Journal articles on the topic 'Dust Australia Observations'

To see the other types of publications on this topic, follow the link: Dust Australia Observations.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dust Australia Observations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rotstayn, L. D., M. A. Collier, R. M. Mitchell, Y. Qin, S. K. Campbell, and S. M. Dravitzki. "Simulated enhancement of ENSO-related rainfall variability due to Australian dust." Atmospheric Chemistry and Physics 11, no. 13 (July 12, 2011): 6575–92. http://dx.doi.org/10.5194/acp-11-6575-2011.

Full text
Abstract:
Abstract. Australian dust emissions are highly episodic, and this may increase the importance of Australian dust as a climate feedback agent. We compare two 160-year coupled atmosphere-ocean simulations of modern-day climate using the CSIRO Mark 3.6 global climate model (GCM). The first run (DUST) includes an interactive treatment of mineral dust and its direct radiative effects. The second run (NODUST) is otherwise identical, but has the Australian dust source set to zero. We focus on the austral spring season, when the correlation between rainfall and the El Niño Southern Oscillation (ENSO) is strongest over Australia. The ENSO-rainfall relationship over eastern Australia is stronger in the DUST run: dry (El Niño) years tend to be drier, and wet (La Niña) years wetter. The amplification of ENSO-related rainfall variability over eastern Australia represents an improvement relative to observations. The effect is driven by ENSO-related anomalies in radiative forcing by Australian dust over the south-west Pacific Ocean; these anomalies increase (decrease) surface evaporation in La Niña (El Niño) years. Some of this moisture is advected towards eastern Australia, where increased (decreased) moisture convergence in La Niña (El Niño) years increases the amplitude of ENSO-related rainfall variability. The modulation of surface evaporation by dust over the south-west Pacific occurs via surface radiative forcing and dust-induced stabilisation of the boundary layer. The results suggest that (1) a realistic treatment of Australian dust may be necessary for accurate simulation of the ENSO-rainfall relationship over Australia, and (2) radiative feedbacks involving dust may be important for understanding natural rainfall variability over Australia.
APA, Harvard, Vancouver, ISO, and other styles
2

Yu, Yan, and Paul Ginoux. "Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations." Atmospheric Chemistry and Physics 21, no. 11 (June 7, 2021): 8511–30. http://dx.doi.org/10.5194/acp-21-8511-2021.

Full text
Abstract:
Abstract. Despite Australian dust's critical role in the regional climate and surrounding marine ecosystems, the controlling factors of the spatiotemporal variations of Australian dust are not fully understood. Here we assess the connections between observed spatiotemporal variations of Australian dust with key modes of large-scale climate variability, namely the El Niño–Southern Oscillation (ENSO) and Madden–Julian Oscillation (MJO). Multiple dust observations from the Aerosol Robotic Network (AERONET), weather stations, and satellite instruments, namely the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), are examined. The assessed multiple dust observations consistently identify the natural and agricultural dust hotspots in Australia, including the Lake Eyre basin, Lake Torrens basin, Lake Frome basin, Simpson Desert, Barwon–Darling basin, Riverina, Barkly Tableland, and the lee side of the Great Dividing Range, as well as a country-wide, austral spring-to-summer peak in dust activity. Our regression analysis of observed dust optical depth (DOD) upon an ocean Niño index confirms previous model-based findings on the enhanced dust activity in southern and eastern Australia during the subsequent austral spring and summer dust season following the strengthening of austral wintertime El Niño. Our analysis further indicates the modulation of the ENSO–dust relationship with the MJO phases. During sequential MJO phases, the dust-active center moves from west to east, associated with the eastward propagation of MJO, with the maximum enhancement in dust activity at about 120, 130, and 140∘ E, corresponding to MJO phases 1–2, 3–4, and 5–6, respectively. MJO phases 3–6 are favorable for enhanced ENSO modulation of dust activity, especially the occurrence of extreme dust events, in southeastern Australia, currently hypothesized to be attributed to the interaction between MJO-induced anomalies in convection and wind and ENSO-induced anomalies in soil moisture and vegetation.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Xingchuan, Chuanfeng Zhao, Yikun Yang, and Hao Fan. "Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia." Atmospheric Chemistry and Physics 21, no. 5 (March 15, 2021): 3803–25. http://dx.doi.org/10.5194/acp-21-3803-2021.

Full text
Abstract:
Abstract. The spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of major aerosol types over Australia, are investigated based on multi-year Aerosol Robotic Network (AERONET) observations at nine sites, the Moderate Resolution Imaging Spectroradiometer (MODIS), Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and back-trajectory analysis from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT). During the observation period from 2001–2020, the annual aerosol optical depth (AOD) at most sites showed increasing trends (0.002–0.029 yr−1), except for that at three sites, Canberra, Jabiru, and Lake Argyle, which showed decreasing trends (−0.004 to −0.014 yr−1). In contrast, the annual Ångström exponent (AE) showed decreasing tendencies at most sites (−0.045 to −0.005 yr−1). The results showed strong seasonal variations in AOD, with high values in the austral spring and summer and relatively low values in the austral fall and winter, and weak seasonal variations in AE, with the highest mean values in the austral spring at most sites. Monthly average AOD increases from August to December or the following January and decreases during March–July. Spatially, the MODIS AOD showed obvious spatial heterogeneity, with high values appearing over the Australian tropical savanna regions, Lake Eyre Basin, and southeastern regions of Australia, while low values appeared over the arid regions in western Australia. MERRA-2 showed that carbonaceous aerosol over northern Australia, dust over central Australia, sulfate over densely populated northwestern and southeastern Australia, and sea salt over Australian coastal regions are the major types of atmospheric aerosols. The nine ground-based AERONET sites over Australia showed that the mixed type of aerosols (biomass burning and dust) is dominant in all seasons. Moreover, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed that polluted dust is the dominant aerosol type detected at heights 0.5–5 km over the Australian continent during all seasons. The results suggested that Australian aerosol has similar source characteristics due to the regional transport over Australia, especially for biomass burning and dust aerosols. However, the dust-prone characteristic of aerosol is more prominent over central Australia, while the biomass-burning-prone characteristic of aerosol is more prominent in northern Australia.
APA, Harvard, Vancouver, ISO, and other styles
4

Rotstayn, L. D., M. A. Collier, R. M. Mitchell, Y. Qin, and S. K. Campbell. "Simulated enhancement of ENSO-related rainfall variability due to Australian dust." Atmospheric Chemistry and Physics Discussions 11, no. 1 (January 19, 2011): 1595–639. http://dx.doi.org/10.5194/acpd-11-1595-2011.

Full text
Abstract:
Abstract. Average dust emissions from Australia are small compared to those from the major sources in the Northern Hemisphere. However, they are highly episodic, and this may increase the importance of Australian dust as a climate feedback agent. We compare two 160-year coupled atmosphere-ocean simulations of modern-day climate using the CSIRO Mark 3.6 global climate model (GCM). The first run (DUST) includes an interactive treatment of mineral dust and its direct radiative effects. The second run (NODUST) is otherwise identical, but has the Australian dust source set to zero. We focus on the austral spring season, when the correlation between rainfall and the El Niño Southern Oscillation (ENSO) is strongest over Australia. We find that the ENSO-rainfall relationship over eastern Australia is stronger in the DUST run: dry (El Niño) years tend to be drier, and wet (La Niña) years wetter. The ENSO-rainfall relationship is also weaker over north-western Australia in the DUST run. The amplification of ENSO-related rainfall variability over eastern Australia and the weaker ENSO-rainfall relationship over the north-west both represent an improvement relative to observations. The suggested mechanism over eastern Australia involves stabilisation of the surface layer due to enhanced atmospheric heating and surface cooling in El Niño years, and enhanced ascent and moisture convergence driven by atmospheric heating in La Niña years. The results suggest that (1) a realistic treatment of Australian dust may be necessary for accurate simulation of the ENSO-rainfall relationship over Australia, and (2) radiative feedbacks involving dust may be important for understanding natural rainfall variability over Australia.
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Craig H., David K. Aitken, and Patrick F. Roche. "PAH’s and Silicate Emission in Nova Cen 1986." International Astronomical Union Colloquium 122 (1990): 197–98. http://dx.doi.org/10.1017/s0252921100068585.

Full text
Abstract:
We present 8 – 13 μm spectra (R ≃ 40) of Nova Cen 1986 (V842 Cen) on 8 occasions between days 162 and 899 after outburst, and all after the onset of dust formation. All observations were made with the UCL cooled grating array spectrometer on the 3.9m Anglo-Australian Telescope or the 2.3m ANU telescope in Australia. All but the last observation (day 899) show evidence for emission from at least two dust components; a featureless continuum (usually attributed to carbon based dust), a broad emissive component centered on 10 μm (probably "silicates"), and the 11.3 μm feature from the family of unidentified infra-red dust features (UIR’s) seen on days 271 – 687.
APA, Harvard, Vancouver, ISO, and other styles
6

Nguyen, Hiep Duc, Matt Riley, John Leys, and David Salter. "Dust Storm Event of February 2019 in Central and East Coast of Australia and Evidence of Long-Range Transport to New Zealand and Antarctica." Atmosphere 10, no. 11 (October 28, 2019): 653. http://dx.doi.org/10.3390/atmos10110653.

Full text
Abstract:
Between 11 and 15 February 2019, a dust storm originating in Central Australia with persistent westerly and south westerly winds caused high particle concentrations at many sites in the state of New South Wales (NSW); both inland and along the coast. The dust continued to be transported to New Zealand and to Antarctica in the south east. This study uses observed data and the WRF-Chem Weather Research Forecast model based on GOCART-AFWA (Goddard Chemistry Aerosol Radiation and Transport–Air Force and Weather Agency) dust scheme and GOCART aerosol and gas-phase MOZART (Model for Ozone And Related chemical Tracers) chemistry model to study the long-range transport of aerosols for the period 11 to 15 February 2019 across eastern Australia and onto New Zealand and Antarctica. Wildfires also happened in northern NSW at the same time, and their emissions are taken into account in the WRF-Chem model by using the Fire Inventory from NCAR (FINN) as the emission input. Modelling results using the WRF-Chem model show that for the Canterbury region of the South Island of New Zealand, peak concentration of PM10 (and PM2.5) as measured on 14 February 2019 at 05:00 UTC at the monitoring stations of Geraldine, Ashburton, Timaru and Woolston (Christchurch), and about 2 h later at Rangiora and Kaiapoi, correspond to the prediction of high PM10 due to the intrusion of dust to ground level from the transported dust layer above. The Aerosol Optical Depth (AOD) observation data from MODIS 3 km Terra/Aqua and CALIOP LiDAR measurements on board CALIPSO (Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observations) satellite also indicate that high-altitude dust ranging from 2 km to 6 km, originating from this dust storm event in Australia, was located above Antarctica. This study suggests that the present dust storms in Australia can transport dust from sources in Central Australia to the Tasman sea, New Zealand and Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
7

Staveley-Smith, L., T. M. Potter, G. Zanardo, B. M. Gaensler, and C. Y. Ng. "Radio Observations of Supernova 1987A." Proceedings of the International Astronomical Union 9, S296 (January 2013): 15–22. http://dx.doi.org/10.1017/s1743921313009174.

Full text
Abstract:
AbstractSupernovae and their remnants are believed to be prodigious sources of Galactic cosmic rays and interstellar dust. Understanding the mechanisms behind their surprisingly high production rate is helped by the study of nearby young supernova remnants. There has been none better in modern times than SN1987A, for which radio observations have been made for over a quarter of a century. We review extensive observations made with the Australia Telescope Compact Array (ATCA) at centimetre wavelengths. Emission at frequencies from 1 to 100 GHz is dominated by synchrotron radiation from an outer shock front which has been growing exponentially in strength from day 3000, and is currently sweeping around the circumstellar ring at about 4000 km s−1. Three dimensional models of the propagation of the shock into the circumstellar medium are able to reproduce the main observational features of the remnant, and their evolution. We find that up to 4% of the electrons encountered by the shock are accelerated to relativistic energies. High-frequency ALMA observations will break new ground in the understanding of dust and molecule production.
APA, Harvard, Vancouver, ISO, and other styles
8

Norris, Ray. "Millimetre Continuum Observations of AGNs and IRAS Galaxies." Publications of the Astronomical Society of Australia 13, no. 2 (May 1996): 182. http://dx.doi.org/10.1017/s1323358000020762.

Full text
Abstract:
The 3 mm radio continuum emission from active galaxies consists of three components: (1)Synchrotron emission from the active galactic nucleus (AGN), which is over 1 Jy in 3C273 but which is not significant in most of the types of galaxy considered here.(2)Free–free emission from H II regions. The flux of this in a starburst galaxy is typically of the order of 10 mJy and could be imaged with a 3 mm-capable Australia Telescope Compact Array (ATCA).(3)Emission from the tail of the 50–100 K black-body spectrum of the dust. For example, the dust in Arp 220 (redshift of 0·02) at a temperature of 50 K has a flux of 30 mJy at 3 mm. Interestingly, this flux does not decrease substantially with redshift, as the decrease in brightness is compensated for by the redshifting of the steep edge of the blackbody curve, and so infrared-bright galaxies can be studied up to high redshifts with existing instruments.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Chenglai, Zhaohui Lin, and Xiaohong Liu. "The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models." Atmospheric Chemistry and Physics 20, no. 17 (September 8, 2020): 10401–25. http://dx.doi.org/10.5194/acp-20-10401-2020.

Full text
Abstract:
Abstract. The dust cycle is an important component of the Earth system and has been implemented in climate models and Earth system models (ESMs). An assessment of the dust cycle in these models is vital to address their strengths and weaknesses in simulating dust aerosol and its interactions with the Earth system and enhance the future model developments. This study presents a comprehensive evaluation of the global dust cycle in 15 models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The various models are compared with each other and with an aerosol reanalysis as well as station observations. The results show that the global dust emission in these models varies by a factor of 4–5 for the same size range. The models generally agree with each other and observations in reproducing the “dust belt”, which extends from North Africa, the Middle East, Central and South Asia to East Asia, although they differ greatly in the spatial extent of this dust belt. The models also differ in other dust source regions such as North America and Australia. We suggest that the coupling of dust emission with dynamic vegetation can enlarge the range of simulated dust emission. For the removal process, all the models estimate that wet deposition is smaller than dry deposition and wet deposition accounts for 12 %–39 % of total deposition. The models also estimate that most (77 %–91 %) dust particles are deposited onto continents and 9 %–23 % of dust particles are deposited into oceans. Compared to the observations, most models reproduce the dust deposition and dust concentrations within a factor of 10 at most stations, but larger biases by more than a factor of 10 are also noted at specific regions and for certain models. These results highlight the need for further improvements of the dust cycle especially on dust emission in climate models.
APA, Harvard, Vancouver, ISO, and other styles
10

Norfolk, Brodie J., Sarah T. Maddison, Christophe Pinte, Nienke van der Marel, Richard A. Booth, Logan Francis, Jean-François Gonzalez, et al. "Dust traps and the formation of cavities in transition discs: a millimetre to sub-millimetre comparison survey." Monthly Notices of the Royal Astronomical Society 502, no. 4 (February 9, 2021): 5779–96. http://dx.doi.org/10.1093/mnras/stab313.

Full text
Abstract:
ABSTRACT The origin of the inner dust cavities observed in transition discs remains unknown. The segregation of dust and size of the cavity is expected to vary depending on which clearing mechanism dominates grain evolution. We present the results from the Discs Down Under program, an 8.8-mm continuum Australia Telescope Compact Array (ATCA) survey targeting 15 transition discs with large (≳20 au) cavities and compare the resulting dust emission to Atacama Large millimetre/sub-millimetre Array (ALMA) observations. Our ATCA observations resolve the inner cavity for 8 of the 14 detected discs. We fit the visibilities and reconstruct 1D radial brightness models for 10 sources with a S/N > 5σ. We find that, for sources with a resolved cavity in both wavebands, the 8.8 mm and sub-mm brightness distributions peak at the same radius from the star. We suggest that a similar cavity size for 8.8 mm and sub-mm dust grains is due to a dust trap induced by the presence of a companion.
APA, Harvard, Vancouver, ISO, and other styles
11

Mahowald, N. M., J. A. Ballantine, J. Feddema, and N. Ramankutty. "Global trends in visibility: implications for dust sources." Atmospheric Chemistry and Physics Discussions 7, no. 1 (February 27, 2007): 3013–71. http://dx.doi.org/10.5194/acpd-7-3013-2007.

Full text
Abstract:
Abstract. There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 359 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility derived variables and AERONET optical depths indicate a moderate correlation (~0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or grazing estimates on a temporal basis, although this may be a function of the very coarse temporal resolution of the land use datasets. On the other hand, spatial analysis of the visibility data suggests that natural topographic lows are not correlated with visibility, but land use is correlated at a moderate level. This analysis is consistent with land use being important in some regions, but meteorology driving interannual variability during 1974–2003.
APA, Harvard, Vancouver, ISO, and other styles
12

Mahowald, N. M., J. A. Ballantine, J. Feddema, and N. Ramankutty. "Global trends in visibility: implications for dust sources." Atmospheric Chemistry and Physics 7, no. 12 (June 26, 2007): 3309–39. http://dx.doi.org/10.5194/acp-7-3309-2007.

Full text
Abstract:
Abstract. There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. We did this by looking at time series of visibility derived variables and their correlations with precipitation, drought, winds, land use and grazing. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 357 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility-derived variables and AERONET optical depths indicate a moderate correlation (0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility-derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the Palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility-derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or grazing estimates on a temporal basis, although this may be a function of the very coarse temporal resolution of the land use datasets. On the other hand, spatial analysis of the visibility data suggests that natural topographic lows are not correlated with VIS5 or EXT, but land use is correlated at a moderate level. This analysis is consistent with land use being important in some regions, but meteorology driving interannual variability during 1974–2003.
APA, Harvard, Vancouver, ISO, and other styles
13

Zabel, Nikki, Timothy A. Davis, Matthew W. L. Smith, Marc Sarzi, Alessandro Loni, Paolo Serra, Maritza A. Lara-López, et al. "AlFoCS + F3D – II. Unexpectedly low gas-to-dust ratios in the Fornax galaxy cluster." Monthly Notices of the Royal Astronomical Society 502, no. 4 (February 6, 2021): 4723–42. http://dx.doi.org/10.1093/mnras/stab342.

Full text
Abstract:
ABSTRACT We combine observations from Atacama Large Millimeter/submillimeter Array (ALMA), Australia Telescope Compact Array, Multi Unit Spectroscopic Explorer (MUSE), and Herschel to study gas-to-dust ratios in 15 Fornax cluster galaxies detected in the FIR/sub-mm by Herschel and observed by ALMA as part of the ALMA Fornax Cluster Survey. The sample spans a stellar mass range of 8.3 ≤ log(M⋆/M⊙) ≤ 11.16, and a variety of morphological types. We use gas-phase metallicities derived from MUSE observations (from the Fornax3D survey) to study these ratios as a function of metallicity, and to study dust-to-metal ratios, in a sub-sample of nine galaxies. We find that gas-to-dust ratios in Fornax galaxies are systematically lower than those in field galaxies at fixed stellar mass/metallicity. This implies that a relatively large fraction of the metals in these Fornax systems is locked up in dust, which is possibly due to altered chemical evolution as a result of the dense environment. The low ratios are not only driven by H i deficiencies, but H2-to-dust ratios are also significantly decreased. This is different in the Virgo cluster, where low gas-to-dust ratios inside the virial radius are driven by low H i-to-dust ratios, while H2-to-dust ratios are increased. Resolved observations of NGC 1436 show a radial increase in H2-to-dust ratio, and show that low ratios are present throughout the disc. We propose various explanations for the low H2-to-dust ratios in the Fornax cluster, including the more efficient stripping of H2 compared to dust, more efficient enrichment of dust in the star formation process, and altered interstellar medium physics in the cluster environment.
APA, Harvard, Vancouver, ISO, and other styles
14

Go, Sujung, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, et al. "Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations." Atmospheric Chemistry and Physics 22, no. 2 (January 27, 2022): 1395–423. http://dx.doi.org/10.5194/acp-22-1395-2022.

Full text
Abstract:
Abstract. The iron-oxide content of dust in the atmosphere and most notably its apportionment between hematite (α-Fe2O3) and goethite (α-FeOOH) are key determinants in quantifying dust's light absorption, its top of atmosphere ultraviolet (UV) radiances used for dust monitoring, and ultimately shortwave dust direct radiative effects (DREs). Hematite and goethite column mass concentrations and iron-oxide mass fractions of total dust mass concentration were retrieved from the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) measurements in the ultraviolet–visible (UV–Vis) channels. The retrievals were performed for dust-identified aerosol plumes over land using aerosol optical depth (AOD) and the spectral imaginary refractive index provided by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm over six continental regions (North America, North Africa, West Asia, Central Asia, East Asia, and Australia). The dust particles are represented as an internal mixture of non-absorbing host and absorbing hematite and goethite. We use the Maxwell Garnett effective medium approximation with carefully selected complex refractive indices of hematite and goethite that produce mass fractions of iron-oxide species consistent with in situ values found in the literature to derive the hematite and goethite volumetric/mass concentrations from MAIAC EPIC products. We compared the retrieved hematite and goethite concentrations with in situ dust aerosol mineralogical content measurements, as well as with published data. Our data display variations within the published range of hematite, goethite, and iron-oxide mass fractions for pure-mineral-dust cases. A specific analysis is presented for 15 sites over the main dust-source regions. Sites in the central Sahara, Sahel, and Middle East exhibit a greater temporal variability of iron oxides relative to other sites. The Niger site (13.52∘ N, 2.63∘ E) is dominated by goethite over the Harmattan season with a median of ∼ 2 weight percentage (wt %) of iron oxide. The Saudi Arabia site (27.49∘ N, 41.98∘ E) over the Middle East also exhibited a surge of goethite content with the beginning of the shamal season. The Sahel dust is richer in iron oxide than Saharan and northern China dust except in summer. The Bodélé Depression area shows a distinctively lower iron-oxide concentration (∼ 1 wt %) throughout the year. Finally, we show that EPIC data allow the constraining of the hematite refractive index. Specifically, we select 5 out of 13 different hematite refractive indices that are widely variable in published laboratory studies by constraining the iron-oxide mass ratio to the known measured values. The provided climatology of hematite and goethite mass fractions across the main dust regions of Earth will be useful for dust shortwave DRE studies and climate modeling.
APA, Harvard, Vancouver, ISO, and other styles
15

Urquhart, J. S., A. L. Busfield, M. G. Hoare, S. L. Lumsden, A. J. Clarke, T. J. T. Moore, J. C. Mottram, and R. D. Oudmaijer. "The RMS survey: radio observations of candidate massive YSOs in the southern hemisphere." Proceedings of the International Astronomical Union 2, S237 (August 2006): 482. http://dx.doi.org/10.1017/s1743921307002700.

Full text
Abstract:
AbstractThe Red MSX Source (RMS) survey (Hoare et al. 2005) is a multi-wavelength programme of follow-up observations designed to distinguish between genuine massive young stellar objects (MYSOs) and other embedded or dusty objects, such as ultra compact (UC) HII regions, evolved stars and planetary nebulae (PNe). We have identified nearly 2000 MYSOs candidates by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. There are several other types of embedded or dust enshrouded objects that have similar colours as MYSOs and contaminate our sample. Two sources of contamination are from UCHII regions and PNe, both of which can be identified from the radio emission emitted by their ionised nebulae. In order to identify UCHII regions and PNe that contaminate our sample we have conducted high resolution radio continuum observations at 3.6 and 6 cm of all southern MYSOs candidates (235° < l < 350°) using the Australia Telescope Compact Array (ATCA).
APA, Harvard, Vancouver, ISO, and other styles
16

Strzelec, Michal, Bernadette C. Proemse, Leon A. Barmuta, Melanie Gault-Ringold, Maximilien Desservettaz, Philip W. Boyd, Morgane M. G. Perron, Robyn Schofield, and Andrew R. Bowie. "Atmospheric Trace Metal Deposition from Natural and Anthropogenic Sources in Western Australia." Atmosphere 11, no. 5 (May 7, 2020): 474. http://dx.doi.org/10.3390/atmos11050474.

Full text
Abstract:
Aerosols from Western Australia supply micronutrient trace elements including Fe into the western shelf of Australia and further afield into the Southern and Indian Oceans. However, regional observations of atmospheric trace metal deposition are limited. Here, we applied a series of leaching experiments followed by total analysis of bulk aerosol samples to a unique time-series of aerosol samples collected in Western Australia to determine atmospheric concentrations and solubilities of Fe and V, Mn, Co, Zn, and Pb. Positive matrix factorisation analysis indicated that mineral dust, biomass burning particulates, sea salt, and industrial emissions were the major types of aerosols. Overall, natural sources dominated Fe deposition. Higher atmospheric concentrations of mineral dust (sixfold) and biomass burning emissions were observed in warmer compared to cooler months. The fraction of labile Fe (0.6–6.0%) was lower than that reported for other regions of Australia. Bushfire emissions are a temporary source of labile Fe and may cause a peak in the delivery of its more easily available forms to the ocean. Increased labile Fe deposition may result in higher ocean productivity in regions where Fe is limiting, and the effect of aerosol deposition on ocean productivity in this region requires further study.
APA, Harvard, Vancouver, ISO, and other styles
17

Betzler, Alberto S., and Orahcio F. de Sousa. "Photometric BVR Observations of (65803) Didymos after DART." Research Notes of the AAS 6, no. 12 (December 16, 2022): 269. http://dx.doi.org/10.3847/2515-5172/acab68.

Full text
Abstract:
Abstract The near-Earth binary asteroid Didymos was observed by robotic telescopes in Australia, Chile, and the United States three to five weeks after its impact with the DART spacecraft. The B − R spectral slope of the Didymos system was 13% ± 1%/100 nm, redder than that of the Sun, active comets, and its previously measured colors. The dust cloud around the Didymos system caused a mean drop of 0.29 ± 0.08 mag and had an optical thickness of 0.27 ± 0.07, based on observations from October 27.743 and 28.740 UT. The mean FWHM of the photometric profile of the Didymos system was 1.1 ± 0.1 larger than that of the unsaturated field stars in the R band during our observing campaign. According to our results, the B − R color index was the best parameter to detect the activity of this asteroid in the visible range.
APA, Harvard, Vancouver, ISO, and other styles
18

Lee, Haeju, and Sung Hoon Park. "Stepwise Assessment of Different Saltation Theories in Comparison with Field Observation Data." Atmosphere 11, no. 1 (December 20, 2019): 10. http://dx.doi.org/10.3390/atmos11010010.

Full text
Abstract:
Wind-blown dust models use input data, including soil conditions and meteorology, to interpret the multi-step wind erosion process and predict the quantity of dust emission. Therefore, the accuracy of the wind-blown dust models is dependent on the accuracy of each input condition and the robustness of the model schemes for each elemental step of wind erosion. A thorough evaluation of a wind-blown model thus requires validation of the input conditions and the elemental model schemes. However, most model evaluations and intercomparisons have focused on the final output of the models, i.e., the vertical dust emission. Recently, a delicate set of measurement data for saltation flux and friction velocity was reported from the Japan-Australia Dust Experiment (JADE) Project, which enabled the step-by-step evaluation of wind-blown dust models up to the saltation step. When all the input parameters were provided from the observations, both the two widely used saltation schemes showed very good agreement with measurements, with the correlation coefficient and the agreement of index both being larger than 0.9, which demonstrated the strong robustness of the physical schemes for saltation. However, using the meteorology model to estimate the input conditions such as weather and soil conditions, considerably degraded the models’ performance. The critical reason for the model failure was determined to be the inaccuracy in the estimation of the threshold friction velocity (representing soil condition), followed by inaccurate estimation of surface wind speed. It was not possible to determine which of the two saltation schemes was superior, based on the present study results. Such differentiation will require further evaluation studies using more measurements of saltation flux and vertical dust emissions.
APA, Harvard, Vancouver, ISO, and other styles
19

Morganti, R., A. Pizzella, E. M. Sadler, and F. Bertola. "HI in the Dusty Elliptical Galaxy NGC 5266." Publications of the Astronomical Society of Australia 12, no. 2 (August 1995): 143–45. http://dx.doi.org/10.1017/s1323358000020178.

Full text
Abstract:
AbstractRecent observations with the Australia Telescope Compact Array show that the elliptical galaxy NGC 5266 has a disk of neutral hydrogen extending to almost 10Re. This HI disk lies along the galaxy’s major axis, at right angles to the inner minor-axis dust lane. The geometry and kinematics of the gas will allow us to determine both the intrinsic shape of the stellar galaxy and the mass distribution. The mass-to-light ratio M/LB rises from about 2 in the central regions to ~12 at 9Re (H0 = 50km s−1 Mpc−1).
APA, Harvard, Vancouver, ISO, and other styles
20

Hammer, Melanie S., Randall V. Martin, Chi Li, Omar Torres, Max Manning, and Brian L. Boys. "Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI Ultraviolet Aerosol Index." Atmospheric Chemistry and Physics 18, no. 11 (June 8, 2018): 8097–112. http://dx.doi.org/10.5194/acp-18-8097-2018.

Full text
Abstract:
Abstract. Observations of aerosol scattering and absorption offer valuable information about aerosol composition. We apply a simulation of the Ultraviolet Aerosol Index (UVAI), a method of detecting aerosol absorption from satellite observations, to interpret UVAI values observed by the Ozone Monitoring Instrument (OMI) from 2005 to 2015 to understand global trends in aerosol composition. We conduct our simulation using the vector radiative transfer model VLIDORT with aerosol fields from the global chemical transport model GEOS-Chem. We examine the 2005–2015 trends in individual aerosol species from GEOS-Chem and apply these trends to the UVAI simulation to calculate the change in simulated UVAI due to the trends in individual aerosol species. We find that global trends in the UVAI are largely explained by trends in absorption by mineral dust, absorption by brown carbon, and scattering by secondary inorganic aerosol. Trends in absorption by mineral dust dominate the simulated UVAI trends over North Africa, the Middle East, East Asia, and Australia. The UVAI simulation resolves observed negative UVAI trends well over Australia, but underestimates positive UVAI trends over North Africa and Central Asia near the Aral Sea and underestimates negative UVAI trends over East Asia. We find evidence of an increasing dust source from the desiccating Aral Sea that may not be well represented by the current generation of models. Trends in absorption by brown carbon dominate the simulated UVAI trends over biomass burning regions. The UVAI simulation reproduces observed negative trends over central South America and West Africa, but underestimates observed UVAI trends over boreal forests. Trends in scattering by secondary inorganic aerosol dominate the simulated UVAI trends over the eastern United States and eastern India. The UVAI simulation slightly overestimates the observed positive UVAI trends over the eastern United States and underestimates the observed negative UVAI trends over India. Quantitative simulation of the OMI UVAI offers new insight into global trends in aerosol composition.
APA, Harvard, Vancouver, ISO, and other styles
21

Lowe, Vicki, Maria R. Cunningham, James S. Urquhart, and Shinji Horiuchi. "Ammonia towards dust clumps in the giant molecular cloud associated with RCW 106." Proceedings of the International Astronomical Union 8, S292 (August 2012): 50. http://dx.doi.org/10.1017/s1743921313000318.

Full text
Abstract:
AbstractHigh-mass stars are known to be born within giant molecular clouds (GMCs); However, the exact processes involved in forming a high-mass star are still not well understood. It is clear that high-mass stars do not form in isolation, and that the processes surrounding high-mass star formation may affect the environment of the entire molecular cloud. We are studying the GMC associated with RCW 106 (G333), which is one of the most active massive-star formation regions in the Galactic plane. This GMC, located at l = 333° b = − 0.5°, has been mapped in over 20 molecular line transitions with the Mopra radio telescope (83-110 GHz), in Australia, and with the Swedish-ESO Submillimeter Telescope (SEST) in the 1.2 mm cool dust continuum. The region is also within the Spitzer GLIMPSE infrared survey (3.6, 4.5, 5.8, and 8.0 μm) area. We have decomposed the dust continuum using a clump-finding algorithm (CLUMPFIND), and are using the multiple molecular line traditions from the Mopra radio telescope to classify the type and stage of star formation taking place therein. Having accurate physical temperatures of the star forming clumps is essential to constrain other parameters to within useful limits. To achieve this, we have obtained pointed NH3 observations from the Tidbinbilla 70-m radio telescope, in Australia, towards these clumps.
APA, Harvard, Vancouver, ISO, and other styles
22

Motogi, Kazuhito, Tomoya Hirota, Kazuo Sorai, Yoshinori Yonekura, Koichiro Sugiyama, Mareki Honma, Kotaro Niinuma, Kazuya Hachisuka, Kenta Fujisawa, and Andrew J. Walsh. "A Face-on Accretion System in High Mass Star-Formation: Possible Dusty Infall Streams within 100 Astronomical Unit." Proceedings of the International Astronomical Union 13, S336 (September 2017): 267–70. http://dx.doi.org/10.1017/s1743921317010973.

Full text
Abstract:
AbstractWe report on interferometric observations of a face-on accretion system around the high mass young stellar object, G353.273+0.641. The innermost accretion system of 100-au radius was resolved in a 45-GHz continuum image taken with the Jansky Very Large Array. Our SED analysis indicated that the continuum could be explained by optically-thick dust emission. 6.7 GHz CH3OH masers associated with the same system were also observed with the Australia Telescope Compact Array. The masers showed a spiral-like, non-axisymmetric distribution with a systematic velocity gradient. The line-of-sight velocity field is explained by an infall motion along a parabolic streamline that falls onto the equatorial plane of the face-on system. The streamline is quasi-radial and reaches the equatorial plane at a radius of 16 au. The physical origin of such a streamline is still an open question and will be constrained by the higher-resolution thermal continuum and line observations with ALMA long baselines.
APA, Harvard, Vancouver, ISO, and other styles
23

Foth, Andreas, Thomas Kanitz, Ronny Engelmann, Holger Baars, Martin Radenz, Patric Seifert, Boris Barja, Michael Fromm, Heike Kalesse, and Albert Ansmann. "Vertical aerosol distribution in the southern hemispheric midlatitudes as observed with lidar in Punta Arenas, Chile (53.2° S and 70.9° W), during ALPACA." Atmospheric Chemistry and Physics 19, no. 9 (May 10, 2019): 6217–33. http://dx.doi.org/10.5194/acp-19-6217-2019.

Full text
Abstract:
Abstract. Within this publication, lidar observations of the vertical aerosol distribution above Punta Arenas, Chile (53.2∘ S and 70.9∘ W), which have been performed with the Raman lidar PollyXT from December 2009 to April 2010, are presented. Pristine marine aerosol conditions related to the prevailing westerly circulation dominated the measurements. Lofted aerosol layers could only be observed eight times during the whole measurement period. Two case studies are presented showing long-range transport of smoke from biomass burning in Australia and regionally transported dust from the Patagonian Desert, respectively. The aerosol sources are identified by trajectory analyses with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and FLEXible PARTicle dispersion model (FLEXPART). However, seven of the eight analysed cases with lofted layers show an aerosol optical thickness of less than 0.05. From the lidar observations, a mean planetary boundary layer (PBL) top height of 1150 ± 350 m was determined. An analysis of particle backscatter coefficients confirms that the majority of the aerosol is attributed to the PBL, while the free troposphere is characterized by a very low background aerosol concentration. The ground-based lidar observations at 532 and 1064 nm are supplemented by the Aerosol Robotic Network (AERONET) Sun photometers and the space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The averaged aerosol optical thickness (AOT) determined by CALIOP was 0.02 ± 0.01 in Punta Arenas from 2009 to 2010.
APA, Harvard, Vancouver, ISO, and other styles
24

Breen, S. L., S. P. Ellingsen, M. Johnston-Hollitt, S. Wotherspoon, I. Bains, M. G. Burton, M. Cunningham, N. Lo, C. E. Senkbeil, and T. Wong. "Water masers within the G 333.2–0.6 giant molecular cloud." Proceedings of the International Astronomical Union 3, S242 (March 2007): 144–45. http://dx.doi.org/10.1017/s1743921307012720.

Full text
Abstract:
AbstractWe report the results of a blind search for 22 GHz water masers in two regions, covering approximately half a square degree, within the G 333.2–0.6 giant molecular cloud. The complete search of the two regions was carried out with the 26 m Mount Pleasant radio telescope and resulted in the detection of nine water masers, five of which are new detections. Australia Telescope Compact Array (ATCA) observations of these detections have allowed us to obtain positions with arcsecond accuracy, allowing meaningful comparison with infrared and molecular data for the region. We find that for the regions surveyed there are more water masers than either 6.7 GHz methanol, or main-line OH masers. The water masers are concentrated towards the central axis of the star formation region, in contrast to the 6.7 GHz methanol masers which tend to be located near the periphery. The colours of the GLIMPSE point sources associated with the water masers are slightly less red than those associated with methanol masers. Statistical investigation of the properties of the 13CO and 1.2 mm dust clumps with and without associated water masers shows that the water masers are associated with the more massive, denser and brighter 13CO and 1.2 mm dust clumps. We present statistical models that can predict those 13CO and 1.2 mm dust clumps likely to have associated water masers.
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Dongwei, Masahide Ishizuka, Masao Mikami, and Yaping Shao. "Turbulent characteristics of saltation and uncertainty of saltation model parameters." Atmospheric Chemistry and Physics 18, no. 10 (May 31, 2018): 7595–606. http://dx.doi.org/10.5194/acp-18-7595-2018.

Full text
Abstract:
Abstract. It is widely recognised that saltation is a turbulent process, similar to other transport processes in the atmospheric boundary layer. Due to a lack of high-frequency observations, the statistic behaviour of saltation is so far not well understood. In this study, we use the data from the Japan–Australia Dust Experiment (JADE) to investigate the turbulent characteristics of saltation by analysing the probability density function, energy spectrum and intermittency of saltation fluxes. Threshold friction velocity, u*t, and saltation coefficient, c0, are two important parameters in saltation models often assumed to be deterministic. As saltation is turbulent in nature, we argue that it is more reasonable to consider them as parameters obeying certain probability distributions. We estimate these distributions using the JADE data. The factors contributing to the stochasticity of u*t and c0 are examined.
APA, Harvard, Vancouver, ISO, and other styles
26

Rousseau, D. D., M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine. "Major dust events in Europe during marine isotope stage 5 (130–74 ka): a climatic interpretation of the "markers"." Climate of the Past Discussions 9, no. 3 (May 2, 2013): 2235–76. http://dx.doi.org/10.5194/cpd-9-2235-2013.

Full text
Abstract:
Abstract. At present, major dust storms are occurring at mid-latitudes in the Middle East and Asia, as well as at low latitudes in northern Africa and in Australia. Western Europe, though, does not experience such dramatic climate events, except for some African dust reaching it from the Sahara. This modern situation is of particular interest, in the context of future climate projections, since the present interglacial is usually interpreted, in this context, as an analog of the warm Eemian interval. European terrestrial records show, however, major dust events during the penultimate interglacial and early glacial. These events are easily observed in loess records by their whitish-color deposits, which lie above and below dark chernozem paleosols in Central European records of Marine Isotope Stage (MIS) 5 age. We describe here the base of the Dolni Vestonice (DV) loess sequence, Czech Republic, as the reference of such records. The dust is deposited during intervals that are characterized by poor vegetation – manifested by high δ13C values and low magnetic susceptibility – while the fine sand and clay in the deposits shows grain sizes that are clearly different from the overlying pleniglacial loess deposits. Some of these dust events have been previously described as "Markers" or Marker Silts (MS) by one of us (G. Kukla), and are dated at about 111–109 and 93–92 ka, with a third and last one slightly visible at about 75–73 ka. Other events correspond to the loess material of Kukla's cycles, and are described as eolian silts (ES); they are observed in the same DV sequence and are dated at about 106–105, 88–86, and 78.5–77 ka. The fine eolian deposits mentioned above, MS as well as ES, correspond to short events that lasted about 2 ka; they are synchronous with re-advances of the polar front over the North Atlantic, as observed in marine sediment cores. These deposits also correlate with important changes observed in European vegetation. Some ES and MS events appear to be coeval with significant dust peaks recorded in the Greenland ice cores, while others are not. This decoupling between the European eolian and Greenland dust depositions is of considerable interest, as it differs from the fully glacial situation, in which the Eurasian loess sedimentation mimics the Greenland dust record. Previous field observations supported an interpretation of MS events as caused by continental dust storms. We show here, by a comparison with speleothems of the same age found in the northern Alps, that different atmospheric-circulation modes seem to be responsible for the two categories of dust events, MS vs. ES.
APA, Harvard, Vancouver, ISO, and other styles
27

Rousseau, D. D., M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine. "Major dust events in Europe during marine isotope stage 5 (130–74 ka): a climatic interpretation of the "markers"." Climate of the Past 9, no. 5 (September 26, 2013): 2213–30. http://dx.doi.org/10.5194/cp-9-2213-2013.

Full text
Abstract:
Abstract. At present, major dust storms are occurring at mid-latitudes in the Middle East and Asia, as well as at low latitudes in Northern Africa and in Australia. Western Europe, though, does not experience such dramatic climate events, except for some African dust reaching it from the Sahara. This modern situation is of particular interest, in the context of future climate projections, since the present interglacial is usually interpreted, in this context, as an analog of the warm Eemian interval. European terrestrial records show, however, major dust events during the penultimate interglacial and early glacial. These events are easily observed in loess records by their whitish-color deposits, which lie above and below dark chernozem paleosols in Central European records of Marine Isotope Stage (MIS) 5 age. We describe here the base of the Dolni Vestonice (DV) loess sequence, Czech Republic, as the reference of such records. The dust is deposited during intervals that are characterized by poor vegetation – manifested by high δ13C values and low magnetic susceptibility – while the fine sand and clay in the deposits shows grain sizes that are clearly different from the overlying pleniglacial loess deposits. Some of these dust events have been previously described as "Markers" or Marker Silts (MS) by one of us (G. Kukla), and are dated at about 111–109 ka and 93–92 ka, with a third and last one slightly visible at about 75–73 ka. Other events correspond to the loess material of Kukla's cycles, and are described as eolian silts (ES); they are observed in the same DV sequence and are dated at about 106–105 ka, 88–86 ka, and 78.5–77 ka. These dates are determined by considering the OSL ages with their errors measured on the studied sequence, and the comparison with Greenland ice-core and European speleothem chronologies. The fine eolian deposits mentioned above, MS as well as ES, correspond to short events that lasted about 2 ka; they are synchronous with re-advances of the polar front over the North Atlantic, as observed in marine sediment cores. These deposits also correlate with important changes observed in European vegetation. Some ES and MS events appear to be coeval with significant dust peaks recorded in the Greenland ice cores, while others are not. This decoupling between the European eolian and Greenland dust depositions is of considerable interest, as it differs from the fully glacial situation, in which the Eurasian loess sedimentation mimics the Greenland dust record. Previous field observations supported an interpretation of MS events as caused by continental dust storms. We show here, by a comparison with speleothems of the same age found in the northern Alps, that different atmospheric-circulation modes seem to be responsible for the two categories of dust events, MS vs. ES.
APA, Harvard, Vancouver, ISO, and other styles
28

El Amraoui, Laaziz, Matthieu Plu, Vincent Guidard, Flavien Cornut, and Mickaël Bacles. "A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model." Remote Sensing 14, no. 8 (April 18, 2022): 1949. http://dx.doi.org/10.3390/rs14081949.

Full text
Abstract:
In this study we present a pre-operational forecasting assimilation system of different types of aerosols. This system has been developed within the chemistry-transport model of Météo-France, MOCAGE, and uses the assimilation of the Aerosol Optical Depth (AOD) from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard both Terra and Aqua. It is based on the AOD assimilation system within the MOCAGE model. It operates on a daily basis with a global configuration of 1∘×1∘ (longitude × latitude). The motivation of such a development is the capability to predict and anticipate extreme events and their impacts on the air quality and the aviation safety in the case of a huge volcanic eruption. The validation of the pre-operational system outputs has been done in terms of AOD compared against the global AERONET observations within two complete years (January 2018–December 2019). The comparison between both datasets shows that the correlation between the MODIS assimilated outputs and AERONET over the whole period of study is 0.77, whereas the biases and the RMSE (Root Mean Square Error) are 0.006 and 0.135, respectively. The ability of the pre-operational system to predict extreme events in near real time such as the desert dust transport and the propagation of the biomass burning was tested and evaluated. We particularly presented and documented the desert dust outbreak which occurred over Greece in late March 2018 as well as the wildfire event which happened on Australia between July 2019 and February 2020. We only presented these two events, but globally the assimilation chain has shown that it is capable of predicting desert dust events and biomass burning aerosols which happen all over the globe.
APA, Harvard, Vancouver, ISO, and other styles
29

Floutsi, Athena Augusta, Holger Baars, Martin Radenz, Moritz Haarig, Zhenping Yin, Patric Seifert, Cristofer Jimenez, et al. "Advection of Biomass Burning Aerosols towards the Southern Hemispheric Mid-Latitude Station of Punta Arenas as Observed with Multiwavelength Polarization Raman Lidar." Remote Sensing 13, no. 1 (January 4, 2021): 138. http://dx.doi.org/10.3390/rs13010138.

Full text
Abstract:
In this paper, we present long-term observations of the multiwavelength Raman lidar PollyXT conducted in the framework of the DACAPO-PESO campaign. Regardless of the relatively clean atmosphere in the southern mid-latitude oceans region, we regularly observed events of long-range transported smoke, originating either from regional sources in South America or from Australia. Two case studies will be discussed, both identified as smoke events that occurred on 5 February 2019 and 11 March 2019. For the first case considered, the lofted smoke layer was located at an altitude between 1.0 and 4.2 km, and apart from the predominance of smoke particles, particle linear depolarization values indicated the presence of dust particles. Mean lidar ratio values at 355 and 532 nm were 49 ± 12 and 24 ± 18 sr respectively, while the mean particle linear depolarization was 7.6 ± 3.6% at 532 nm. The advection of smoke and dust particles above Punta Arenas affected significantly the available cloud condensation nuclei (CCN) and ice nucleating particles (INP) in the lower troposphere, and effectively triggered the ice crystal formation processes. Regarding the second case, the thin smoke layers were observed at altitudes 5.5–7.0, 9.0 and 11.0 km. The particle linear depolarization ratio at 532 nm increased rapidly with height, starting from 2% for the lowest two layers and increasing up to 9.5% for the highest layer, indicating the possible presence of non-spherical coated soot aggregates. INP activation was effectively facilitated. The long-term analysis of the one year of observations showed that tropospheric smoke advection over Punta Arenas occurred 16 times (lasting from 1 to 17 h), regularly distributed over the period and with high potential to influence cloud formation in the otherwise pristine environment of the region.
APA, Harvard, Vancouver, ISO, and other styles
30

Galluzzi, V., G. Puglisi, S. Burkutean, E. Liuzzo, M. Bonato, M. Massardi, R. Paladino, et al. "ALMA Band 3 polarimetric follow-up of a complete sample of faint PACO sources." Monthly Notices of the Royal Astronomical Society 489, no. 1 (July 17, 2019): 470–86. http://dx.doi.org/10.1093/mnras/stz1930.

Full text
Abstract:
Abstract We present Atacama Large Millimetre/submillimiter Array (ALMA) high sensitivity ($\sigma _\mathrm{ P} \simeq 0.4\,$ mJy) polarimetric observations at $97.5\,$ GHz (Band 3) of a complete sample of 32 extragalactic radio sources drawn from the faint Planck–ATCA Co-eval Observations (PACO) sample (b &lt; −75°, compact sources brighter than $200\,$ mJy at $20\,$ GHz). We achieved a detection rate of $~97\, {\rm per\, cent}$ at $3\, \sigma$ (only 1 non-detection). We complement these observations with new Australia Telescope Compact Array (ATCA) data between 2.1 and $35\,$GHz obtained within a few months and with data published in earlier papers from our collaboration. Adding the co-eval GaLactic and Extragalactic All-sky Murchison widefield array (GLEAM) survey detections between $70\,$ and $230\,$ MHz for our sources, we present spectra over more than 3 decades in frequency in total intensity and over about 1.7 decades in polarization. The spectra of our sources are smooth over the whole frequency range, with no sign of dust emission from the host galaxy at mm wavelengths or of a sharp high frequency decline due, for example, to electron ageing. We do however find indications of multiple emitting components and present a classification based on the number of detected components. We analyse the polarization fraction behaviour and distributions up to $97\,$ GHz for different source classes. Source counts in polarization are presented at $95\,$ GHz.
APA, Harvard, Vancouver, ISO, and other styles
31

Pizzella, A., R. Morganti, M. E. Sadler, and F. Bertola. "The Dark Massive Halo in the Elliptical Galaxy NGC 5266." Symposium - International Astronomical Union 164 (1995): 446. http://dx.doi.org/10.1017/s0074180900109581.

Full text
Abstract:
Recent observations with the Australia Telescope reveal that the elliptical galaxy NGC 5266 has a disk like structure of neutral hydrogen extending as far as almost 10 Re which approximatively lies along the galaxy's major axis, at 65° apart from the inner minor–axis dust lane (Varnas et al 1987). From the present data is not clear whether the HI structure and the dust lane are two distinct disks or a single warped structure. The regularity of the velocity field of the HI structure allow us to use it as a probe of the potential of NGC 5266. The velocity curve along the major axis is flat till the last measured point (rmax ~ 10′) at Vrot = 200km/s. Assuming that the gas in moving in circular orbits, we can derive the mass of the galaxy inside to this radius. The mass–to–light ratio M/LB rises from about 3 in the central regions to 12 at 9 Re (D = 57.6 Mpc), thus indicating that NGC 5266 is embedded in a dark massive halo. Moreover the representative point (cumulative M/LB within the last measured point) of NGC 5266 in the diagram log(M/LB) – log(Re) falls well within the region characteristic of spiral galaxies (Figure 2, Bertola et al. 1993), as do ellipticals previously studied in HI, thus reinforcing the suggestion (Bertola et al. 1993) of a parallel behaviour of the dark matter in elliptical and spiral galaxies.
APA, Harvard, Vancouver, ISO, and other styles
32

Lundqvist, P., N. Lundqvist, C. Vlahakis, C.-I. Björnsson, J. R. Dickel, M. Matsuura, Yu A. Shibanov, D. A. Zyuzin, and G. Olofsson. "Atacama Compact Array observations of the pulsar-wind nebula of SNR 0540-69.3." Monthly Notices of the Royal Astronomical Society 496, no. 2 (June 13, 2020): 1834–44. http://dx.doi.org/10.1093/mnras/staa1675.

Full text
Abstract:
ABSTRACT We present observations of the pulsar-wind nebula (PWN) region of SNR 0540-69.3. The observations were made with the Atacama Compact Array (ACA) in Bands 4 and 6. We also add radio observations from the Australia Compact Array at 3 cm. For 1.449–233.50 GHz, we obtain a synchrotron spectrum $F_{\nu } \propto \nu ^{-\alpha _{\nu }}$, with the spectral index αν = 0.17 ± 0.02. To conclude how this joins the synchrotron spectrum at higher frequencies, we include hitherto unpublished AKARI mid-infrared data, and evaluate published data in the ultraviolet (UV), optical, and infrared (IR). In particular, some broad-band filter data in the optical must be discarded from our analysis due to contamination by spectral line emission. For the UV/IR part of the synchrotron spectrum, we arrive at $\alpha _{\nu } = 0.87^{+0.08}_{-0.10}$. There is room for 2.5 × 10−3 M⊙ of dust with a temperature of ∼55 K if there are dual breaks in the synchrotron spectrum, one around ∼9 × 1010 Hz and another at ∼2 × 1013 Hz. The spectral index then changes at ∼9 × 1010 Hz from αν = 0.14 ± 0.07 in the radio to $\alpha _{\nu } = 0.35^{-0.07}_{+0.05}$ in the millimetre-to-far-IR range. The ACA Band 6 data marginally resolve the PWN. In particular, the strong emission $\text{$\sim$} 1\hbox{$.\!\!^{\prime \prime }$}5$ south-west of the pulsar, seen at other wavelengths, and resolved in the 3 cm data with its 0.″8 spatial resolution, is also strong in the millimetre range. The ACA data clearly reveal the supernova remnant shell ∼20–35 arcsec west of the pulsar, and for the shell we derive αν = 0.64 ± 0.05 for the range 8.6–145 GHz.
APA, Harvard, Vancouver, ISO, and other styles
33

Di Biagio, Claudia, Paola Formenti, Yves Balkanski, Lorenzo Caponi, Mathieu Cazaunau, Edouard Pangui, Emilie Journet, et al. "Global scale variability of the mineral dust long-wave refractive index: a new dataset of in situ measurements for climate modeling and remote sensing." Atmospheric Chemistry and Physics 17, no. 3 (February 9, 2017): 1901–29. http://dx.doi.org/10.5194/acp-17-1901-2017.

Full text
Abstract:
Abstract. Modeling the interaction of dust with long-wave (LW) radiation is still a challenge because of the scarcity of information on the complex refractive index of dust from different source regions. In particular, little is known about the variability of the refractive index as a function of the dust mineralogical composition, which depends on the specific emission source, and its size distribution, which is modified during transport. As a consequence, to date, climate models and remote sensing retrievals generally use a spatially invariant and time-constant value for the dust LW refractive index. In this paper, the variability of the mineral dust LW refractive index as a function of its mineralogical composition and size distribution is explored by in situ measurements in a large smog chamber. Mineral dust aerosols were generated from 19 natural soils from 8 regions: northern Africa, the Sahel, eastern Africa and the Middle East, eastern Asia, North and South America, southern Africa, and Australia. Soil samples were selected from a total of 137 available samples in order to represent the diversity of sources from arid and semi-arid areas worldwide and to account for the heterogeneity of the soil composition at the global scale. Aerosol samples generated from soils were re-suspended in the chamber, where their LW extinction spectra (3–15 µm), size distribution, and mineralogical composition were measured. The generated aerosol exhibits a realistic size distribution and mineralogy, including both the sub- and super-micron fractions, and represents in typical atmospheric proportions the main LW-active minerals, such as clays, quartz, and calcite. The complex refractive index of the aerosol is obtained by an optical inversion based upon the measured extinction spectrum and size distribution. Results from the present study show that the imaginary LW refractive index (k) of dust varies greatly both in magnitude and spectral shape from sample to sample, reflecting the differences in particle composition. In the 3–15 µm spectral range, k is between ∼ 0.001 and 0.92. The strength of the dust absorption at ∼ 7 and 11.4 µm depends on the amount of calcite within the samples, while the absorption between 8 and 14 µm is determined by the relative abundance of quartz and clays. The imaginary part (k) is observed to vary both from region to region and for varying sources within the same region. Conversely, for the real part (n), which is in the range 0.84–1.94, values are observed to agree for all dust samples across most of the spectrum within the error bars. This implies that while a constant n can be probably assumed for dust from different sources, a varying k should be used both at the global and the regional scale. A linear relationship between the magnitude of the imaginary refractive index at 7.0, 9.2, and 11.4 µm and the mass concentration of calcite and quartz absorbing at these wavelengths was found. We suggest that this may lead to predictive rules to estimate the LW refractive index of dust in specific bands based on an assumed or predicted mineralogical composition, or conversely, to estimate the dust composition from measurements of the LW extinction at specific wavebands. Based on the results of the present study, we recommend that climate models and remote sensing instruments operating at infrared wavelengths, such as IASI (infrared atmospheric sounder interferometer), use regionally dependent refractive indices rather than generic values. Our observations also suggest that the refractive index of dust in the LW does not change as a result of the loss of coarse particles by gravitational settling, so that constant values of n and k could be assumed close to sources and following transport. The whole dataset of the dust complex refractive indices presented in this paper is made available to the scientific community in the Supplement.
APA, Harvard, Vancouver, ISO, and other styles
34

Zeng, Xiping, Wei-Kuo Tao, Scott W. Powell, Robert A. Houze, Paul Ciesielski, Nick Guy, Harold Pierce, and Toshihisa Matsui. "A Comparison of the Water Budgets between Clouds from AMMA and TWP-ICE." Journal of the Atmospheric Sciences 70, no. 2 (February 1, 2013): 487–503. http://dx.doi.org/10.1175/jas-d-12-050.1.

Full text
Abstract:
Abstract Two field campaigns, the African Monsoon Multidisciplinary Analysis (AMMA) and the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), took place in 2006 near Niamey, Niger, and Darwin, Northern Territory, Australia, providing extensive observations of mesoscale convective systems (MCSs) near a desert and a tropical coast, respectively. Under the constraint of their observations, three-dimensional cloud-resolving model simulations are carried out and presented in this paper to replicate the basic characteristics of the observed MCSs. All of the modeled MCSs exhibit a distinct structure having deep convective clouds accompanied by stratiform and anvil clouds. In contrast to the approximately 100-km-scale MCSs observed in TWP-ICE, the MCSs in AMMA have been successfully simulated with a scale of about 400 km. These modeled AMMA and TWP-ICE MCSs offer an opportunity to understand the structure and mechanism of MCSs. Comparing the water budgets between AMMA and TWP-ICE MCSs suggests that TWP-ICE convective clouds have stronger ascent while the mesoscale ascent outside convective clouds in AMMA is stronger. A case comparison, with the aid of sensitivity experiments, also suggests that vertical wind shear and ice crystal (or dust aerosol) concentration can significantly impact stratiform and anvil clouds (e.g., their areas) in MCSs. In addition, the obtained water budgets quantitatively describe the transport of water between convective, stratiform, and anvil regions as well as water sources/sinks from microphysical processes, providing information that can be used to help determine parameters in the convective and cloud parameterizations in general circulation models (GCMs).
APA, Harvard, Vancouver, ISO, and other styles
35

Sefako, Ramotholo. "Session 21.3 – Radio and Optical Site Protection." Proceedings of the International Astronomical Union 11, A29A (August 2015): 453–62. http://dx.doi.org/10.1017/s1743921316003598.

Full text
Abstract:
AbstractAdvancement in radio technology means that radio astronomy has to share the radio spectrum with many other non-astronomical activities, majority of which increase radio frequency interference (RFI), and therefore detrimentally affecting the radio observations at the observatory sites. Major radio facilities such as the SKA, in both South Africa and Australia, and the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China will be very sensitive, and therefore require protection against RFI.In the case of optical astronomy, the growing urbanisation and industrialisation led to optical astronomy becoming impossible near major cities due to light and dust pollution. Major optical and IR observatories are forced to be far away in remote areas, where light pollution is not yet extreme. The same is true for radio observatories, which have to be sited away from highly RFI affected areas near populated regions and major cities.In this review, based on the Focus Meeting 21 (FM21) oral presentations at the IAU General Assembly on 11 August 2015, we give an overview of the mechanisms that have evolved to provide statutory protection for radio astronomy observing, successes (e.g at 21 cm HI line), defeats and challenges at other parts of the spectrum. We discuss the available legislative initiatives to protect the radio astronomy sites for large projects like SKA (in Australia and South Africa), and FAST against the RFI. For optical protection, we look at light pollution with examples of its effect at Xinglong observing station of the National Astronomical Observatories of China (NAOC), Ali Observatory in Tibet, and Asiago Observatory in Italy, as well as the effect of conversion from low pressure sodium lighting to LEDs in the County of Hawaii.
APA, Harvard, Vancouver, ISO, and other styles
36

Steel, Duncan. "Meteoroid Streams." Symposium - International Astronomical Union 160 (1994): 111–26. http://dx.doi.org/10.1017/s0074180900046490.

Full text
Abstract:
Meteoroid streams, producing meteor showers if some part of the stream has a node near 1 AU, have complex structures which are only just beginning to be understood. The old simplistic idea of a narrow loop being formed about the orbit of a parent comet with one, or possibly two, terrestrial intersection(s) is now being replaced by the recognition that their dynamical evolution may render convoluted and distorted ribbon shapes with eight or more distinct showers being generated. As such the streams are excellent tracers of the sorts of orbital evolution which may be undergone by larger objects (asteroids and comets) in the inner solar system; indeed it is now known that objects presently observed as Apollo-type asteroids may also be the progenitors of streams.Searches for showers associated with newly-discovered possible parent objects may be carried out either via the calculation of theoretical meteor radiants (which have hitherto been derived using an untenable method), or through searches of catalogues of individual meteor orbits. In order to accomplish the latter, about 68,000 radar, photographic and TV meteor orbits from various programmes in the U.S.A., the former Soviet Union, Canada and Australia are available from the IAU Meteor Data Center, and more than 350,000 orbits of very faint meteors have been determined over the past three years using a new facility in New Zealand.The discovery amongst IRAS data of dust trails lagging behind comets has opened up a new way in which meteoroid streams may be investigated, although the relationship between these trails and the streams observed as meteor showers at the Earth is by no means clear at this stage. Similarly radar, radio and spacecraft impact observations of meteoroids near cometary nuclei have added to our knowledge.In spite of the improvement in our understanding of meteoroid streams over the past few years it is clear that there is much still to be done. The words of W.F. Denning in 1923 are still pertinent: “Few astronomers occupy themselves with the observation and investigation of meteors, and yet it is an attractive field of work offering inviting prospects of new discoveries”.
APA, Harvard, Vancouver, ISO, and other styles
37

Hallegraeff, Gustaaf, Frank Coman, Claire Davies, Aiko Hayashi, David McLeod, Anita Slotwinski, Lucy Whittock, and Anthony J. Richardson. "Australian Dust Storm Associated with Extensive Aspergillus sydowii Fungal “Bloom” in Coastal Waters." Applied and Environmental Microbiology 80, no. 11 (March 21, 2014): 3315–20. http://dx.doi.org/10.1128/aem.04118-13.

Full text
Abstract:
ABSTRACTA massive central Australian dust storm in September 2009 was associated with abundant fungal spores (150,000/m3) and hyphae in coastal waters between Brisbane (27°S) and Sydney (34°S). These spores were successfully germinated from formalin-preserved samples, and using molecular sequencing of three different genes (the large subunit rRNA gene [LSU], internal transcribed spacer [ITS[, and beta-tubulin gene), they were conclusively identified asAspergillus sydowii, an organism circumstantially associated with gorgonian coral fan disease in the Caribbean. Surprisingly, no human health or marine ecosystem impacts were associated with this Australian dust storm event. Australian fungal cultures were nontoxic to fish gills and caused a minor reduction in the motility ofAlexandriumorChattonellaalgal cultures but had their greatest impacts onSymbiodiniumdinoflagellate coral symbiont motility, with hyphae being more detrimental than spores. While we have not yet seen any soft coral disease outbreaks on the Australian Great Barrier Reef similar to those observed in the Caribbean and while this particular fungal population was non- or weakly pathogenic, our observations raise the possibility of future marine ecosystem pathogen impacts from similar dust storms harboring more pathogenic strains.
APA, Harvard, Vancouver, ISO, and other styles
38

Gliß, Jonas, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, et al. "AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations." Atmospheric Chemistry and Physics 21, no. 1 (January 6, 2021): 87–128. http://dx.doi.org/10.5194/acp-21-87-2021.

Full text
Abstract:
Abstract. Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes. Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1. Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc. Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment. Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models. Considerable inter-model diversity in the simulated optical properties is often found in regions that are, unfortunately, not or only sparsely covered by ground-based observations. This includes, for instance, the Sahara, Amazonia, central Australia, and the South Pacific. This highlights the need for a better site coverage in the observations, which would enable us to better assess the models, but also the performance of satellite products in these regions. Using fine-mode AOD as a proxy for present-day aerosol forcing estimates, our results suggest that models underestimate aerosol forcing by ca. −15 %, however, with a considerably large interquartile range, suggesting a spread between −35 % and +10 %.
APA, Harvard, Vancouver, ISO, and other styles
39

Aragnou, Emilie, Sean Watt, Hiep Nguyen Duc, Cassandra Cheeseman, Matthew Riley, John Leys, Stephen White, et al. "Dust Transport from Inland Australia and Its Impact on Air Quality and Health on the Eastern Coast of Australia during the February 2019 Dust Storm." Atmosphere 12, no. 2 (January 22, 2021): 141. http://dx.doi.org/10.3390/atmos12020141.

Full text
Abstract:
Dust storms originating from Central Australia and western New South Wales frequently cause high particle concentrations at many sites across New South Wales, both inland and along the coast. This study focussed on a dust storm event in February 2019 which affected air quality across the state as detected at many ambient monitoring stations in the Department of Planning, Industry and Environment (DPIE) air quality monitoring network. The WRF-Chem (Weather Research and Forecast Model—Chemistry) model is used to study the formation, dispersion and transport of dust across the state of New South Wales (NSW, Australia). Wildfires also happened in northern NSW at the same time of the dust storm in February 2019, and their emissions are taken into account in the WRF-Chem model by using Fire Inventory from NCAR (FINN) as emission input. The model performance is evaluated and is shown to predict fairly accurate the PM2.5 and PM10 concentration as compared to observation. The predicted PM2.5 concentration over New South Wales during 5 days from 11 to 15 February 2019 is then used to estimate the impact of the February 2019 dust storm event on three health endpoints, namely mortality, respiratory and cardiac disease hospitalisation rates. The results show that even though as the daily average of PM2.5 over some parts of the state, especially in western and north western NSW near the centre of the dust storm and wild fires, are very high (over 900 µg/m3), the population exposure is low due to the sparse population. Generally, the health impact is similar in order of magnitude to that caused by biomass burning events from wildfires or from hazardous reduction burnings (HRBs) near populous centres such as in Sydney in May 2016. One notable difference is the higher respiratory disease hospitalisation for this dust event (161) compared to the fire event (24).
APA, Harvard, Vancouver, ISO, and other styles
40

Haverd, V., M. R. Raupach, P. R. Briggs, S. J. Davis, R. M. Law, C. P. Meyer, G. P. Peters, C. Pickett-Heaps, and B. Sherman. "The Australian terrestrial carbon budget." Biogeosciences 10, no. 2 (February 7, 2013): 851–69. http://dx.doi.org/10.5194/bg-10-851-2013.

Full text
Abstract:
Abstract. This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP); net ecosystem production (NEP); fire; land use change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012), a fine-spatial-resolution (0.05°) offline modelling environment in which predictions of CABLE (Wang et al., 2011), a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 &amp;pm; 24 (1σ error on mean) and 68 &amp;pm; 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 26 &amp;pm; 4 TgC yr−1 and 18 &amp;pm; 7 TgC yr−1, respectively. The resultant net biome production (NBP) is 36 &amp;pm; 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 &amp;pm; 6 TgC yr−1) by 38 &amp;pm; 30%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.
APA, Harvard, Vancouver, ISO, and other styles
41

Bracco, A., D. Bresnahan, P. Palmeirim, D. Arzoumanian, Ph André, D. Ward-Thompson, and A. Marchal. "Compressed magnetized shells of atomic gas and the formation of the Corona Australis molecular cloud." Astronomy & Astrophysics 644 (November 24, 2020): A5. http://dx.doi.org/10.1051/0004-6361/202039282.

Full text
Abstract:
We present the identification of the previously unnoticed physical association between the Corona Australis molecular cloud (CrA), traced by interstellar dust emission, and two shell-like structures observed with line emission of atomic hydrogen (HI) at 21 cm. Although the existence of the two shells had already been reported in the literature, the physical link between the HI emission and CrA had never been highlighted until now. We used both Planck and Herschel data to trace dust emission and the Galactic All Sky HI Survey (GASS) to trace HI. The physical association between CrA and the shells is assessed based both on spectroscopic observations of molecular and atomic gas and on dust extinction data with Gaia. The shells are located at a distance between ~140 and ~190 pc, which is comparable to the distance of CrA, which we derived as (150.5 ± 6.3) pc. We also employed dust polarization observations from Planck to trace the magnetic-field structure of the shells. Both of them show patterns of magnetic-field lines following the edge of the shells consistently with the magnetic-field morphology of CrA. We estimated the magnetic-field strength at the intersection of the two shells via the Davis-Chandrasekhar-Fermi (DCF) method. Despite the many caveats that are behind the DCF method, we find a magnetic-field strength of (27 ± 8) μG, which is at least a factor of two larger than the magnetic-field strength computed off of the HI shells. This value is also significantly larger compared to the typical values of a few μG found in the diffuse HI gas from Zeeman splitting. We interpret this as the result of magnetic-field compression caused by the shell expansion. This study supports a scenario of molecular-cloud formation triggered by supersonic compression of cold magnetized HI gas from expanding interstellar bubbles.
APA, Harvard, Vancouver, ISO, and other styles
42

Bourke, T. L., A. R. Hyland, G. Robinson, and S. D. James. "Ammonia and Near-Infrared Observations of Southern Dark Clouds." Publications of the Astronomical Society of Australia 10, no. 3 (1993): 236–40. http://dx.doi.org/10.1017/s1323358000025753.

Full text
Abstract:
AbstractThe Parkes radio telescope has been used to search a list of small, dense southern dark clouds and Bok globules for ammonia emission at 23.7 GHz. The ammonia observations, together with IRAS data and the cloud’s visual appearance, have been used to determine a short list of dark clouds for observation with the infrared imaging system (IRIS) on the Anglo-Australian Telescope, in an attempt to determine the dust density distribution within the clouds. Near-infrared images of a number of the short listed clouds have been obtained with IRIS at J, H and K’. Preliminary results are reported for this ammonia survey, together with IRIS images of the strong ammonia source DC 297.7–2.8. Coincident with the dense ammonia core of this object is an IRAS ‘core’ source, IRAS 11590–6452 and an extremely interesting near-infrared source, which lies on the edge of the error ellipse of the IRAS source.
APA, Harvard, Vancouver, ISO, and other styles
43

Marshall, Jonathan P., Daniel V. Cotton, Peter Scicluna, Jeremy Bailey, Lucyna Kedziora-Chudczer, and Kimberly Bott. "Polarimetric and radiative transfer modelling of HD 172555." Monthly Notices of the Royal Astronomical Society 499, no. 4 (October 16, 2020): 5915–31. http://dx.doi.org/10.1093/mnras/staa3195.

Full text
Abstract:
ABSTRACT The debris disc around HD 172555 was recently imaged in near-infrared polarized scattered light by the Very Large Telescope’s Spectro-Polarimetric High-contrast Exoplanet REsearch instrument. Here we present optical aperture polarization measurements of HD 172555 by the HIgh Precision Polarimetric Instrument (HIPPI), and its successor HIPPI-2 on the Anglo-Australian Telescope. We seek to refine constraints on the disc’s constituent dust grains by combining our polarimetric measurements with available infrared and millimetre photometry to model the scattered light and continuum emission from the disc. We model the disc using the 3D radiative transfer code hyperion, assuming the orientation and extent of the disc as obtained from the SPHERE observation. After correction for the interstellar medium contribution, our multiwavelength HIPPI/-2 observations (both magnitude and orientation) are consistent with the recent SPHERE polarization measurement with a fractional polarization p = 62.4 ± 5.2 ppm at 722.3 nm, and a position angle θ = 67° ± 3°. The multiwavelength polarization can be adequately replicated by compact, spherical dust grains (i.e. from Mie theory) that are around 1.2 μm in size, assuming astronomical silicate composition, or 3.9 μm, assuming a composition derived from radiative transfer modelling of the disc. We were thus able to reproduce both the spatially resolved disc emission and polarization with a single grain composition model and size distribution.
APA, Harvard, Vancouver, ISO, and other styles
44

Villenave, M., M. Benisty, W. R. F. Dent, F. Ménard, A. Garufi, C. Ginski, P. Pinilla, et al. "Spatial segregation of dust grains in transition disks." Astronomy & Astrophysics 624 (March 29, 2019): A7. http://dx.doi.org/10.1051/0004-6361/201834800.

Full text
Abstract:
Context. The mechanisms governing the opening of cavities in transition disks are not fully understood. Several processes have been proposed, but their occurrence rate is still unknown. Aims. We present spatially resolved observations of two transition disks, and aim at constraining their vertical and radial structure using multiwavelength observations that probe different regions of the disks and can help understanding the origin of the cavities. Methods. We have obtained near-infrared scattered light observations with VLT/SPHERE of the transition disks 2MASS J16083070-3828268 (J1608) and RXJ1852.3-3700 (J1852), located in the Lupus and Corona Australis star-forming regions respectively. We complement our datasets with archival ALMA observations, and with unresolved photometric observations covering a wide range of wavelengths. We performed radiative transfer modeling to analyze the morphology of the disks, and then compare the results with a sample of 20 other transition disks observed with both SPHERE and ALMA. Results. We detect scattered light in J1608 and J1852 up to a radius of 0.54′′ and 0.4′′ respectively. The image of J1608 reveals a very inclined disk (i ~ 74°), with two bright lobes and a large cavity. We also marginally detect the scattering surface from the rear-facing side of the disk. J1852 shows an inner ring extending beyond the coronagraphic radius up to 15 au, a gap and a second ring at 42 au. Our radiative transfer model of J1608 indicates that the millimeter-sized grains are less extended vertically and radially than the micron-sized grains, indicating advanced settling and radial drift. We find good agreement with the observations of J1852 with a similar model, but due to the low inclination of the system, the model remains partly degenerate. The analysis of 22 transition disks shows that, in general, the cavities observed in scattered light are smaller than the ones detected at millimeter wavelengths. Conclusions. The analysis of a sample of transition disks indicates that the small grains, well coupled to the gas, can flow inward of the region where millimeter grains are trapped. While 15 out of the 22 cavities in our sample could be explained by a planet of less than 13 Jupiter masses, the others either require the presence of a more massive companion or of several low-mass planets.
APA, Harvard, Vancouver, ISO, and other styles
45

Glowacki, M., J. R. Allison, V. A. Moss, E. K. Mahony, E. M. Sadler, J. R. Callingham, S. L. Ellison, et al. "An ASKAP survey for H i absorption towards dust-obscured quasars." Monthly Notices of the Royal Astronomical Society 489, no. 4 (September 5, 2019): 4926–43. http://dx.doi.org/10.1093/mnras/stz2452.

Full text
Abstract:
ABSTRACT Obscuration of quasars by accreted gas and dust, or dusty intervening galaxies, can cause active galactic nuclei (AGN) to be missed in optically selected surveys. Radio observations can overcome this dust bias. In particular, radio surveys searching for H i absorption inform us on how the AGN can impact on the cold neutral gas medium within the host galaxy, or the population of intervening galaxies through the observed line of sight gas kinematics. We present the results of an H i absorption line survey at 0.4 &lt; z &lt; 1 towards 34 obscured quasars with the Australian SKA Pathfinder (ASKAP) commissioning array. We detect three H i absorption lines, with one of these systems previously unknown. Through optical follow-up for two sources, we find that in all detections the H i gas is associated with the AGN, and hence that these AGN are obscured by material within their host galaxies. Most of our sample are compact, and in addition, are either gigahertz peaked spectrum (GPS), or steep spectrum (CSS) sources, both thought to represent young or recently re-triggered radio AGN. The radio spectral energy distribution classifications for our sample agree with galaxy evolution models in which the obscured AGN has only recently become active. Our associated H i detection rate for GPS and compact SS sources matches those of other surveys towards such sources. We also find shallow and asymmetric H i absorption features, which agrees with previous findings that the cold neutral medium in compact radio galaxies is typically kinematically disturbed by the AGN.
APA, Harvard, Vancouver, ISO, and other styles
46

Sharpe, David J., and Ross L. Goldingay. "Time budget of the squirrel glider (Petaurus norfolcensis) in subtropical Australia." Australian Journal of Zoology 66, no. 4 (2018): 251. http://dx.doi.org/10.1071/zo18049.

Full text
Abstract:
Exudivorous mammals exploit food items of high quality and high rates of renewal, offset by wide dispersion and variable availability. How this influences foraging effort and size-related foraging efficiency remains poorly described. We examined the time budget of 5–6 male and 5–6 female squirrel gliders (Petaurus norfolcensis) during 6–8 nights in each of three seasons that were stratified by moon phase. Radio-collared gliders were observed during a series of 1-h focal observations from dusk until dawn. Feeding dominated the time budget, accounting for 78% of observation time, or 85% of time when combined with behaviours associated with foraging. Females appear to maximise feeding rates before entering the energetically demanding phase of late lactation. Little time was spent resting while outside the den. Longer nights and the full moon were associated with later emergence and earlier retirement times. Animals re-entered their tree-hollow dens during the night, representing 2% of activity in late spring, 18% in winter and 9% in autumn (10% overall). This behaviour may relate to predation risk and lactation demands. We reviewed the percentage of the time budget that petaurid gliders devoted to feeding and found no clear relationship with body size.
APA, Harvard, Vancouver, ISO, and other styles
47

Meikle, W. P. S. "Review of Speckle Observations of Supernova 1987A." Publications of the Astronomical Society of Australia 7, no. 4 (1988): 473–78. http://dx.doi.org/10.1017/s1323358000022669.

Full text
Abstract:
AbstractSN 1987A is sufficiently close to allow a unique examination of the morphology of a supernova, using speckle interferometry. Several groups [Center for Astrophysics (CfA); Imperial College (IC); Mount Stromlo and Siding Spring Observatories/Anglo-Australian Observatory (M/A)] have reported optical speckle observations. At Hα, both CfA and M/A have determined the angular extent of the emission, and reasonable agreement is obtained. The speckle-derived values are consistent with those obtained from line profiles. IC has also succeeded in resolving the supernova at Hα. At wavelengths other than Hα, at early epochs, angular diameters obtained by CfA are larger than those derived from photometric and spectroscopic measurements, possibly due to scattering effects. At later epochs, the diameters exhibit little variation between the wavelengths examined. CfA reports significant asymmetry in the late epoch data.Several attempts have been made to re-observe (at optical wavelengths) the companion object, but none have succeeded. The nature of this phenomenon is still controversial, but the evidence indicates that the companion was real, with emission from dust apparently being the least problematic explanation. Support for this may lie in IR speckle observations (Haute Provence/Lyon) which, on about day 115, indicated the presence of one or more resolved components at an angular displacement comparable to that of the optical companion.
APA, Harvard, Vancouver, ISO, and other styles
48

Hyland, A. R., R. G. Smith, and G. Robinson. "The Laboratory Astrophysics Facility at University College." Publications of the Astronomical Society of Australia 10, no. 1 (1992): 77–81. http://dx.doi.org/10.1017/s1323358000019317.

Full text
Abstract:
AbstractA laboratory astrophysics facility for the study of the terrestrial analogues of interstellar dust grains is being developed in the Physics Department, University College, Australian Defence Force Academy. The facility consists of a gas handling system for the preparation of samples, a closed-cycle cooler and specimen chamber, and a Fourier Transform Infrared (FTIR) Spectrometer capable of high resolution (0.3 cm−1) and high sensitivity measurements, currently from 1-25 μm. The layout and construction of the laboratory are described, and the proposed initial experimental program aimed at determining the optical constants of ices over a wide wavelength range for comparison with astronomical observations is discussed.
APA, Harvard, Vancouver, ISO, and other styles
49

Cazzoletti, P., C. F. Manara, H. Baobab Liu, E. F. van Dishoeck, S. Facchini, J. M. Alcalà, M. Ansdell, et al. "ALMA survey of Class II protoplanetary disks in Corona Australis: a young region with low disk masses." Astronomy & Astrophysics 626 (May 30, 2019): A11. http://dx.doi.org/10.1051/0004-6361/201935273.

Full text
Abstract:
Context. In recent years, the disk populations in a number of young star-forming regions have been surveyed with the Atacama Large Millimeter/submillimeter Array (ALMA). Understanding the disk properties and their correlation with the properties of the central star is critical to understanding planet formation. In particular, a decrease of the average measured disk dust mass with the age of the region has been observed, consistent with grain growth and disk dissipation. Aims. We aim to compare the general properties of disks and their host stars in the nearby (d = 160 pc) Corona Australis (CrA) star forming region to those of the disks and stars in other regions. Methods. We conducted high-sensitivity continuum ALMA observations of 43 Class II young stellar objects in CrA at 1.3 mm (230 GHz). The typical spatial resolution is ~0.3′′. The continuum fluxes are used to estimate the dust masses of the disks, and a survival analysis is performed to estimate the average dust mass. We also obtained new VLT/X-shooter spectra for 12 of the objects in our sample for which spectral type (SpT) information was missing. Results. Twenty-four disks were detected, and stringent limits have been put on the average dust mass of the nondetections. Taking into account the upper limits, the average disk mass in CrA is 6 ± 3 M⊕. This value is significantly lower than that of disks in other young (1–3 Myr) star forming regions (Lupus, Taurus, Chamaeleon I, and Ophiuchus) and appears to be consistent with the average disk mass of the 5–10 Myr-old Upper Sco. The position of the stars in our sample on the Herzsprung-Russel diagram however seems to confirm that CrA has an age similar to Lupus. Neither external photoevaporation nor a lower-than-usual stellar mass distribution can explain the low disk masses. On the other hand, a low-mass disk population could be explained if the disks were small, which could happen if the parent cloud had a low temperature or intrinsic angular momentum, or if the angular momentum of the cloud were removed by some physical mechanism such as magnetic braking. Even in detected disks, none show clear substructures or cavities. Conclusions. Our results suggest that in order to fully explain and understand the dust mass distribution of protoplanetary disks and their evolution, it may also be necessary to take into consideration the initial conditions of star- and disk-formation process. These conditions at the very beginning may potentially vary from region to region, and could play a crucial role in planet formation and evolution.
APA, Harvard, Vancouver, ISO, and other styles
50

Dunlop, Mark, Zoran D. Ristovski, Erin Gallagher, Gavin Parcsi, Robin L. Modini, Victoria Agranovski, and Richard M. Stuetz. "Odour, dust and non-methane volatile organic-compound emissions from tunnel-ventilated layer-chicken sheds: a case study of two farms." Animal Production Science 53, no. 12 (2013): 1309. http://dx.doi.org/10.1071/an12343.

Full text
Abstract:
An observational study was undertaken to measure odour and dust (PM10 and PM2.5) emission rates and identify non-methane volatile organic compounds (NMVOCs) and odorants in the exhaust air from two tunnel-ventilated layer-chicken sheds that were configured with multi-tiered cages and manure belts. The study sites were located in south-eastern Queensland and the West Gippsland region of Victoria, Australia. Samples were collected in summer and winter on sequential days across the manure-belt cleaning cycle. Odour emissions ranged from 58 to 512 ou/s per 1000 birds (0.03–0.27 ou/s.kg) and dust emission rates ranged 0.014–0.184 mg/s per 1000 birds for PM10 and 0.001–0.190 mg/s per 1000 birds for PM2.5. Twenty NMVOCs were identified, including three that were also identified as odorants using thermal desorption–gas chromatography–mass spectrometry/olfactometry analysis. Odour emission rates were observed to vary with the amount of manure accumulation on the manure belts, being lowest 2–4 days after removing manure. Odour emission rates were also observed to vary with diurnal and seasonal changes in ventilation rate. Dust emissions were observed to increase with ventilation rate but not with manure accumulation. Some NMVOCs were identified at both farms and in different seasons whereas others were observed only at one farm or in one season, indicating that odorant composition was influenced by farm-specific practices and season.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography