Academic literature on the topic 'Dynamic fault tree'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic fault tree.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic fault tree"
Čepin, Marko, and Borut Mavko. "A dynamic fault tree." Reliability Engineering & System Safety 75, no. 1 (January 2002): 83–91. http://dx.doi.org/10.1016/s0951-8320(01)00121-1.
Full textByun, Sungil, and Dongik Lee. "System Reliability Evaluation using Dynamic Fault Tree Analysis." IEMEK Journal of Embedded Systems and Applications 8, no. 5 (October 31, 2013): 243–48. http://dx.doi.org/10.14372/iemek.2013.8.5.243.
Full textYang, Li Ping. "Analysis on Dynamic Fault Tree Based on Fuzzy Set." Applied Mechanics and Materials 110-116 (October 2011): 2416–20. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.2416.
Full textChang, Sheng Yung, Cheng Ren Lin, Chuei-Tin Chang, and Shuh Woei Yu. "On-Line Fault Diagnosis Using Dynamic Fault Tree." IFAC Proceedings Volumes 34, no. 27 (June 2001): 167–72. http://dx.doi.org/10.1016/s1474-6670(17)33586-3.
Full textWei, Shang Guan, Jie Xiao, Bai Gen Cai, and Jian Wang. "The Reliability Analysis and Simulation Method of Train Control System Based on Markov." Applied Mechanics and Materials 556-562 (May 2014): 2333–36. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.2333.
Full textDuan, Rongxing, and Jinghui Fan. "Reliability Evaluation of Data Communication System Based on Dynamic Fault Tree under Epistemic Uncertainty." Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/674804.
Full textDugan, J. B., S. J. Bavuso, and M. A. Boyd. "Dynamic fault-tree models for fault-tolerant computer systems." IEEE Transactions on Reliability 41, no. 3 (1992): 363–77. http://dx.doi.org/10.1109/24.159800.
Full textLiu, Meng-Yun, Ding She, and Jing-Quan Liu. "ICONE23-1293 APPLICATION OF SUBSET SIMULATION METHODS TO DYNAMIC FAULT TREE ANALYSIS." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_139.
Full textGuo, Wei Gang, Wei Han, and Shu Yan Liu. "Dynamic Fault Tree Based on Weibull Distribution." Advanced Materials Research 308-310 (August 2011): 1322–27. http://dx.doi.org/10.4028/www.scientific.net/amr.308-310.1322.
Full textPeng, Fei. "Study on Transformer Fault Diagnosis Based on Dynamic Fault Tree." Journal of Electrical and Electronic Engineering 3, no. 5 (2015): 133. http://dx.doi.org/10.11648/j.jeee.20150305.16.
Full textDissertations / Theses on the topic "Dynamic fault tree"
Chakraborty, Debaditya. "Detection of Faults in HVAC Systems using Tree-based Ensemble Models and Dynamic Thresholds." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543582336141076.
Full textVicenzutti, Andrea. "Innovative Integrated Power Systems for All Electric Ships." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424463.
Full textOggigiorno, nelle grandi navi la propulsione elettrica è una valida alternativa a quella meccanica. Infatti, attualmente quest'ultima è limitata solo alle navi con requisiti particolari, quali la necessità di una elevata velocità di crociera o l’uso di combustibili specifici. L'uso della propulsione elettrica, in coppia con la progressiva elettrificazione dei carichi di bordo, ha portato alla nascita del concetto di All Electric Ship (AES). Una AES è una nave in cui tutti i carichi di bordo (propulsione inclusa) sono alimentati da un unico sistema elettrico, chiamato Sistema Elettrico Integrato (Integrated Power System - IPS). L'IPS è un sistema chiave in una AES, per cui richiede una progettazione ed una gestione accurata. In effetti, in una AES tale sistema alimenta quasi tutto, mettendo in evidenza il problema di garantire sia la corretta Power Quality, sia la continuità del servizio. La progettazione di un sistema così complesso viene convenzionalmente fatta considerando i singoli componenti separatamente, per semplificare il processo. Tuttavia tale pratica può portare a prestazioni ridotte, problemi di integrazione e sovradimensionamento. Come se non bastasse, la procedura di progettazione separata influisce pesantemente sull'affidabilità del sistema, a causa della difficoltà nel valutare l'effetto sulla nave di un guasto in un singolo sottosistema. Per questi motivi è necessario un nuovo processo di progettazione in grado di considerare l'effetto di tutti i componenti e sottosistemi del sistema, consentendo così di migliorare i più importanti driver applicati nella progettazione di una nave: efficienza, efficacia, affidabilità e riduzione dei costi. Date queste premesse, l'obiettivo della ricerca era di ottenere una nuova metodologia di progettazione applicabile al sistema elettrico integrato delle AES, in