Academic literature on the topic 'Dynamic ecosystem modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic ecosystem modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic ecosystem modelling"
Zariņš, Mārcis, Andra Blumberga, Māris Klaviņš, and Viesturs Melecis. "Dynamic Modeling for Environmental Processes: A Case Study of Lake Engure." Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 68, no. 1-2 (April 1, 2014): 20–30. http://dx.doi.org/10.2478/prolas-2014-0002.
Full textGuseynov, Sharif E., and Jekaterina V. Aleksejeva. "Mathematical Modelling of Aquatic Ecosystem." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 3 (June 16, 2015): 92. http://dx.doi.org/10.17770/etr2015vol3.192.
Full textMunch, Stephan B., Antoine Brias, George Sugihara, and Tanya L. Rogers. "Frequently asked questions about nonlinear dynamics and empirical dynamic modelling." ICES Journal of Marine Science 77, no. 4 (November 26, 2019): 1463–79. http://dx.doi.org/10.1093/icesjms/fsz209.
Full textDaewel, Ute, Solfrid Sætre Hjøllo, Martin Huret, Rubao Ji, Marie Maar, Susa Niiranen, Morgane Travers-Trolet, Myron A. Peck, and Karen E. van de Wolfshaar. "Predation control of zooplankton dynamics: a review of observations and models." ICES Journal of Marine Science 71, no. 2 (August 6, 2013): 254–71. http://dx.doi.org/10.1093/icesjms/fst125.
Full textMakler-Pick, Vardit, Gideon Gal, James Shapiro, and Matthew R. Hipsey. "Exploring the role of fish in a lake ecosystem (Lake Kinneret, Israel) by coupling an individual-based fish population model to a dynamic ecosystem model." Canadian Journal of Fisheries and Aquatic Sciences 68, no. 7 (July 2011): 1265–84. http://dx.doi.org/10.1139/f2011-051.
Full textHarbar, Oleksandr, Іvan Khomiak, Іryna Kotsiuba, Nataliia Demchuk, and Іryna Onyshchuk. "Anthropogenic and Natural Dynamics of Landscape Ecosystems of the Slovechansko-Ovruchsky Ridge (Ukraine)." Socijalna ekologija 30, no. 3 (2021): 347–69. http://dx.doi.org/10.17234/socekol.30.3.1.
Full textHjøllo, SS, SM van Leeuwen, and M. Maar. "Marine research and management topics addressed by process-based ecosystem models." Marine Ecology Progress Series 680 (December 9, 2021): 1–6. http://dx.doi.org/10.3354/meps13963.
Full textOlin, S., M. Lindeskog, T. A. M. Pugh, G. Schurgers, D. Wårlind, M. Mishurov, S. Zaehle, B. D. Stocker, B. Smith, and A. Arneth. "Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching." Earth System Dynamics 6, no. 2 (November 30, 2015): 745–68. http://dx.doi.org/10.5194/esd-6-745-2015.
Full textBrias, Antoine, and Stephan B. Munch. "Ecosystem based multi-species management using Empirical Dynamic Programming." Ecological Modelling 441 (February 2021): 109423. http://dx.doi.org/10.1016/j.ecolmodel.2020.109423.
Full textBrias, Antoine, and Stephan B. Munch. "Ecosystem based multi-species management using Empirical Dynamic Programming." Ecological Modelling 441 (February 2021): 109423. http://dx.doi.org/10.1016/j.ecolmodel.2020.109423.
Full textDissertations / Theses on the topic "Dynamic ecosystem modelling"
Babi, Almenar Javier. "Characterisation, biophysical modelling and monetary valuation of urban nature-based solutions as a support tool for urban planning and landscape design." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/288810.
