Journal articles on the topic 'Dual frequency'

To see the other types of publications on this topic, follow the link: Dual frequency.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dual frequency.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ghosh, Shreya, Subhasree Konar, Soumen Ghosh, Tanumay Ghosh, and Suvojit Gope. "Dual Tone Multiple Frequency Based Home Automation System." International Journal of Engineering Research 4, no. 10 (October 1, 2015): 542–44. http://dx.doi.org/10.17950/ijer/v4s10/1006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

TERAO, Yoshiya, Masaki TAKAMOTO, and Teruki FUKAMI. "Dual Frequency Ultrasonic Flowmeter." Transactions of the Society of Instrument and Control Engineers 23, no. 6 (1987): 565–69. http://dx.doi.org/10.9746/sicetr1965.23.565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maci, S., and G. B. Gentili. "Dual-frequency patch antennas." IEEE Antennas and Propagation Magazine 39, no. 6 (1997): 13–20. http://dx.doi.org/10.1109/74.646798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Fred. "DUAL-FREQUENCY COAXIAL EARPHONES." Journal of the Acoustical Society of America 131, no. 6 (2012): 4861. http://dx.doi.org/10.1121/1.4728369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guan, Y., and W. E. Bailey. "Dual-frequency ferromagnetic resonance." Review of Scientific Instruments 77, no. 5 (May 2006): 053905. http://dx.doi.org/10.1063/1.2204907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chuo, Feng-Pin, Tsair-Rong Chen, and Jeen-Sheen Row. "Dual-frequency microstrip antennas." Microwave and Optical Technology Letters 45, no. 1 (2005): 3–5. http://dx.doi.org/10.1002/mop.20705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kelly, J. G., and C. R. Walsh. "Dual-frequency sonar system." Journal of the Acoustical Society of America 99, no. 4 (1996): 1817. http://dx.doi.org/10.1121/1.415331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Erätuuli, P., P. Haapala, and P. Vainikainen. "Dual frequency wire antennas." Electronics Letters 32, no. 12 (1996): 1051. http://dx.doi.org/10.1049/el:19960722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Asadov, Kh G., and V. M. Garaev. "Dual-frequency sodar measurements." Measurement Techniques 54, no. 3 (June 2011): 351–55. http://dx.doi.org/10.1007/s11018-011-9731-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Franklin, R. N. "The dual frequency radio-frequency sheath revisited." Journal of Physics D: Applied Physics 36, no. 21 (October 15, 2003): 2660–61. http://dx.doi.org/10.1088/0022-3727/36/21/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tang, Zhiyi, Duo Yang, Chao Ma, Lusong Wei, Bin Zhang, and Jiangtao Huangfu. "A dual‐port dual‐frequency integration antenna design." Microwave and Optical Technology Letters 62, no. 12 (July 23, 2020): 3911–15. http://dx.doi.org/10.1002/mop.32519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nguyen-Trong, Nghia, Leonard Hall, and Christophe Fumeaux. "A dual-band dual-pattern frequency-reconfigurable antenna." Microwave and Optical Technology Letters 59, no. 11 (August 23, 2017): 2710–15. http://dx.doi.org/10.1002/mop.30815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bao, X. L., and M. J. Ammann. "Wideband Dual-Frequency Dual-Polarized Dipole-Like Antenna." IEEE Antennas and Wireless Propagation Letters 10 (2011): 831–34. http://dx.doi.org/10.1109/lawp.2011.2164609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kim, Yeunjeong, Wansuk Yun, and Youngjoong Yoon. "Dual-frequency and dual-polarisation wideband microstrip antenna." Electronics Letters 35, no. 17 (1999): 1399. http://dx.doi.org/10.1049/el:19990995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Cai, C. H., J. S. Row, and K. L. Wong. "Dual-frequency microstrip antenna with dual circular polarisation." Electronics Letters 42, no. 22 (2006): 1261. http://dx.doi.org/10.1049/el:20062537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Changsheng, Yunshan Zhang, Jilin Zheng, Jin Li, Zhenxing Sun, Jianqin Shi, Lianyan Li, Rulei Xiao, Tao Fang, and Xiangfei Chen. "Frequency-modulated continuous-wave dual-frequency LIDAR based on a monolithic integrated two-section DFB laser." Chinese Optics Letters 19, no. 11 (2021): 111402. http://dx.doi.org/10.3788/col202119.111402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Feng, Li Ying, and Kwok Wa Leung. "Dual-Fed Hollow Dielectric Antenna for Dual-Frequency Operation With Large Frequency Ratio." IEEE Transactions on Antennas and Propagation 65, no. 6 (June 2017): 3308–13. http://dx.doi.org/10.1109/tap.2017.2700225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gans, T., J. Schulze, D. O’Connell, U. Czarnetzki, R. Faulkner, A. R. Ellingboe, and M. M. Turner. "Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas." Applied Physics Letters 89, no. 26 (December 25, 2006): 261502. http://dx.doi.org/10.1063/1.2425044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