grado di considerare il sistema nel suo insieme, comprese tutte le sue interdipendenze interne. Il risultato di tale ricerca è descritto in questo lavoro di tesi, e consiste in un sub-processo che dovrà essere integrato nel processo di progettazione convenzionale del sistema elettrico integrato. In questa tesi viene effettuata un'ampia rassegna dello stato dell'arte, per consentire la comprensione del contesto, del perché tale processo innovativo è necessario e quali tecniche innovative possono essere utilizzate come un aiuto nella progettazione. Ogni punto è discusso concentrandosi sullo scopo di questa tesi, presentando così argomenti, bibliografia, e valutazioni personali volte ad indirizzare il lettore a comprendere l'impatto del processo di progettazione proposto. In particolare, dopo un primo capitolo dedicato all’introduzione delle AES in cui sono descritte come tali navi si sono evolute e quali sono le applicazioni più impattanti, si effettua una discussione ragionata sul processo di progettazione convenzionale delle navi, contenuta nel secondo capitolo. In aggiunta a questo viene effettuata un'analisi approfondita del processi di progettazione dell’IPS, per spiegare il contesto in cui il processo di progettazione innovativo deve essere integrato. Alcuni esempi di problemi derivanti dal processo di progettazione tradizionale sono dati, per motivare la proposta di un processo nuovo. In aggiunta ai problemi dovuti alla progettazione, altre motivazioni portano alla necessità di un rinnovato processo di progettazione, quali l'imminente introduzione di sistemi di distribuzione innovativi a bordo nave e la recente comparsa di nuovi requisiti il cui impatto sull’IPS è significativo. Per questo, un excursus su questi due temi è fatto nel terzo capitolo, con riferimento alle più recenti fonti letterarie e ricerche. Il quarto capitolo è dedicato alla descrizione degli strumenti che verranno utilizzati per costruire l'innovativo processo di progettazione. La prima parte del capitolo è dedicata alla teoria della fidatezza (dependability), in grado di dare un approccio sistematico e coerente alla determinazione degli effetti guasti sui sistemi complessi. Attraverso la teoria della fidatezza e le sue tecniche è possibile: determinare l'effetto sul sistema dei guasti ai singoli componenti; valutare tutte le possibili cause di un dato evento di avaria; valutare alcuni indici matematici relativi al sistema, al fine di confrontare diverse soluzioni progettuali; definire dove e come il progettista deve intervenire per migliorare il sistema. La seconda parte del quarto capitolo è dedicata ai software per la simulazione del comportamento dell’IPS ed ai test hardware-in-the-loop. In particolare viene discusso l'uso di tali sistemi come aiuto nella progettazione di sistemi di potenza, per permettere di comprendere perché tali strumenti sono stati integrati nel processo di progettazione sviluppato. Il quinto capitolo è dedicato al processo di progettazione sviluppato nel corso della ricerca. Viene discusso come tale processo funziona, come dovrebbe essere integrato nel processo di progettazione convenzionale, e qual è l'impatto che esso ha sulla progettazione. In particolare, la procedura sviluppata implica sia l'applicazione delle tecniche proprie della teoria della fidatezza (in particolare la Failure Tree Analysis), sia la simulazione del comportamento dinamico dell’IPS attraverso un modello matematico del sistema tarato sui transitori elettromeccanici. Infine, per dimostrare l'applicabilità della procedura proposta, nel sesto capitolo viene analizzato un caso di studio: l'IPS di una nave da perforazione offshore oil & gas dotata di posizionamento dinamico. Questo caso di studio è stato scelto a causa dei requisiti molto stringenti di questa classe di navi, il cui impatto sul progetto dell’IPS è significativo. Viene presentata l'analisi dell’IPS tramite la tecnica di Fault Tree Analysis (anche se con un livello di dettaglio semplificato), seguita dal calcolo di diversi indici di affidabilità. Tali risultati, unitamente a norme e regolamenti vigenti, sono stati utilizzati per definire i dati di input per le simulazioni, effettuate utilizzando un modello matematico dell’IPS costruito appositamente. I risultati delle simulazioni hanno consentito di valutare come il sistema dinamicamente si porta all’avaria a partire dai guasti rilevanti, e pertanto di proporre soluzioni migliorative.
Edifor, Ernest Edem. "Quantitative analysis of dynamic safety-critical systems using temporal fault trees." Thesis, University of Hull, 2014. http://hydra.hull.ac.uk/resources/hull:10592.
