To see the other types of publications on this topic, follow the link: Dynamic contrast.

Journal articles on the topic 'Dynamic contrast'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dynamic contrast.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Halder, Amiya. "Dynamic Contrast Enhancement Algorithm." International Journal of Computer Applications 74, no. 12 (July 26, 2013): 1–4. http://dx.doi.org/10.5120/12934-9879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Husband, J. E. "Fast dynamic contrast MRI." European Journal of Cancer 35 (September 1999): S306. http://dx.doi.org/10.1016/s0959-8049(99)81654-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miles, K. A. "Dynamic contrast enhanced MR." Clinical Radiology 51, no. 1 (January 1996): 78. http://dx.doi.org/10.1016/s0009-9260(96)80231-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buckley, D., S. Blackband, and R. Kerslake. "Dynamic contrast enhanced MR." Clinical Radiology 51, no. 1 (January 1996): 78–79. http://dx.doi.org/10.1016/s0009-9260(96)80232-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Victor, Jonathan D., Mary M. Conte, and Keith P. Purpura. "Dynamic shifts of the contrast-response function." Visual Neuroscience 14, no. 3 (May 1997): 577–87. http://dx.doi.org/10.1017/s0952523800012232.

Full text
Abstract:
AbstractWe recorded visual evoked potentials in response to square-wave contrast-reversal checkerboards undergoing a transition in the mean contrast level. Checkerboards were modulated at 4.22 Hz (8.45-Hz reversal rate). After each set of 16 cycles of reversals, stimulus contrast abruptly switched between a “high” contrast level (0.06 to 1.0) to a “low” contrast level (0.03 to 0.5). Higher contrasts attenuated responses to lower contrasts by up to a factor of 2 during the period immediately following the contrast change. Contrast-response functions derived from the initial second following a conditioning contrast shifted by a factor of 2–4 along the contrast axis. For low-contrast stimuli, response phase was an advancing function of the contrast level in the immediately preceding second. For high-contrast stimuli, response phase was independent of the prior contrast history. Steady stimulation for periods as long as 1 min produced only minor effects on response amplitude, and no detectable effects on response phase. These observations delineate the dynamics of a contrast gain control in human vision.
APA, Harvard, Vancouver, ISO, and other styles
6