ZHONG Chaoyang, 钟朝阳, 侯文玫 HOU Wenmei, 句爱松 JU Aisong, and 官志超 GUAN Zhichao. "Analysis of frequency mixing in dual-frequency interferometer." Optical Technique 41, no. 2 (2015): 119–23. http://dx.doi.org/10.3788/gxjs20154102.0119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Feng, Li Ying, and Kwok Wa Leung. "Wideband Dual-Frequency Antenna With Large Frequency Ratio." IEEE Transactions on Antennas and Propagation 67, no. 3 (March 2019): 1981–86. http://dx.doi.org/10.1109/tap.2019.2891336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Гончарский, А. В., С. Ю. Романов, and С. Ю. Серёжников. "Low-frequency 3D ultrasound tomography: dual-frequency method." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 4 (December 18, 2018): 479–95. http://dx.doi.org/10.26089/nummet.v19r443.

Full text
Abstract:
Статья посвящена разработке эффективных методов 3D акустической томографии. Обратная задача рассматривается как коэффициентная обратная задача для уравнения гиперболического типа относительно неизвестных функций скорости звука и коэффициента поглощения в трехмерном пространстве. Математическая модель описывает такие явления, как дифракция, рефракция, переотражение и поглощение ультразвука. Трудности решения обратной задачи связаны с ее нелинейностью. Предложен метод низкочастотной 3D акустической томографии, который основан на использовании коротких зондирующих импульсов двух центральных частот~$f_1$ и $f_2>f_1$, не превосходящих 500 кГц. В качестве алгоритма решения обратной задачи используется итерационный градиентный метод на частоте $f_2$, в котором в качестве начального приближения используются распределения скорости звука и коэффициента поглощения, полученные как результат решения обратной задачи на частоте $f_1$. Эффективность предложенного метода акустической томографии проиллюстрирована решением модельных задач при параметрах, близких к задачам ультразвукового зондирования мягких тканей в медицине. Предложенный метод низкочастотной 3D акустической томографии позволяет получить пространственное разрешение порядка 2--3 мм при контрасте скорости не более 10%. Разработанные алгоритмы легко распараллеливаются на GPU-кластерах. This paper is devoted to the development of efficient methods for 3D acoustic tomography. The inverse problem of acoustic tomography is formulated as a coefficient inverse problem for a hyperbolic equation where the sound speed and the absorption factor are unknown in three-dimensional space. The mathematical model describes the effects of diffraction, refraction, multiple scattering, and the ultrasound absorption. Substantial difficulties in solving this inverse problem are due to its nonlinear nature. A method of low-frequency 3D acoustic tomography based on using short sounding pulses of two different central frequencies not exceeding 500 kHz is proposed. The method employs an iterative gradient-based minimization algorithm at the higher frequency with the initial approximation of unknown coefficients obtained by solving the inverse problem at the lower frequency. The efficiency of the proposed method is illustrated by solving a model problem with acoustic parameters close to those of soft tissues. The proposed method makes it possible to obtain a spatial resolution of 2--3 mm while the sound speed contrast does not exceed 10%. The developed algorithms can be efficiently parallelized using GPU clusters.
APA, Harvard, Vancouver, ISO, and other styles
22

Saitoh, Shiroh, and Mamoru Izumi. "A Dual Frequency Ultrasonic Probe." Japanese Journal of Applied Physics 31, S1 (January 1, 1992): 172. http://dx.doi.org/10.7567/jjaps.31s1.172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Foster, F. Stuart, Christine E. M. Demore, Emmanuel Cherin, Isabel Newsome, Claudia Carnevale, and Paul A. Dayton. "Dual frequency contrast ultrasound angiography." Ultrasound in Medicine & Biology 45 (2019): S13. http://dx.doi.org/10.1016/j.ultrasmedbio.2019.07.454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Foster, F. Stuart, Christine E. M. Demore, Emmanuel Cherin, Isabel Newsome, Claudia Carnevale, and Paul A. Dayton. "Dual frequency contrast ultrasound angiography." Ultrasound in Medicine & Biology 45 (2019): S19. http://dx.doi.org/10.1016/j.ultrasmedbio.2019.07.469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Millot, Guy, Stéphane Pitois, Ming Yan, Tatevik Hovhannisyan, Abdelkrim Bendahmane, Theodor W. Hänsch, and Nathalie Picqué. "Frequency-agile dual-comb spectroscopy." Nature Photonics 10, no. 1 (December 21, 2015): 27–30. http://dx.doi.org/10.1038/nphoton.2015.250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xu, Ming, and Deng-Ke Yang. "Dual frequency cholesteric light shutters." Applied Physics Letters 70, no. 6 (February 10, 1997): 720–22. http://dx.doi.org/10.1063/1.118261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shi-Chang Gao, Le-Wei Li, Tat-Soon Yeo, and Mook-Seng Leong. "Small dual-frequency microstrip antennas." IEEE Transactions on Vehicular Technology 51, no. 1 (2002): 28–36. http://dx.doi.org/10.1109/25.992065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Stearns, C. M. "Dual frequency sonar transducer assembly." Journal of the Acoustical Society of America 104, no. 5 (November 1998): 2550. http://dx.doi.org/10.1121/1.423786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kirpanev, A. V., and A. N. Mikhailov. "Dual-frequency offset transreflector antennas." Issues of radio electronics, no. 8 (August 7, 2019): 71–78. http://dx.doi.org/10.21778/2218-5453-2019-8-71-78.

Full text
Abstract:
The paper presents the results of computer simulation of the developed dual‑frequency antennas with a common radiating aperture, operating in the millimeter and centimeter wavelength range. The operation of antennas in the Kaand W‑bands is based on the well‑known dual reflector polarization rotating antennas constructing principles. The twistreflector of the considered antennas is combined with the radiation surface of the centimeter wavelength range (X‑band) waveguide‑slot array. Transreflector is made by offset scheme. For the Kaand X‑bandsantenna, the transreflector is a paraboloid of rotation part. In the case of the Wand X‑band antenna, the transreflector has a flat Fresnel zoned antenna structure. Computer simulation is based on the method of finite integrals, which provides a reliable result at an appropriately chosen sampling step. The calculated characteristics confirm the operability of the considered antenna options.
APA, Harvard, Vancouver, ISO, and other styles
30

Beddeleem, G., J. M. Ribero, G. Kossiavas, R. Staraj, and E. Fond. "Dual-frequency circularly polarized antenna." Microwave and Optical Technology Letters 50, no. 1 (2007): 177–80. http://dx.doi.org/10.1002/mop.23028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dou, W. B., and Z. L. Sun. "W-band dual-frequency circulators." Microwave and Optical Technology Letters 8, no. 1 (January 1995): 16–18. http://dx.doi.org/10.1002/mop.4650080106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ren, Jinjing, and Wolfgang Menzel. "Dual-Frequency Folded Reflectarray Antenna." IEEE Antennas and Wireless Propagation Letters 12 (2013): 1216–19. http://dx.doi.org/10.1109/lawp.2013.2283085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Waterhouse, R. B., and N. V. Shuley. "Dual frequency microstrip rectangular patches." Electronics Letters 28, no. 7 (1992): 606. http://dx.doi.org/10.1049/el:19920382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shi, Tiantian, Xiaolei Guan, Pengyuan Chang, Jianxiang Miao, Duo Pan, Bin Luo, Hong Guo, and Jingbiao Chen. "A Dual-Frequency Faraday Laser." IEEE Photonics Journal 12, no. 4 (August 2020): 1–11. http://dx.doi.org/10.1109/jphot.2020.3006503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

DeTuncq, Jon A., and Steven M. Gleason. "Dual frequency side branch resonator." Journal of the Acoustical Society of America 108, no. 3 (2000): 884. http://dx.doi.org/10.1121/1.1319410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

George, J., K. Vasudevan, P. Mohanan, and K. G. Nair. "Dual frequency miniature microstrip antenna." Electronics Letters 34, no. 12 (1998): 1168. http://dx.doi.org/10.1049/el:19980908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Deepukumar, M., J. George, C. K. Aanandan, P. Mohanan, and K. G. Nair. "Broadband dual frequency microstrip antenna." Electronics Letters 32, no. 17 (1996): 1531. http://dx.doi.org/10.1049/el:19961056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gangwar, Ajay Kumar, and Muhmmad Shah Alam. "Frequency reconfigurable dual-band filtenna." AEU - International Journal of Electronics and Communications 124 (September 2020): 153239. http://dx.doi.org/10.1016/j.aeue.2020.153239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Blass, Judd, and Hanan Keren. "4691163 Dual frequency surface probes." Magnetic Resonance Imaging 6, no. 1 (January 1988): II. http://dx.doi.org/10.1016/0730-725x(88)90546-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Guangzong Xiao, Guangzong Xiao, Bin Zhang Bin Zhang, Zhiguo Wang Zhiguo Wang, Yangying Fu Yangying Fu, and and Mengfan Gong and Mengfan Gong. "Frequency difference lock-in phenomenon’s weakening by transverse magnetic field in Y-shaped cavity dual-frequency laser." Chinese Optics Letters 13, no. 11 (2015): 111405–8. http://dx.doi.org/10.3788/col201513.111405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Haijin Fu, Haijin Fu, Jiubin Tan Jiubin Tan, Pengcheng Hu Pengcheng Hu, and Zhigang Fan Zhigang Fan. "Beam combination setup for dual-frequency laser with orthogonal linear polarization." Chinese Optics Letters 13, no. 10 (2015): 101201–5. http://dx.doi.org/10.3788/col201513.101201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kim, H. C., and J. K. Lee. "Dual radio-frequency discharges: Effective frequency concept and effective frequency transition." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23, no. 4 (July 2005): 651–57. http://dx.doi.org/10.1116/1.1931683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Binchao, Cheng Jin, Xiuzhu Ye, and Raj Mittra. "Dual-Band Dual-Polarized Quasi-Elliptic Frequency Selective Surfaces." IEEE Antennas and Wireless Propagation Letters 18, no. 2 (February 2019): 298–302. http://dx.doi.org/10.1109/lawp.2018.2889505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Michail, Georgios Ch, and Nikolaos K. Uzunoglu. "Dual-frequency and dual-polarization multilayer microstrip antenna element." Microwave and Optical Technology Letters 42, no. 4 (2004): 311–15. http://dx.doi.org/10.1002/mop.20288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Z�rcher, J. F., Qin Xu, A. K. Skrivervik, and J. R. Mosig. "Dual-frequency, dual-polarization four-port printed planar antenna." Microwave and Optical Technology Letters 23, no. 2 (October 20, 1999): 75–78. http://dx.doi.org/10.1002/(sici)1098-2760(19991020)23:2<75::aid-mop4>3.0.co;2-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Binoy, G. S., C. K. Aanandan, P. Mohanan, and K. Vasudevan. "Compact dual-frequency dual-polarized slotted microstrip patch antenna." Microwave and Optical Technology Letters 29, no. 1 (2001): 60–62. http://dx.doi.org/10.1002/mop.1083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chen, C. H., X. L. Wang, and W. Wu. "Compact single-feed dual-frequency dual-polarisation microstrip antenna." Electronics Letters 46, no. 20 (2010): 1362. http://dx.doi.org/10.1049/el.2010.2225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gerbeth, Daniel, Mihaela-Simona Circiu, Maria Caamano, and Michael Felux. "Nominal Performance of Future Dual Frequency Dual Constellation GBAS." International Journal of Aerospace Engineering 2016 (2016): 1–20. http://dx.doi.org/10.1155/2016/6835282.

Full text
Abstract:
In this work an overview of numerous possible processing modes in future dual frequency, dual constellation GBAS is given and compared to the current GAST D standard. We discuss the individual error contributions to GBAS protection levels and give an overview of the general processing. Based on this the consequences when adding a second constellation as well as frequency are investigated. Geometrical implications and changes to the residual differential error bounds are studied separately first. In terms of geometry a comparison between the single and dual constellation case is presented using dilution of precision as metric. The influence on the different sigma contributions when using new satellites (Galileo) and signals (E1, L5, and E5a) is individually discussed based on recent measurements. Final simulations for different varying parameters are carried out to compare relevant processing modes in terms of achieved nominal protection levels. A concluding discussion compares the outcomes and analyzes the implications of choosing one or the other mode.
APA, Harvard, Vancouver, ISO, and other styles
49

Murakami, Y., W. Chujo, I. Chiba, and M. Fujise. "Dual slot-coupled microstrip antenna for dual frequency operation." Electronics Letters 29, no. 22 (1993): 1906. http://dx.doi.org/10.1049/el:19931268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yin, Liyuan, Binchao Zhang, Zhenghui Xue, Qihao Lv, Cheng Jin, and Raj Mittra. "Dual‐polarized frequency selective rasorber with dual absorption bands." Microwave and Optical Technology Letters 63, no. 11 (July 16, 2021): 2745–50. http://dx.doi.org/10.1002/mop.32964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography