Contents
Academic literature on the topic 'Dyes for Panchromatic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dyes for Panchromatic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dyes for Panchromatic"
Manz, Noah B., and Paul A. Fuierer. "Mathematical Approach to Optimizing the Panchromatic Absorption of Natural Dye Combinations for Dye-Sensitized Solar Cells." Colorants 2, no. 1 (2023): 90–110. http://dx.doi.org/10.3390/colorants2010007.
Full textMalzner, Frederik J., Markus Willgert, Edwin C. Constable, and Catherine E. Housecroft. "The way to panchromatic copper(i)-based dye-sensitized solar cells: co-sensitization with the organic dye SQ2." Journal of Materials Chemistry A 5, no. 26 (2017): 13717–29. http://dx.doi.org/10.1039/c7ta02575k.
Full textHuaulmé, Quentin, Cyril Aumaitre, Outi Vilhelmiina Kontkanen, et al. "Functional panchromatic BODIPY dyes with near-infrared absorption: design, synthesis, characterization and use in dye-sensitized solar cells." Beilstein Journal of Organic Chemistry 15 (July 24, 2019): 1758–68. http://dx.doi.org/10.3762/bjoc.15.169.
Full textSyu, Yu-Kai, Yogesh Tingare, Chen-Yu Yeh, Jih-Sheng Yang, and Jih-Jen Wu. "Panchromatic engineering for efficient zinc oxide flexible dye-sensitized solar cells using porphyrin and indoline dyes." RSC Advances 6, no. 64 (2016): 59273–79. http://dx.doi.org/10.1039/c6ra09262d.
Full textIslam, Ashraful, Towhid H. Chowdhury, Chuanjiang Qin, et al. "Panchromatic absorption of dye sensitized solar cells by co-Sensitization of triple organic dyes." Sustainable Energy & Fuels 2, no. 1 (2018): 209–14. http://dx.doi.org/10.1039/c7se00362e.
Full textNano, Adela, Maria Pia Gullo, Barbara Ventura, Nicola Armaroli, Andrea Barbieri, and Raymond Ziessel. "Panchromatic luminescence from julolidine dyes exhibiting excited state intramolecular proton transfer." Chemical Communications 51, no. 16 (2015): 3351–54. http://dx.doi.org/10.1039/c4cc09832c.
Full textPaek, Sanghyun, Hyunbong Choi, Chulwoo Kim, et al. "Efficient and stable panchromatic squaraine dyes for dye-sensitized solar cells." Chemical Communications 47, no. 10 (2011): 2874. http://dx.doi.org/10.1039/c0cc05378c.
Full textBura, Thomas, Pascal Retailleau, and Raymond Ziessel. "Efficient Synthesis of Panchromatic Dyes for Energy Concentration." Angewandte Chemie International Edition 49, no. 37 (2010): 6659–63. http://dx.doi.org/10.1002/anie.201003206.
Full textBura, Thomas, Pascal Retailleau, and Raymond Ziessel. "Efficient Synthesis of Panchromatic Dyes for Energy Concentration." Angewandte Chemie 122, no. 37 (2010): 6809–13. http://dx.doi.org/10.1002/ange.201003206.
Full textImae, Ichiro, Yohei Ito, Shun Matsuura, and Yutaka Harima. "Panchromatic dyes having diketopyrrolopyrrole and ethylenedioxythiophene applied to dye-sensitized solar cells." Organic Electronics 37 (October 2016): 465–73. http://dx.doi.org/10.1016/j.orgel.2016.07.022.
Full text