Padhani, A. R. "Dynamic contrast-enhanced MR imaging." Cancer Imaging 1, no. 1 (2000): 52–63. http://dx.doi.org/10.1102/1470-7330/00/010052+12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kelemen, Zsolt, Ruikang Zhang, Lionel Gissot, Raja Chouket, Yannick Bellec, Vincent Croquette, Ludovic Jullien, Jean-Denis Faure, and Thomas Le Saux. "Dynamic Contrast for Plant Phenotyping." ACS Omega 5, no. 25 (June 16, 2020): 15105–14. http://dx.doi.org/10.1021/acsomega.0c00957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lenkinski, Robert E. "Dynamic contrast-enhanced MR studies." Academic Radiology 10, no. 9 (September 2003): 961–62. http://dx.doi.org/10.1016/s1076-6332(03)00296-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Buxton, Richard B. "Dynamic models of BOLD contrast." NeuroImage 62, no. 2 (August 2012): 953–61. http://dx.doi.org/10.1016/j.neuroimage.2012.01.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brix, Gunnar, Ursula Lechel, Markus Petersheim, Radko Krissak, and Christian Fink. "Dynamic Contrast-Enhanced CT Studies." Investigative Radiology 46, no. 1 (January 2011): 64–70. http://dx.doi.org/10.1097/rli.0b013e3181f33b35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Shah, Gaurang V., Nancy J. Fischbein, Dheeraj Gandhi, and Suresh K. Mukherji. "Dynamic Contrast-Enhanced MR Imaging." Topics in Magnetic Resonance Imaging 15, no. 2 (April 2004): 71–77. http://dx.doi.org/10.1097/01.ftd.0000136399.78067.dd.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Demi, Libertario, Ruud van Sloun, Hessel Wijkstra, and Massimo Mischi. "Dynamic contrast specific ultrasound tomography." Journal of the Acoustical Society of America 140, no. 4 (October 2016): 3420. http://dx.doi.org/10.1121/1.4970998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Braunagel, Margarita, Andreas Helck, Anne Wagner, Nina Schupp, Verena Bröcker, Maximilian Reiser, Mike Notohamiprodjo, Bruno Meiser, and Antje Habicht. "Dynamic Contrast-Enhanced Computed Tomography." Investigative Radiology 51, no. 5 (May 2016): 316–22. http://dx.doi.org/10.1097/rli.0000000000000245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yan, Yuling, Xilin Sun, and Baozhong Shen. "Contrast agents in dynamic contrast-enhanced magnetic resonance imaging." Oncotarget 8, no. 26 (March 22, 2017): 43491–505. http://dx.doi.org/10.18632/oncotarget.16482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Anzalone, Nicoletta, Antonella Castellano, Marcello Cadioli, Gian Marco Conte, Valeria Cuccarini, Alberto Bizzi, Marco Grimaldi, et al. "Brain Gliomas: Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images." Radiology 287, no. 3 (June 2018): 933–43. http://dx.doi.org/10.1148/radiol.2017170362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Naish, J. H., D. M. McGrath, L. J. Bains, K. Passera, C. Roberts, Y. Watson, S. Cheung, et al. "Comparison of dynamic contrast-enhanced MRI and dynamic contrast-enhanced CT biomarkers in bladder cancer." Magnetic Resonance in Medicine 66, no. 1 (March 24, 2011): 219–26. http://dx.doi.org/10.1002/mrm.22774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gilbert, Fiona J., and Trevor S. Ahearn. "Dynamic contrast-enhanced MRI in cancer." Imaging in Medicine 1, no. 2 (December 2009): 173–86. http://dx.doi.org/10.2217/iim.09.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Huang, P. C., and R. Hess. "Dynamic dichoptic masking: luminance vs. contrast." Journal of Vision 12, no. 9 (August 10, 2012): 524. http://dx.doi.org/10.1167/12.9.524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Miyati, Toshiaki, Harumasa Kasai, Tatsuo Banno, Kazuya Ohhashi, Takahiro Sakurai, Hirosi Kunitomo, Katuhiro Itikawa, et al. "Dual Dynamic Contrast-enhanced MR Imaging." Japanese Journal of Radiological Technology 52, no. 9 (1996): 1188. http://dx.doi.org/10.6009/jjrt.kj00001354930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lim, Bo, Rae-hong Park, and Sunghee Kim. "High dynamic range for contrast enhancement." IEEE Transactions on Consumer Electronics 52, no. 4 (November 2006): 1454–62. http://dx.doi.org/10.1109/tce.2006.273170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Aronen, Hannu J., and Jussi Perkiö. "Dynamic susceptibility contrast MRI of gliomas." Neuroimaging Clinics of North America 12, no. 4 (November 2002): 501–23. http://dx.doi.org/10.1016/s1052-5149(02)00026-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Moon, Marianne, Daniel Cornfeld, and Jeffrey Weinreb. "Dynamic Contrast-Enhanced Breast MR Imaging." Magnetic Resonance Imaging Clinics of North America 17, no. 2 (May 2009): 351–62. http://dx.doi.org/10.1016/j.mric.2009.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Scialfa, C. T., P. M. Garvey, R. A. Tyrrell, and H. W. Leibowitz. "Age Differences in Dynamic Contrast Thresholds." Journal of Gerontology 47, no. 3 (May 1, 1992): P172—P175. http://dx.doi.org/10.1093/geronj/47.3.p172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jackson, A. "Analysis of dynamic contrast enhanced MRI." British Journal of Radiology 77, suppl_2 (December 2004): S154—S166. http://dx.doi.org/10.1259/bjr/16652509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Münter, Michael, Malte vom Endt, Mario Pieper, Malte Casper, Martin Ahrens, Tabea Kohlfaerber, Ramtin Rahmanzadeh, Peter König, Gereon Hüttmann, and Hinnerk Schulz-Hildebrandt. "Dynamic contrast in scanning microscopic OCT." Optics Letters 45, no. 17 (August 24, 2020): 4766. http://dx.doi.org/10.1364/ol.396134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Engelhorn, Tobias, Marc A. Schwarz, Ilker Y. Eyupoglu, Stephan P. Kloska, Tobias Struffert, and Arnd Doerfler. "Dynamic Contrast Enhancement of Experimental Glioma." Academic Radiology 17, no. 2 (February 2010): 188–93. http://dx.doi.org/10.1016/j.acra.2009.08.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wei, Qingshan, and Alexander Wei. "Optical Imaging with Dynamic Contrast Agents." Chemistry - A European Journal 17, no. 4 (January 5, 2011): 1080–91. http://dx.doi.org/10.1002/chem.201002521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Miyati, Tosiaki, Tatsuo Banno, Mitsuhito Mase, Harumasa Kasai, Hideo Shundo, Masayoshi Imazawa, and Satoru Ohba. "Dual dynamic contrast-enhanced MR imaging." Journal of Magnetic Resonance Imaging 7, no. 1 (January 1997): 230–35. http://dx.doi.org/10.1002/jmri.1880070136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lebel, Robert Marc, Jesse Jones, Jean-Christophe Ferre, Meng Law, and Krishna S. Nayak. "Highly accelerated dynamic contrast enhanced imaging." Magnetic Resonance in Medicine 71, no. 2 (March 15, 2013): 635–44. http://dx.doi.org/10.1002/mrm.24710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Artzi, Moran, Gilad Liberman, Guy Nadav, Faina Vitinshtein, Deborah T. Blumenthal, Felix Bokstein, Orna Aizenstein, and Dafna Ben Bashat. "Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI." Neuroradiology 57, no. 7 (April 7, 2015): 671–78. http://dx.doi.org/10.1007/s00234-015-1518-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Hee Soo, Se Lee Kwon, Seung Hong Choi, Inpyeong Hwang, Tae Min Kim, Chul-Kee Park, Sung-Hye Park, Jae-Kyung Won, Il Han Kim, and Soon Tae Lee. "Prognostication of anaplastic astrocytoma patients: application of contrast leakage information of dynamic susceptibility contrast-enhanced MRI and dynamic contrast-enhanced MRI." European Radiology 30, no. 4 (January 17, 2020): 2171–81. http://dx.doi.org/10.1007/s00330-019-06598-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Xin, Wei Huang, Elizabeth A. Morris, Luminita A. Tudorica, Venkatraman E. Seshan, William D. Rooney, Ian Tagge, Ya Wang, Jingang Xu, and Charles S. Springer. "Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI." Proceedings of the National Academy of Sciences 105, no. 46 (November 13, 2008): 17937–42. http://dx.doi.org/10.1073/pnas.0804224105.

