de la presa, lo cual hace interesante estudiar la capacidad de herramientas desarrolladas en otros campos para extraer información útil a partir de variables observadas. En particular, en el ámbito del Aprendizaje Automático (Machine Learning), se han desarrollado algoritmos muy potentes para entender fenómenos cuyo mecanismo es poco conocido, acerca de los cuales se dispone de grandes volúmenes de datos. En la tesis se ha hecho un análisis de las posibilidades de las técnicas más recientes de aprendizaje automático para su aplicación al análisis estructural de presas basado en los datos de auscultación. Para ello se han tenido en cuenta las características habituales de las series de datos disponibles en las presas, en cuanto a su naturaleza, calidad y cantidad. Se ha realizado una revisión crítica de la bibliografía existente, a partir de la cual se han identificado los aspectos clave a tener en cuenta para implementación de estos algoritmos en la seguridad de presas. Se ha realizado un estudio comparativo de la precisión de un conjunto de algoritmos para la predicción del comportamiento de presas considerando desplazamientos radiales, tangenciales y filtraciones. Para ello se han utilizado datos reales de una presa bóveda. Los resultados sugieren que el algoritmo denominado ``Boosted Regression Trees'' (BRTs) es el más adecuado, por ser más preciso en general, además de flexible y relativamente fácil de implementar. En una etapa posterior, se han identificado las posibilidades de interpretación del citado algoritmo para extraer la forma e intensidad de la asociación entre las variables exteriores y la respuesta de la presa, así como el efecto del tiempo. Las herramientas empleadas se han aplicado al mismo caso piloto, y han permitido identificar el efecto del tiempo con más precisión que el método estadístico tradicional. Finalmente, se ha desarrollado una metodología para la aplicación de modelos de predicción basados en BRTs en la detección de anomalías en tiempo real. Esta metodología se ha implementado en una herramienta informática interactiva que ofrece información sobre el comportamiento de la presa, a través de un conjunto de aparatos seleccionados. Permite comprobar a simple vista si los datos reales de cada uno de estos aparatos se encuentran dentro del rango de funcionamiento normal de la presa.
Winikoff, Steven M. "Incorporating the simplicity first methodology into a machine learning genetic algorithm." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ39118.pdf.
Full textBrun, Yuriy 1981. "Software fault identification via dynamic analysis and machine learning." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17939.
Full textIncludes bibliographical references (p. 65-67).
I propose a technique that identifies program properties that may indicate errors. The technique generates machine learning models of run-time program properties known to expose faults, and applies these models to program properties of user-written code to classify and rank properties that may lead the user to errors. I evaluate an implementation of the technique, the Fault Invariant Classifier, that demonstrates the efficacy of the error finding technique. The implementation uses dynamic invariant detection to generate program properties. It uses support vector machine and decision tree learning tools to classify those properties. Given a set of properties produced by the program analysis, some of which are indicative of errors, the technique selects a subset of properties that are most likely to reveal an error. The experimental evaluation over 941,000 lines of code, showed that a user must examine only the 2.2 highest-ranked properties for C programs and 1.7 for Java programs to find a fault-revealing property. The technique increases the relevance (the concentration of properties that reveal errors) by a factor of 50 on average for C programs, and 4.8 for Java programs.
by Yuriy Brun.
M.Eng.
Books on the topic "DYNAMIC MACHINE LEARNING METHODOLOGY"
Russell, David W. The BOXES Methodology: Black Box Dynamic Control. London: Springer London, 2012.
Find full textGultekin, San. Dynamic Machine Learning with Least Square Objectives. [New York, N.Y.?]: [publisher not identified], 2019.
Find full textBennaceur, Amel, Reiner Hähnle, and Karl Meinke, eds. Machine Learning for Dynamic Software Analysis: Potentials and Limits. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96562-8.
Full textHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49395-0.
Full textIEEE, International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Find full textKelly, Michael A. A methodology for software cost estimation using machine learning techniques. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textMaximize the teaching/learning dynamic: A developmental approach for educators. 3rd ed. Denver, Colo: Higher Level, 2013.
Find full textSlater, Stanley F. Information search style and business performance in dynamic and stable environments: An exploratory study. Cambridge, Mass: Marketing Science Institute, 1997.
Find full textEhramikar, Soheila. The enhancement of credit card fraud detection systems using machine learning methodology. Ottawa: National Library of Canada, 2000.
Find full textIEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu, Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Find full textBook chapters on the topic "DYNAMIC MACHINE LEARNING METHODOLOGY"
Kaur, Manmeet, Krishna Kant Agrawal, and Deepak Arora. "Dynamic Sentiment Analysis Using Multiple Machine Learning Algorithms: A Comparative Knowledge Methodology." In Advances in Data and Information Sciences, 273–86. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8360-0_26.
Full textCammozzo, Alberto, Emanuele Di Buccio, and Federico Neresini. "Monitoring Technoscientific Issues in the News." In ECML PKDD 2020 Workshops, 536–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65965-3_37.
Full textLee, Sangkyu, and Issam El Naqa. "Machine Learning Methodology." In Machine Learning in Radiation Oncology, 21–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18305-3_3.
Full textBasuchoudhary, Atin, James T. Bang, and Tinni Sen. "Methodology." In Machine-learning Techniques in Economics, 19–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69014-8_3.
Full textDawar, Kshitij, Sanjay Srinivasan, and Mort D. Webster. "Application of Reinforcement Learning for Well Location Optimization." In Springer Proceedings in Earth and Environmental Sciences, 81–110. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19845-8_7.
Full textWebb, Geoffrey I., Johannes Fürnkranz, Johannes Fürnkranz, Johannes Fürnkranz, Geoffrey Hinton, Claude Sammut, Joerg Sander, et al. "Dynamic Programming." In Encyclopedia of Machine Learning, 298–308. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_237.
Full textWebb, Geoffrey I., Johannes Fürnkranz, Johannes Fürnkranz, Johannes Fürnkranz, Geoffrey Hinton, Claude Sammut, Joerg Sander, et al. "Dynamic Systems." In Encyclopedia of Machine Learning, 308. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_239.
Full textHao, Jiangang. "Supervised Machine Learning." In Methodology of Educational Measurement and Assessment, 159–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74394-9_9.
Full textWong, Pak Chung. "Unsupervised Machine Learning." In Methodology of Educational Measurement and Assessment, 173–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74394-9_10.
Full textWebb, Geoffrey I., Johannes Fürnkranz, Johannes Fürnkranz, Johannes Fürnkranz, Geoffrey Hinton, Claude Sammut, Joerg Sander, et al. "Dynamic Bayesian Network." In Encyclopedia of Machine Learning, 298. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_234.
Full textConference papers on the topic "DYNAMIC MACHINE LEARNING METHODOLOGY"
Cristobo, Leire, Eva Ibarrola, Mark Davis, and Itziar Casado-O'mara. "A Machine Learning Methodology for Dynamic QoX Management in Modern Networks." In 2022 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2022. http://dx.doi.org/10.1109/wcnc51071.2022.9771805.
Full textCalabrese, Matteo, Martin Cimmino, Martina Manfrin, Francesca Fiume, Dimos Kapetis, Maura Mengoni, Silvia Ceccacci, et al. "An Event Based Machine Learning Framework for Predictive Maintenance in Industry 4.0." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97917.
Full textAlfonso, Carlos Esteban, Frédérique Fournier, and Victor Alcobia. "A Machine Learning Methodology for Rock-Typing Using Relative Permeability Curves." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205989-ms.
Full textBonamour, Pierre, Gianni Naccarato, Frederic Champavier, Ammar Mechouche, Nassia Daouayry, and Lucas Macchi. "Use of Machine Learning to Define Optimum HUMS Acquisition Strategy." In Vertical Flight Society 75th Annual Forum & Technology Display. The Vertical Flight Society, 2019. http://dx.doi.org/10.4050/f-0075-2019-14729.
Full textOrta Aleman, Dante, and Roland Horne. "Well Interference Detection from Long-Term Pressure Data Using Machine Learning and Multiresolution Analysis." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206354-ms.
Full textJL, Guevara, and Trivedi Japan. "Towards a Machine Learning Based Dynamic Surrogate Modeling and Optimization of Steam Injection Policy in SAGD." In SPE Western Regional Meeting. SPE, 2022. http://dx.doi.org/10.2118/209245-ms.
Full textQian, Chao. "Towards Theoretically Grounded Evolutionary Learning." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/819.
Full textChen, Peng, Changhong Hu, and Zhiqiang Hu. "Software-in-the-Loop Combined Machine Learning for Dynamic Responses Analysis of Floating Offshore Wind Turbines." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-65524.
Full textMarko, Kenneth. "Machine Learning and Model Based Reasoning for Prognostics of Complex Systems." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81625.
Full textWei, Hangchuan, Yota Adilenido, and Richard Beckett. "Environmental-driven Massing Based on Machine learning." In Design Computation Input/Output 2022. Design Computation, 2022. http://dx.doi.org/10.47330/dcio.2022.eqad1156.
Full textReports on the topic "DYNAMIC MACHINE LEARNING METHODOLOGY"
Steinfeld, Aaron, Rachael Bennett, Kyle Cunningham, Matt Lahut, Pablo-Alejandro Quinones, Django Wexler, Dan Siewiorek, Paul Cohen, Julie Fitzgerald, and Othar Hansson. The RADAR Test Methodology: Evaluating a Multi-Task Machine Learning System with Humans in the Loop. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada457300.
Full textZhang, Ruirui, Shan Xue, and Leslie D. Burns. Investigation of Micro-blogging marketing strategy of Fashion brand: via big data and machine learning methodology. Ames: Iowa State University, Digital Repository, November 2015. http://dx.doi.org/10.31274/itaa_proceedings-180814-153.
Full textAo, Tommy, Brendan Donohoe, Carianne Martinez, Marcus Knudson, Dane Morgan, Mark Rodriguez, and James Lane. LDRD 226360 Final Project Report: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1891594.
Full textGonzalez Pibernat, Gabriel, and Miguel Mascaró Portells. Dynamic structure of single-layer neural networks. Fundación Avanza, May 2023. http://dx.doi.org/10.60096/fundacionavanza/2392022.
Full textRossen, Lauren, Brady Hamilton E., Joyce Abma, Elizabeth C.W., Vladislav Beresovsky, Andriana Resendez, Anjani Chandra, and Joyce Martin. Updated Methodology to Estimate Overall and Unintended Pregnancy Rates in the United States. National Center for Health Statistics (U.S.), April 2023. http://dx.doi.org/10.15620/cdc:124395.
Full textRossen, Lauren, Brady Hamilton E., Joyce Abma, Elizabeth C.W., Vladislav Beresovsky, Adriana Resendez, Anjani Chandra, and Joyce Martin. Updated Methodology to Estimate Overall and Unintended Pregnancy Rates in the United States. National Center for Health Statistics (U.S.), April 2023. http://dx.doi.org/10.15620/cdc:124369.
Full textEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Full textHovakimyan, Naira, Hunmin Kim, Wenbin Wan, and Chuyuan Tao. Safe Operation of Connected Vehicles in Complex and Unforeseen Environments. Illinois Center for Transportation, August 2022. http://dx.doi.org/10.36501/0197-9191/22-016.
Full textKramarenko, T. H., O. S. Pylypenko, and O. Yu Serdiuk. Digital technologies in specialized mathematics education: application of GeoGebra in Stereometry teaching. [б. в.], 2021. http://dx.doi.org/10.31812/123456789/4534.
Full textPylypenko, Olha S., Tetiana H. Kramarenko, and Ivan O. Muzyka. Application of GeoGebra in Stereometry teaching. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3898.
Full text