Full textMahmud, Nidhal. "Dynamic model-based safety analysis : from state machines to temporal fault trees." Thesis, University of Hull, 2012. http://hydra.hull.ac.uk/resources/hull:6757.
Full textLefebvre, Arnaud. "Contribution à l'amélioration de la testabilité et du diagnostic de systèmes complexes : application aux systèmes avioniques." Grenoble 1, 2009. https://theses.hal.science/tel-00555683.
Full textThe object of the work of this thesis is to propose new processes of definition of tests (testability), new methods of tests, as well as new methods of tests interpretation (diagnosis). This work was carried out in the framework of aeronautics. It first intends to identify the needs of the helicopter diagnosis. The identified problems, related to the test and the diagnosis of the helicopters, were: - Non-detection of failures - Occurrence of many false alarms - Failure localisation ambiguity We first achieved the state of the art of research in diagnosis, in order to select technologies and methodologies allowing to answer the problematic. Candidate technologies were then structured in order to propose an integrated treatment. Thus we worked on methodologies of definition of the test, with testability simulation tools. We also defined new methods of test which allows determining the status of analogue sensors with the means of algorithms based on the calculus of variation of the standard deviation, form factor and noise-signal ratio. We then worked on the improvement of the diagnosis at system level using timed automata in order to simulate the operation of the tests tree. This work then led to the modelling of the complex systems using state diagram, dynamic fault trees, as well as their simulation with Petri networks. Additional doors were defined to complete the existing algorithms. Finally, this work was applied to the aeronautical world, to several helicopters and was the subject of two patents
Remmach, Mustapha. "Analyse de défaillance des circuits intégrés par émission de lumière dynamique : développement et optimisation d'un système expérimental." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13830/document.
Full textLight emission is a powerful technique for the characterization of failed integrated circuits. For years, faults have been identified in a static configuration of the device. Just by providing the power supply, abnormal current leakage could be located. With the growing complexity of devices, some fault may appear only in the middle of the test sequence. As a result the evolution of light emission was to use the same detector to acquire the image of a running circuit. A new mode of light emission came became available: PICA or picoseconds IC analysis. With this configuration, photons are collected as a function of time. This technique became mainstream for IC debug and failure analysis to precisely characterize IC. Light emission has also reached dynamic IC requirements through PICA and Single-point PICA also known as TRE. However, light emission and TRE is facing a continuous challenge with technologies shrinkage and its associated power supply voltage drop. To work with recent IC technologies with ultra low VDD voltage, it is necessary to take a different approach, to improve the signal to ratio. Two solutions are presented in this document: A best detection system and TRE and PICA signal processing development
Lin, Cheng-Ren, and 林政仁. "On-Line Fault Diagnosis Using Dynamic Fault Tree." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/10060948360341217065.
Full text國立成功大學
化學工程學系
89
By incorporating SDG, FTA and fuzzy inference techniques, a novel framework for fault diagnosis is developed in this study. To relieve the on-line computation load, the scope of diagnosis is limited to the fault origins leading to the top event of given fault trees. The corresponding fault propagation patterns are derived from SDG model and precedence order of symptoms are then encoded in the inference system with fuzzy rules. The simulation results show that the proposed approach is not only effective but also capable of identifying the most likely cause of a hazardous event at the earliest possible time.
Kabir, Sohag, M. Walker, Y. Papadopoulos, E. Rüde, and P. Securius. "Fuzzy temporal fault tree analysis of dynamic systems." 2016. http://hdl.handle.net/10454/17433.
Full textFault tree analysis (FTA) is a powerful technique that is widely used for evaluating system safety and reliability. It can be used to assess the effects of combinations of failures on system behaviour but is unable to capture sequence dependent dynamic behaviour. A number of extensions to fault trees have been proposed to overcome this limitation. Pandora, one such extension, introduces temporal gates and temporal laws to allow dynamic analysis of temporal fault trees (TFTs). It can be easily integrated in model-based design and analysis techniques. The quantitative evaluation of failure probability in Pandora TFTs is performed using exact probabilistic data about component failures. However, exact data can often be difficult to obtain. In this paper, we propose a method that combines expert elicitation and fuzzy set theory with Pandora TFTs to enable dynamic analysis of complex systems with limited or absent exact quantitative data. This gives Pandora the ability to perform quantitative analysis under uncertainty, which increases further its potential utility in the emerging field of model-based design and dependability analysis. The method has been demonstrated by applying it to a fault tolerant fuel distribution system of a ship, and the results are compared with the results obtained by other existing techniques.
Kabir, Sohag, K. Aslansefat, I. Sorokos, Y. Papadopoulos, and Savas Konur. "A hybrid modular approach for dynamic fault tree analysis." 2020. http://hdl.handle.net/10454/17983.