Full text
Abstract:
The passage of a vascular-injected paramagnetic contrast reagent (CR) bolus through a region-of-interest affects tissue 1H2O relaxation and thus MR image intensity. For longitudinal relaxation [R1 ≡ (T1)−1], the CR must have transient molecular interactions with water. Because the CR and water molecules are never uniformly distributed in the histological-scale tissue compartments, the kinetics of equilibrium water compartmental interchange are competitive. In particular, the condition of the equilibrium trans cytolemmal water exchange NMR system sorties through different domains as the interstitial CR concentration, [CRo], waxes and wanes. Before CR, the system is in the fast-exchange-limit (FXL). Very soon after CRo arrival, it enters the fast-exchange-regime (FXR). Near maximal [CRo], the system could enter even the slow-exchange-regime (SXR). These conditions are defined herein, and a comprehensive description of how they affect quantitative pharmacokinetic analyses is presented. Data are analyzed from a population of 22 patients initially screened suspicious for breast cancer. After participating in our study, the subjects underwent biopsy/pathology procedures and only 7 (32%) were found to have malignancies. The transient departure from FXL to FXR (and apparently not SXR) is significant in only the malignant tumors, presumably because of angiogenic capillary leakiness. Thus, if accepted, this analysis would have prevented the 68% of the biopsies that proved benign.
APA, Harvard, Vancouver, ISO, and other styles
33

Shen, Xiong, Peng Wang, Jingxin Zhu, Zhe Si, Yuxia Zhao, Jun Liu, and Ruxin Li. "Temporal contrast reduction techniques for high dynamic-range temporal contrast measurement." Optics Express 27, no. 8 (April 1, 2019): 10586. http://dx.doi.org/10.1364/oe.27.010586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Fischer, Christian, Eva-Maria Preuss, Michael Tanner, Thomas Bruckner, Martin Krix, Erick Amarteifio, Matthias Miska, Arash Moghaddam-Alvandi, Gerhard Schmidmaier, and Marc-André Weber. "Dynamic Contrast-Enhanced Sonography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Preoperative Diagnosis of Infected Nonunions." Journal of Ultrasound in Medicine 35, no. 5 (April 1, 2016): 933–42. http://dx.doi.org/10.7863/ultra.15.06107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Quarles, C. Chad, Laura C. Bell, and Ashley M. Stokes. "Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI." NeuroImage 187 (February 2019): 32–55. http://dx.doi.org/10.1016/j.neuroimage.2018.04.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hung, Chou P., Chloe Callahan-Flintoft, Paul D. Fedele, Kim F. Fluitt, Barry D. Vaughan, Anthony J. Walker, and Min Wei. "Low-contrast Acuity Under Strong Luminance Dynamics and Potential Benefits of Divisive Display Augmented Reality." Journal of Perceptual Imaging 4, no. 1 (May 1, 2021): 10501–1. http://dx.doi.org/10.2352/j.percept.imaging.2021.4.1.010501.

Full text
Abstract:
Abstract Understanding and predicting outdoor visual performance in augmented reality (AR) requires characterizing and modeling vision under strong luminance dynamics, including luminance differences of 10000-to-1 in a single image (high dynamic range, HDR). Classic models of vision, based on displays with 100-to-1 luminance contrast, have limited ability to generalize to HDR environments. An important question is whether low-contrast visibility, potentially useful for titrating saliency for AR applications, is resilient to saccade-induced strong luminance dynamics. The authors developed an HDR display system with up to 100,000-to-1 contrast and assessed how strong luminance dynamics affect low-contrast visual acuity. They show that, immediately following flashes of 25× or 100× luminance, visual acuity is unaffected at 90% letter Weber contrast and only minimally affected at lower letter contrasts (up to +0.20 LogMAR for 10% contrast). The resilience of low-contrast acuity across luminance changes opens up research on divisive display AR (ddAR) to effectively titrate salience under naturalistic HDR luminance.
APA, Harvard, Vancouver, ISO, and other styles
37

Nechipay, E. A., M. B. Dolgushin, A. I. Pronin, E. A. Kobyakova, and L. M. Fadeeva. "Dynamic Contrast Enhanced MRI in Glioma Diagnosis." Medical Visualization, no. 4 (August 28, 2017): 88–96. http://dx.doi.org/10.24835/1607-0763-2017-4-88-96.

Full text
Abstract:
The aim: to examine the possibility of using dynamic contrast enhanced magnetic resonance imaging (DCE MRI) in clarifying the diagnosis of glial brain tumors and the differentiation between them on the basis of the malignancy degree. In this regard, the authors evaluated the effectiveness of perfusion parameters (Ktrans, Kep, Ve and iAUC).Materials and methods.The study included examination of 54 patients with an established presence of brain glial tumors. Glioma Grade I–II diagnosed in 13 (24.1%) and glioma Grade III–IV in 41 (75.9%) cases. Morphological verification of the diagnosis obtained as a result of either surgical removal of the tumor or stereotactic biopsy was achieved in 31 (57.4%) patients: glial tumors Grade I–II identified in 6 (19.4%), and glioma Grade III–IV – 25 (80.6%) cases. Results. According to DCE increasing of the malignancy degree of glial tumors is followed by increasing of all perfusion parameters: thus, the lowest values of Ktrans, Kep, Ve and iAUC were identified in low grade gliomas (0.026 min−1, 0.845 min−1, 0.024 and 1.757, respectively), the highest in gliomas Grade III–IV (0.052 min−1 1.083 min−1, 0.06 and 2.694, respectively). The most informative parameters with sensi tivity 90% and specificity 100% in the differential diagnosis of gliomas Grade I-II and Grade III-IV are Ktrans (cut-off = 0.16 min−1) and Ve (cut-off = 0.13).Conclusion.DCE MRI can be used in differential diagnosis of glial brain tumors of different malignancy grade.
APA, Harvard, Vancouver, ISO, and other styles
38

Bowen, R. W., and H. de Ridder. "Dynamic Contrast Perception Assessed by Pattern Masking." Perception 25, no. 1_suppl (August 1996): 19. http://dx.doi.org/10.1068/v96l0605.