Full textIl riconoscimento della natura nella risoluzione delle sfide sociali è diventato sempre più importante. Questo riconoscimento è stato associato allo sviluppo di nuovi concetti provenienti dalla scienza e dalla politica, come il capitale naturale, i servizi ecosistemici, le infrastrutture verdi e, più recentemente, le soluzioni basate sulla natura (NBS). NBS intende affrontare le sfide della società in una forma efficace e adattabile fornendo benefici economici, sociali e ambientali. Lo scopo di ricerca di questa tesi di dottorato è quello di sviluppare una valutazione ambientale ed economica delle NBS per territori altamente urbanizzati basata su logiche e modelli che hanno alla base i servizi ecosistemici, l'ecologia urbana e paesaggistica e degli approcci di approcio life cycle. Questo quadro di valutazione combinato aiuterebbe a capire meglio se le NBS sono costo effetive e se contribuiscono a uno sviluppo resiliente e sostenibile. Questo scopo di ricerca è sviluppato secondo quattro obiettivi specifici. Il primo obiettivo corrisponde alla caratterizzazione delle NBS in relazione ai contesti urbani e alle problematiche che possono aiutare ad affrontare o mitigare. Per raggiungere questo obiettivo è stata sviluppata una revisione critica dell letteratura sullo studio della relazione tra NBS, servizi ecosistemici (ES) e sfide urbane (UC). Come risultato principale, si ottiene un grafico delle relazioni causa-effetto plausibili tra NBS, ES ed UC. Il grafico rappresenta un primo passo per supportare la pianificazione urbana sostenibile, passando dai problemi (es. UC) alle azioni (es. NBS) alle risoluzioni (es. ES). Il secondo obiettivo corrisponde alla definizione di un set di metodi e indicatori di valutazione biofisica e monetaria adeguate per valutare il valore della NBS in contesti urbanizzati. Per raggiungere questo obiettivo, viene sviluppata una revisione dei metodi esistenti sulla valutazione dei servizi ecosistemici, l'analisi dei costi del ciclo di vita e la valutazione del ciclo di vita. La revisione tiene conto di vincoli specifici come la facilità d'uso e la disponibilità dei dati. Alla fine, sono stati selezionati potenziali metodi e indicatori, che saranno successivamente integrati nel quadro di valutazione combinato. Il terzo obiettivo corrisponde alla progettazione del quadro di valutazione combinato, integrando metodi di valutazione del ciclo di vita, ecologia paesaggistica / urbana e servizi ecosistemici che quantifica il valore ambientale ed economico della NBS informando sull'efficacia in termini di costi del suo intero ciclo di vita. Per raggiungere questo obiettivo, prima viene sviluppato un quadro concettuale. Da esso, viene sviluppato un modello di dinamica di sistemi per calcolare i servizi (e disservici) ecosistemici, il quale è interrelazionato con un metodo di valutazione life cycle. Questa valutazione combinata viene testata con un tipo di NBS pertinente (foresta urbana) in un caso di studio nell'area metropolitana di Madrid. Il quarto obiettivo è lo sviluppo di uno strumento di supporto decisionale (DSS) che integri il quadro di valutazione come parte dei processi di progettazione iterativa nella pianificazione urbana e nella progettazione del paesaggio. Il DSS intende migliorare l'interrelazione tra scienza, politica e pianificazione / progettazione. Per raggiungere questo obiettivo è stato sviluppato Nbenefit$® un prototipo di DSS online per la valutazzione NBS di facile uso. Il prototipo DSS fornisce all'utente una forma semplice per quantificare multipli ES e costi (internalizatti o no) durante l'intero ciclo di vita (implementazione, vita operativa e fine vita) del NBS. In conclusione, questa tesi ha contribuito alla caratterizzazione di NBS e alla sua valutazione ambientale ed economica per informare i processi di pianificazione urbana e progettazione del paesaggio, consentendo decisioni più informate.
Mori, Mitsuyo. "Modelling the krill-predator dynamics of the Antarctic ecosystem." Doctoral thesis, University of Cape Town, 2005. http://hdl.handle.net/11427/8734.
Full textThe main objective of this thesis is to model the krill-predator dynamics of the Antarctic ecosystem so as to determine whether predator-prey interactions alone can broadly explain observed population trends of the species considered in the model without any appeal to systematic effects possibly caused by environmental change. The history of human harvesting in the Antarctic is summarized briefly, and the central role played by krill is emphasized. The background to the hypothesis of a krill surplus in the mid 20th Century is described, and the information, particularly regarding population trends, that has become available since the postulate was first advanced is discussed. By reviewing the consumption and abundance estimates for various species in the Antarctic, it is evident that among the baleen whales, blue, fin, humpback and minke whales feed mainly on krill, and could collectively be consuming up to 120 million tons of krill in this region for each of the years around 1990. Of the seals, the Antarctic fur seals and crab-eater seals also feed mainly on krill, and these two species could be consuming up to 70 million tons of krill each year. Consumption estimates for other krill predators (birds, fish and cephalopods) are relatively poorly determined by comparison. Of these four baleen whale species, minke whales currently make the greatest impact on krill due to their large number at present compared to the other larger whale populations which are still depleted. Trend information suggests that the large baleen whales that were heavily depleted during the commercial whaling period are now recovering at rates in the vicinity of 10% per year, but there are some indications of a recent decrease in minke whale numbers. Thus, the consumption of krill by these large baleen whales has probably been increasing over recent years, though decreasing for minke whales. Updated and refined catch-at-age analyses of minke whales for the International Whaling Commission (IWC) Management Areas IV and V suggest an increase in abundance of this species in the middle decades of the 20th Century to peak at about 1970, followed by a decline for the next three decades. Fitting the recruitment time trend obtained from these analyses to a stock-recruitment model suggests that minke whale carrying capacity first increased from about 1940 to 1960 followed by a 60% decrease from the 1960s to the present. General trends in the biological parameters of this species are consistent with such a decline. A predator-prey interaction model is developed including krill, four baleen whale (blue, fin, humpback and minke) and two seal (Antarctic fur and crab-eater) species. The model commences in 1780 (the onset of fur seal harvests) and distinguishes the Atlantic/Indian and Pacific sectors in view of the much larger past harvests in the former. A reference case and six sensitivities are fit to available data on predator abundances and trends, and the plausibility of the results and the assumptions on which they are based is discussed, together with suggested areas for future investigation. Amongst the key inferences of the study are that: i) species interaction effects alone can explain observed predator abundance trends, though not without some difficulty; ii) it is necessary to consider other species in addition to baleen whales and krill to explain observed trends, with crab-eater seals seemingly playing an important role and constituting a particular priority for improved abundance and trend information; iii the Atlantic/Indian region shows major changes in species abundances, in contrast to the Pacific which is much more stable; iv) baleen whales have to be able to achieve relatively high growth rates to explain observed trends; v) species interaction effects impact the dynamics of these predators in ways that differ from what might be anticipated in a conventional single-species harvesting context, and they need to be better understood and taken into account in management decisions, and vi) Laws' (1977) estimate of some 150 million tons for the krill surplus may be appreciably too high as a result of his calculations omitting consideration of density dependent effects in feeding rates. . A priority for future work is to obtain improved estimates of the amount of krill consumed by other species, such as birds, cephalopods and fish as well as to obtain consensus on current abundance estimates for crab-eater seals and baleen whales (especially minke whales and also the associated abundance trend). Once such information is improved, more thorough sensitivity tests to the assumptions of the model and uncertainties in the abundance estimates of the species considered need to be explored. With such further development, it is hoped that such a model may ultimately assist in providing scientific advice for appropriate sustainable harvesting strategies for the Antarctic marine ecosystem taking species interactions into account, as this is a matter of key importance for the IWC and for the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR).
Wright, Jennifer Kathryn. "Carbon dynamics of longleaf pine ecosystems." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/11675.
Full textGuibourd, de Luzinais Vianney. "L'impact des vagues de chaleurs marines sur le fonctionnement des écosystèmes de l'océan à l'échelle mondiale." Electronic Thesis or Diss., Rennes, Agrocampus Ouest, 2024. http://www.theses.fr/2024NSARH121.
Full textIntensifying climate change is increasingly affecting marine life in the world's oceans. Extreme events like marine heatwaves (MHWs), associated with climate change, are projected to grow in duration, intensity, and frequency, further impacting marine ecosystems throughout the 21st century. In this dissertation, I investigated the effects of climate change and MHWs on biomass flows in marine food webs and their consequences on ecosystem structure and functioning. I developed a dynamic version of the EcoTroph model, named EcoTroph-Dyn, which represents the functioning of marine ecosystems as a single flow of biomass from primary producers to top predators. To study MHW effects using EcoTroph-Dyn, I estimated MHW-induced mortality from 1982 to 2021 based on the thermal preferences of various taxa. The results reveal that MHWs may have impacted biomass flow through the perturbation of the kinetics of biomassflow and transfer efficiency and caused biomass loss through instantaneous mortality. Secondly, using EcoTroph-Dyn, I hindcasted consumer biomass in marine food webs from 1998 to 2021. By integrating changes in temperature and primary production, marine animal biomass was estimated at each trophic level on a 1° x 1° grid of the global ocean. Findings show significant biomass loss due to MHWs, with more pronounced impacts at higher trophic levels. Finally, projections from 1950 to 2100 indicate that MHW-induced changes in biomass flows could drive a global consumer biomass decline, surpassing the impacts of background climate change. Overall, this dissertation demonstrates that climate change and MHWs jointly disrupt biomass flows in marine ecosystems, leading to reduced future ocean animal biomass with direct repercussions on fisheries
Barciela, FernaÌndez Rosa MariÌa. "Modelling ecosystem dynamics in the turblent surface layers of the ocean." Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252437.
Full textHarlin, Hugo. "2D Modelling of Phytoplankton Dynamics in Freshwater Lakes." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388868.
Full textTrolle, Dennis. "The influence of sediment nutrient dynamics on the response of lake ecosystems to restoration and climate change." The University of Waikato, 2009. http://hdl.handle.net/10289/2808.
Full textSvensson, Magnus. "Carbon dynamics in spruce forest ecosystems - modelling pools and trends for Swedish conditions." Doctoral thesis, Stockholm : Department of Real Estate and Construction Management, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4240.
Full textKabir, Md Imran. "Dynamics of heavy metals in urban green water infrastructures." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14510.
Full textKarlsson, Olof Magnus. "Predicting Ecosystem Response from Pollution in Baltic Archipelago areas using Mass-balance Modelling." Doctoral thesis, Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-144120.
Full textFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 736
Books on the topic "Dynamic ecosystem modelling"
Jeffers, J. N. R. Practitioner's handbook on the modelling of dynamic change in ecosystems. Chichester [West Sussex]: Published on behalf of the Scientific Committee on Problems of the Environment of the International Council of Scientific Unions by Wiley, 1988.
Find full textJeffers, J. N. R. Practitioners handbook on the modelling of dynamic change in ecosystems. Chichester: Published on behalf of the Scientific Committee on Problems of the Environment (SCOPE) of the International Council of Scientific Unions (ICSU) by Wiley, 1988.
Find full textJ, Franke, and Roeder A, eds. Mathematical modelling of forest ecosystems: Proceedings of a workshop organized by Forstliche Versuchsanstalt Rheinland-Pfalz and Zentrum für Praktische Mathematik, Lambrecht/Pfalz, May 27-31, 1991. [Frankfurt?]: J.D. Sauerländer's Verlag Frankfurt am Main, 1992.
Find full textSawy, Omar A. El, and Francis Pereira. Business Modelling in the Dynamic Digital Space: An Ecosystem Approach. Springer, 2012.
Find full textSawy, Omar A. El, and Francis Pereira. Business Modelling in the Dynamic Digital Space: An Ecosystem Approach. Springer London, Limited, 2012.
Find full textBusiness Modelling In The Dynamic Digital Space An Ecosystem Approach. Springer, 2012.
Find full textSpatial Pattern Dynamics in Aquatic Ecosystem Modelling. Routledge, 2009.
Find full textLi, Hong. Spatial Pattern Dynamics in Aquatic Ecosystem Modelling: UNESCO-IHE PhD Thesis. Taylor & Francis Group, 2017.
Find full textSpatial Pattern Dynamics in Aquatic Ecosystem Modelling: UNESCO-IHE PhD Thesis. CRC Press LLC, 2012.
Find full textFinney, Mark, Sara McAllister, Torben Grumstrup, and Jason Forthofer. Wildland Fire Behaviour. CSIRO Publishing, 2021. http://dx.doi.org/10.1071/9781486309092.
Full textBook chapters on the topic "Dynamic ecosystem modelling"
Hettelingh, J. P., and M. Posch. "Critical Loads and a Dynamic Assessment of Ecosystem Recovery." In Predictability and Nonlinear Modelling in Natural Sciences and Economics, 439–46. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0962-8_37.
Full textJopp, Fred, and Donald L. DeAngelis. "Modelling the Everglades Ecosystem." In Modelling Complex Ecological Dynamics, 291–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-05029-9_21.
Full textGuichard, Frederic, and Justin Marleau. "Introduction: General Ecosystem Dynamics." In Lecture Notes on Mathematical Modelling in the Life Sciences, 1–10. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83454-8_1.
Full textGuichard, Frederic, and Justin Marleau. "Nonlinear Meta-Ecosystem Dynamics." In Lecture Notes on Mathematical Modelling in the Life Sciences, 29–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83454-8_3.
Full textCerdà, Artemi, Antonio Giménez-Morera, Antonio Jordan, Paulo Pereira, Agata Novara, Saskia Keesstra, Jorge Mataix-Solera, and José Damián Ruiz Sinoga. "Shrubland as a soil and water conservation agent in Mediterranean-type ecosystems." In Monitoring and Modelling Dynamic Environments, 45–59. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118649596.ch3.
Full textProdon, R. "Animal Communities and Vegetation Dynamics: Measuring and Modelling Animal Community Dynamics Along Forest Successions." In Responses of Forest Ecosystems to Environmental Changes, 126–41. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2866-7_13.
Full textRodríguez-Zaragoza, Fabián Alejandro, and Marco Ortiz. "Macroscopic Network Properties and Spatially-Explicit Dynamic Model of the Banco Chinchorro Biosphere Reserve Coral Reef (Caribbean Sea) for the Assessment of Harvest Scenarios." In Marine Coastal Ecosystems Modelling and Conservation, 163–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58211-1_8.
Full textBogner, Christina, Britta Aufgebauer, Oliver Archner, and Bernd Huwe. "Dynamics of Water Flow in a Forest Soil: Visualization and Modelling." In Energy and Matter Fluxes of a Spruce Forest Ecosystem, 137–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49389-3_7.
Full textClarke, Peter J. "The population dynamics of the mangrove Avicennia marina; demographic synthesis and predictive modelling." In Asia-Pacific Symposium on Mangrove Ecosystems, 83–88. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0289-6_11.
Full textTangi, Marco. "Dynamic Sediment Connectivity Modelling for Strategic River Basin Planning." In Special Topics in Information Technology, 27–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15374-7_3.
Full textConference papers on the topic "Dynamic ecosystem modelling"
Gan Yi, Qi Congqian, Zhang Jingfeng, and Chen Sa. "Studies on the modelling of the regional networked manufacturing enterprise dynamic alliance based on the ant ecosystem." In International Technology and Innovation Conference 2006 (ITIC 2006). IEE, 2006. http://dx.doi.org/10.1049/cp:20060985.
Full textKumar, Ayush, Vishal Rathore, and K. B. Yadav. "MODELING AND SIMULATION OF DYNAMIC WIRELESS POWER TRANSFER TECHNIQUE FOR ELECTRIC VEHICLES." In TOPICS IN INTELLIGENT COMPUTING AND INDUSTRY DESIGN (ICID). VOLKSON PRESS, 2022. http://dx.doi.org/10.26480/icpesd.01.2022.73.77.
Full textKitazawa, Daisuke, and Piet Ruardij. "Modelling of Competition for Space and Food Among Mussels Under a Coastal Floating Platform." In ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2005. http://dx.doi.org/10.1115/omae2005-67397.
Full textJAVA, Oskars. "SIGNIFICANCE OF THINNING DEGRADED SWAMPS FOREST STANDS IN SUSTAINABLE ECOSYSTEM`S DEVELOPMENT." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.104.
Full text"The population dynamics of ecosystem engineers and habitat modification." In 24th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2021. http://dx.doi.org/10.36334/modsim.2021.f3.watt2.
Full text"An agent-based integrated model of recreational fishing and coral reef ecosystem dynamics for site closure strategy analysis." In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.h3.gao.
Full text"The influence of temperature and ecosystem dynamics on the partitioning of a Persistent Organic Pollutant (POP) in Antarctic marine food webs." In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.e5.cropp.
Full textTinnerholm, John, Mariano Zapatero, Adrian Pop, Peter Fritzson, and Rodrigo Castro. "A Semi-Automatic Translator from System Dynamics to Modelica with Application to Socio-Bio-Physical Systems." In 64th International Conference of Scandinavian Simulation Society, SIMS 2023 Västerås, Sweden, September 25-28, 2023. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp200039.
Full textRodriguez Casamayor, Adriana, Sibylle Hermann, Hans Nopper, and Thomas Lück. "Redefining SME Cooperation to Foster a Value-creation-oriented Approach and Propel Forward Cutting-edge AM Services in the Medical Market." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003133.
Full textNazarenko, Volodymyr, Andrii Martyn, Larisa Klikh, and Oksana Pashchenko. "Green metrics: internet of things based ecological monitoring and management for sustainable urban living in Kyiv." In 25th International Scientific Conference. “Economic Science for Rural Development 2024”, 220–30. Latvia University of Life Sciences and Technologies. Faculty of Economics and Social Development, 2024. http://dx.doi.org/10.22616/esrd.2024.58.022.
Full textReports on the topic "Dynamic ecosystem modelling"
Perdigão, Rui A. P. Strengthening Multi-Hazard Resilience with Quantum Aerospace Systems Intelligence. Synergistic Manifolds, January 2024. http://dx.doi.org/10.46337/240301.
Full textVerburg, Peter H., Žiga Malek, Sean P. Goodwin, and Cecilia Zagaria. The Integrated Economic-Environmental Modeling (IEEM) Platform: IEEM Platform Technical Guides: User Guide for the IEEM-enhanced Land Use Land Cover Change Model Dyna-CLUE. Inter-American Development Bank, September 2021. http://dx.doi.org/10.18235/0003625.
Full textTaucher, Jan, and Markus Schartau. Report on parameterizing seasonal response patterns in primary- and net community production to ocean alkalinization. OceanNETs, November 2021. http://dx.doi.org/10.3289/oceannets_d5.2.
Full textTaucher, Jan, and Markus Schartau. Report on parameterizing seasonal response patterns in primary- and net community production to ocean alkalinization. OceanNETs, 2021. http://dx.doi.org/10.3289/oceannets_d5.3.
Full text