Full textOver the years, several approaches have been developed for the quantitative analysis of dynamic fault trees (DFTs). These approaches have strong theoretical and mathematical foundations; however, they appear to suffer from the state-space explosion and high computational requirements, compromising their efficacy. Modularisation techniques have been developed to address these issues by identifying and quantifying static and dynamic modules of the fault tree separately by using binary decision diagrams and Markov models. Although these approaches appear effective in reducing computational effort and avoiding state-space explosion, the reliance of the Markov chain on exponentially distributed data of system components can limit their widespread industrial applications. In this paper, we propose a hybrid modularisation scheme where independent sub-trees of a DFT are identified and quantified in a hierarchical order. A hybrid framework with the combination of algebraic solution, Petri Nets, and Monte Carlo simulation is used to increase the efficiency of the solution. The proposed approach uses the advantages of each existing approach in the right place (independent module). We have experimented the proposed approach on five independent hypothetical and industrial examples in which the experiments show the capabilities of the proposed approach facing repeated basic events and non-exponential failure distributions. The proposed approach could provide an approximate solution to DFTs without unacceptable loss of accuracy. Moreover, the use of modularised or hierarchical Petri nets makes this approach more generally applicable by allowing quantitative evaluation of DFTs with a wide range of failure rate distributions for basic events of the tree.
This work was supported in part by the Dependability Engineering Innovation for Cyber Physical Systems (CPS) (DEIS) H2020 Project under Grant 732242, and in part by the LIVEBIO: Light-weight Verification for Synthetic Biology Project under Grant EPSRC EP/R043787/1.
Aslansefat, K., Sohag Kabir, Y. Gheraibia, and Y. Papadopoulos. "Dynamic Fault Tree Analysis: State-of-the-Art in Modeling, Analysis, and Tools." 2020. http://hdl.handle.net/10454/17976.
Full textSafety and reliability are two important aspects of dependability that are needed to be rigorously evaluated throughout the development life-cycle of a system. Over the years, several methodologies have been developed for the analysis of failure behavior of systems. Fault tree analysis (FTA) is one of the well-established and widely used methods for safety and reliability engineering of systems. Fault tree, in its classical static form, is inadequate for modeling dynamic interactions between components and is unable to include temporal and statistical dependencies in the model. Several attempts have been made to alleviate the aforementioned limitations of static fault trees (SFT). Dynamic fault trees (DFT) were introduced to enhance the modeling power of its static counterpart. In DFT, the expressiveness of fault tree was improved by introducing new dynamic gates. While the introduction of the dynamic gates helps to overcome many limitations of SFT and allows to analyze a wide range of complex systems, it brings some overhead with it. One such overhead is that the existing combinatorial approaches used for qualitative and quantitative analysis of SFTs are no longer applicable to DFTs. This leads to several successful attempts for developing new approaches for DFT analysis. The methodologies used so far for DFT analysis include, but not limited to, algebraic solution, Markov models, Petri Nets, Bayesian Networks, and Monte Carlo simulation. To illustrate the usefulness of modeling capability of DFTs, many benchmark studies have been performed in different industries. Moreover, software tools are developed to aid in the DFT analysis process. Firstly, in this chapter, we provided a brief description of the DFT methodology. Secondly, this chapter reviews a number of prominent DFT analysis techniques such as Markov chains, Petri Nets, Bayesian networks, algebraic approach; and provides insight into their working mechanism, applicability, strengths, and challenges. These reviewed techniques covered both qualitative and quantitative analysis of DFTs. Thirdly, we discussed the emerging trends in machine learning based approaches to DFT analysis. Fourthly, the research performed for sensitivity analysis in DFTs has been reviewed. Finally, we provided some potential future research directions for DFT-based safety and reliability analysis.
Books on the topic "Dynamic fault tree"
Walsh, John F. The Indispensable Staff Manager. www.praeger.com, 2003. http://dx.doi.org/10.5040/9798400669750.
Full textVolgy, Thomas J., Kelly Marie Gordell, Paul Bezerra, and Jon Patrick Rhamey, Jr. Conflict, Regions, and Regional Hierarchies. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228637.013.310.
Full textBook chapters on the topic "Dynamic fault tree"
Aslansefat, Koorosh, Sohag Kabir, Youcef Gheraibia, and Yiannis Papadopoulos. "Dynamic Fault Tree Analysis." In Reliability Management and Engineering, 73–112. First edition. | Boca Raton, FL : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429268922-4.
Full textRao, K. Durga, V. V. S. Sanyasi Rao, A. K. Verma, and A. Srividya. "Dynamic Fault Tree Analysis: Simulation Approach." In Springer Series in Reliability Engineering, 41–64. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-213-9_2.
Full textBäckström, Ola, Yuliya Butkova, Holger Hermanns, Jan Krčál, and Pavel Krčál. "Effective Static and Dynamic Fault Tree Analysis." In Lecture Notes in Computer Science, 266–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45477-1_21.
Full textBudde, Carlos E., Enno Ruijters, and Mariëlle Stoelinga. "The Dynamic Fault Tree Rare Event Simulator." In Quantitative Evaluation of Systems, 233–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59854-9_17.
Full textHao, J., L. Zhang, and L. Wei. "Reliability Analysis Based on Improved Dynamic Fault Tree." In Lecture Notes in Mechanical Engineering, 283–99. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4993-4_26.
Full textDugan, Joanne Bechta. "Galileo: A Tool for Dynamic Fault Tree Analysis." In Computer Performance Evaluation.Modelling Techniques and Tools, 328–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46429-8_24.
Full textBudde, Carlos E., Enno Ruijters, and Mariëlle Stoelinga. "Correction to: The Dynamic Fault Tree Rare Event Simulator." In Quantitative Evaluation of Systems, C1. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59854-9_21.
Full textZhang, Hong-Lin, Chun-Yuan Zhang, Dong Liu, and Gui-Wu Xie. "Importance Measure Method for Dynamic Fault Tree Based on Isomorphic Node." In Information Computing and Applications, 9–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16167-4_2.
Full textSopena, Julien, Luciana Arantes, Marin Bertier, and Pierre Sens. "A Fault-Tolerant Token-Based Mutual Exclusion Algorithm Using a Dynamic Tree." In Euro-Par 2005 Parallel Processing, 654–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11549468_72.
Full textVolk, Matthias, Sebastian Junges, and Joost-Pieter Katoen. "Advancing Dynamic Fault Tree Analysis - Get Succinct State Spaces Fast and Synthesise Failure Rates." In Lecture Notes in Computer Science, 253–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45477-1_20.
Full textConference papers on the topic "Dynamic fault tree"
Guohua, Wu, Yuan Diping, Xiao Yiqing, and Wang Jiaxin. "Review of Application on Dynamic Fault Tree Method in Nuclear Power Plants." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16191.
Full textElderhalli, Yassmeen, Nahla El-Araby, Osman Hasan, Axel Jantsch, and Sofiene Tahar. "Dynamic Fault Tree Models for FPGA Fault Tolerance and Reliability." In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2021. http://dx.doi.org/10.1109/isvlsi51109.2021.00044.
Full textZhou, Zhenxu, Chunling Dong, and Qin Zhang. "Dynamic Fault Tree Analysis Based on Dynamic Uncertain Causality Graph." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81636.
Full textZhang, Xiaojie, Qiang Miao, Xianfeng Fan, and Dong Wang. "Dynamic fault tree analysis based on Petri nets." In 2009 8th International Conference on Reliability, Maintainability and Safety (ICRMS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icrms.2009.5270223.
Full textGuo, Jiang, Lei Shi, Kefei Zhang, Kaikai Gu, Weimin Bai, Bing Zeng, and Yajin Liu. "Dynamic fault tree analysis based fault diagnosis system of power transformer." In 2012 10th World Congress on Intelligent Control and Automation (WCICA 2012). IEEE, 2012. http://dx.doi.org/10.1109/wcica.2012.6358400.
Full textZhou, Zhenxu, and Qin Zhang. "Fault Tree Analysis Based on Dynamic Uncertain Causality Graph." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66296.
Full textLi, Yan-Feng, Jian Sun, Haiqing Li, Hong-Zhong Huang, and Yu Liu. "Fuzzy Dynamic Fault Tree Analysis of Hydraulic System of CNC Machining Center." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47583.
Full textGuo, Jiang, Kefei Zhang, Lei Shi, Kaikai Gu, Weimin Bai, Bing Zeng, and Yajin Liu. "Fault diagnosis system based on Dynamic Fault Tree Analysis of power transformer." In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2012. http://dx.doi.org/10.1109/fskd.2012.6233883.
Full textYevkin, Olexandr. "An improved modular approach for dynamic fault tree analysis." In Integrity (RAMS). IEEE, 2011. http://dx.doi.org/10.1109/rams.2011.5754437.
Full textMerle, Guillaume, Jean-Marc Roussel, and Jean-Jacques Lesage. "Dynamic fault tree analysis based on the structure function." In Integrity (RAMS). IEEE, 2011. http://dx.doi.org/10.1109/rams.2011.5754452.
Full text