Full text
Abstract:
The perceived contrast of a pulsed grating of about 100 ms duration can exceed that of shorter or longer exposures. We investigated this contrast enhancement effect with pattern masking. The pulsed mask patterns were extended cosines (5 deg square, 35 cd m−2 mean luminance, 0.3 contrast) of 50 to 500 ms duration. Mask spatial frequency was 1 or 6 cycles deg−1. The test patterns (of equivalent spatial frequency) were sixth derivative Gaussians, either positive (ON pathway mediation) or negative (OFF pathway mediation) and of 30 ms duration. The test pattern could be centred on a light bar of the cosine (positive contrast) or a dark bar (negative contrast). Test and mask had simultaneous onset. For a 1 cycle deg−1 test and mask of the same polarity, the test threshold/mask duration function is nonmonotonic (peak at 83 – 100 ms). The function was similar for either positive or negative stimuli. Thus, we measured an analogue to the contrast enhancement effect, and found enhancement for negative as well as positive contrast components. For same-polarity 6 cycles deg−1 test and mask, threshold increased monotonically to 500 ms (no enhancement). For both 1 and 6 cycles deg−1 stimuli of opposite polarity, the threshold/mask duration function is sharply elevated and constant for masks of 83 ms or more. The same-polarity masking functions imply activation of either transient (1 cycle deg−1 stimuli) or sustained (6 cycles deg−1 stimuli) ON or OFF pathways. The opposite-polarity functions suggest that the time course of ON — OFF pathway interaction is similar for sustained and transient pathways.
APA, Harvard, Vancouver, ISO, and other styles
39

Jiang, Xuyuan, Patrick Asbach, Gregor Willerding, Miriam Dulce, Ke Xu, Matthias Taupitz, Bernd Hamm, and Katharina Erb-Eigner. "Dynamic contrast-enhanced MRI of ocular melanoma." Melanoma Research 25, no. 2 (April 2015): 149–56. http://dx.doi.org/10.1097/cmr.0000000000000142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Thomassin-Naggara, Isabelle, Charles-André Cuenod, and Daniel Balvay. "Reproducibility of Dynamic Contrast-enhanced MR Imaging." Radiology 269, no. 2 (November 2013): 620–21. http://dx.doi.org/10.1148/radiol.13130902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chi-Chia Sun, Shanq-Jang Ruan, Mon-Chau Shie, and Tun-Wen Pai. "Dynamic contrast enhancement based on histogram specification." IEEE Transactions on Consumer Electronics 51, no. 4 (November 2005): 1300–1305. http://dx.doi.org/10.1109/tce.2005.1561859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ooi, Chen, and Nor Mat Isa. "Quadrants dynamic histogram equalization for contrast enhancement." IEEE Transactions on Consumer Electronics 56, no. 4 (November 2010): 2552–59. http://dx.doi.org/10.1109/tce.2010.5681140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bowen, Richard W., and Huib de Ridder. "Dynamic contrast perception assessed by pattern masking." Journal of the Optical Society of America A 15, no. 3 (March 1, 1998): 570. http://dx.doi.org/10.1364/josaa.15.000570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kovar, David A., Martin J. Lipton, Marta Z. Lewis, Jon N. River, Leslie Lubich, and Gregory S. Karczmar. "Dynamic contrast measurements in rodent model tumors." Academic Radiology 3 (August 1996): S384—S386. http://dx.doi.org/10.1016/s1076-6332(96)80591-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

O'Connor, James P. B., Yvonne Watson, and Alan Jackson. "Dynamic contrast-enhanced MR imaging in cancer." Radiography 13 (December 2007): e45-e53. http://dx.doi.org/10.1016/j.radi.2006.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stuhrmann, Heinrich B. "Neutron contrast variation and dynamic nuclear polarisation." Physica B: Condensed Matter 267-268 (June 1999): 92–96. http://dx.doi.org/10.1016/s0921-4526(99)00034-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kelemen, Zsolt, Ruikang Zhang, Lionel Gissot, Raja Chouket, Yannick Bellec, Vincent Croquette, Ludovic Jullien, Jean-Denis Faure, and Thomas Le Saux. "Correction to “Dynamic Contrast for Plant Phenotyping”." ACS Omega 5, no. 30 (July 21, 2020): 19312–13. http://dx.doi.org/10.1021/acsomega.0c03120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Boxerman, Jerrold L., Mark S. Shiroishi, Benjamin M. Ellingson, and Whitney B. Pope. "Dynamic Susceptibility Contrast MR Imaging in Glioma." Magnetic Resonance Imaging Clinics of North America 24, no. 4 (November 2016): 649–70. http://dx.doi.org/10.1016/j.mric.2016.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhang, Hong, Yuecheng Li, Hao Chen, Ding Yuan, and Mingui Sun. "Perceptual contrast enhancement with dynamic range adjustment." Optik 124, no. 23 (December 2013): 5906–13. http://dx.doi.org/10.1016/j.ijleo.2013.04.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Calamante, Fernando. "Perfusion MRI Using Dynamic-Susceptibility Contrast MRI." Topics in Magnetic Resonance Imaging 21, no. 2 (April 2010): 75–85. http://dx.doi.org/10.1097/rmr.0b013e31821e53f5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography