Academic literature on the topic 'Dryland river system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dryland river system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dryland river system"

1

Costa, A. C., A. Bronstert, and J. C. de Araújo. "A channel transmission losses model for different dryland rivers." Hydrology and Earth System Sciences 16, no. 4 (April 3, 2012): 1111–35. http://dx.doi.org/10.5194/hess-16-1111-2012.

Full text
Abstract:
Abstract. Channel transmission losses in drylands take place normally in extensive alluvial channels or streambeds underlain by fractured rocks. They can play an important role in streamflow rates, groundwater recharge, freshwater supply and channel-associated ecosystems. We aim to develop a process-oriented, semi-distributed channel transmission losses model, using process formulations which are suitable for data-scarce dryland environments and applicable to both hydraulically disconnected losing streams and hydraulically connected losing(/gaining) streams. This approach should be able to cover a large variation in climate and hydro-geologic controls, which are typically found in dryland regions of the Earth. Our model was first evaluated for a losing/gaining, hydraulically connected 30 km reach of the Middle Jaguaribe River (MJR), Ceará, Brazil, which drains a catchment area of 20 000 km2. Secondly, we applied it to a small losing, hydraulically disconnected 1.5 km channel reach in the Walnut Gulch Experimental Watershed (WGEW), Arizona, USA. The model was able to predict reliably the streamflow volume and peak for both case studies without using any parameter calibration procedure. We have shown that the evaluation of the hypotheses on the dominant hydrological processes was fundamental for reducing structural model uncertainties and improving the streamflow prediction. For instance, in the case of the large river reach (MJR), it was shown that both lateral stream-aquifer water fluxes and groundwater flow in the underlying alluvium parallel to the river course are necessary to predict streamflow volume and channel transmission losses, the former process being more relevant than the latter. Regarding model uncertainty, it was shown that the approaches, which were applied for the unsaturated zone processes (highly nonlinear with elaborate numerical solutions), are much more sensitive to parameter variability than those approaches which were used for the saturated zone (mathematically simple water budgeting in aquifer columns, including backwater effects). In case of the MJR-application, we have seen that structural uncertainties due to the limited knowledge of the subsurface saturated system interactions (i.e. groundwater coupling with channel water; possible groundwater flow parallel to the river) were more relevant than those related to the subsurface parameter variability. In case of the WEGW application we have seen that the non-linearity involved in the unsaturated flow processes in disconnected dryland river systems (controlled by the unsaturated zone) generally contain far more model uncertainties than do connected systems controlled by the saturated flow. Therefore, the degree of aridity of a dryland river may be an indicator of potential model uncertainty and subsequent attainable predictability of the system.
APA, Harvard, Vancouver, ISO, and other styles
2

Burford, M. A., A. T. Revill, D. W. Palmer, L. Clementson, B. J. Robson, and I. T. Webster. "River regulation alters drivers of primary productivity along a tropical river-estuary system." Marine and Freshwater Research 62, no. 2 (2011): 141. http://dx.doi.org/10.1071/mf10224.

Full text
Abstract:
Worldwide, rivers continue to be dammed to supply water for humans. The resulting regulation of downstream flow impacts on biogeochemical and physical processes, potentially affecting river and estuarine productivity. Our study tested the hypothesis that primary production in the downstream freshwater reaches of a dammed river was less limited by light and nutrients relative to downstream estuarine primary production. In a tropical dryland Australian river estuary, we found that water-column primary productivity was highest at freshwater sites that had lowest light attenuation. Nitrogen may also have limited primary productivity. Below the freshwater zone was a region of macrotidal mixing with high concentrations of suspended soil particles, nutrients and chlorophyll a, and lower but variable primary productivity rates. Light controlled productivity, but the algal cells may also have been osmotically stressed due to increasing salinity. Further downstream in the estuary, primary productivity was lower than the freshwater reaches and light and nutrient availability appear to be a factor. Therefore the reduced magnitude of peak-flow events due to flow regulation, and the resulting decrease in nutrient export, is likely to be negatively impacting estuarine primary production. This has implications for future development of dams where rivers have highly seasonal flow.
APA, Harvard, Vancouver, ISO, and other styles
3

Reid, Michael A., Martin C. Thoms, Stephen Chilcott, and Kathryn Fitzsimmons. "Sedimentation in dryland river waterholes: a threat to aquatic refugia?" Marine and Freshwater Research 68, no. 4 (2017): 668. http://dx.doi.org/10.1071/mf15451.

Full text
Abstract:
In dryland river systems subject to prolonged low and no flow periods, waterholes, or sections of river channel that are deep relative to the rest of the channel and that retain water for longer periods of no flow, provide refugia for aquatic biota and hence are critical to the resilience of aquatic ecosystems. This study examined physical, chemical and bio-stratigraphy in refugial waterholes situated along four distributaries of the Lower Balonne River system in semi-arid Australia. In doing so we reconstructed environmental histories for the waterholes, calculated how sedimentation rates have changed in response to land use change over the past two centuries, and assessed whether they are threatened by increased sedimentation through potential effects on waterhole depth and hence persistence times and habitat quality. Our study found that sedimentation rates have increased substantially since European settlement, most likely in response to removal of groundcover by grazers. The increased sediment accumulation rates are estimated to have reduced persistence times during low and no flow periods of the waterholes by 2–4 months. Despite evidence from other similar systems in Australia that increased influx of sediment coincided with loss of submerged macrophytes, stratigraphic records of preserved pollen and diatoms did not provide consistent evidence of biotic or habitat quality changes within the waterholes associated with European settlement.
APA, Harvard, Vancouver, ISO, and other styles
4

Kernich, A. L., C. F. Pain, J. D. A. Clarke, and A. D. Fitzpatrick. "Geomorphology of a dryland fluvial system: the Lower Balonne River, southern Queensland." Australian Journal of Earth Sciences 56, sup1 (July 2009): S139—S153. http://dx.doi.org/10.1080/08120090902871184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goss, Kevin F. "Environmental flows, river salinity and biodiversity conservation: managing trade-offs in the Murray - Darling basin." Australian Journal of Botany 51, no. 6 (2003): 619. http://dx.doi.org/10.1071/bt03003.

Full text
Abstract:
The Murray–Darling basin's river system suffers from over-allocation of water resources to consumptive use and salinity threats to water quality. This paper draws attention to the current state of knowledge and the need for further investigations into the biological effect of river salinity on aquatic biota and ecosystems, the threats of dryland salinity to terrestrial biodiversity, and managing environmental flows and salinity control to limit the trade-offs in water-resource security and river salinity.There is growing evidence that river salt concentrations lower than the normally adopted threshold have sublethal effects on species and ecosystems, over a longer time period. Further knowledge is required.There is no agreed process for incorporating terrestrial biodiversity values at risk into a strategic response for dryland-salinity management. This is a public policy issue to be addressed.Recent studies have quantified the trade-off in surface water flow and river salinity from refforestation and revegetation of upland catchments to control salinity. The potential losses or benefits to environmental values have not been quantified.Such improved knowledge is important to the Murray–Darling basin and relevant to other river basins and catchments in Australia.
APA, Harvard, Vancouver, ISO, and other styles
6

CANDY, I., S. BLACK, and B. SELLWOOD. "Interpreting the response of a dryland river system to Late Quaternary climate change." Quaternary Science Reviews 23, no. 23-24 (December 2004): 2513–23. http://dx.doi.org/10.1016/j.quascirev.2004.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mueller, E. N., A. Güntner, T. Francke, and G. Mamede. "Modelling sediment export, retention and reservoir sedimentation in drylands with the WASA-SED model." Geoscientific Model Development 3, no. 1 (April 8, 2010): 275–91. http://dx.doi.org/10.5194/gmd-3-275-2010.

Full text
Abstract:
Abstract. Current soil erosion and reservoir sedimentation modelling at the meso-scale is still faced with intrinsic problems with regard to open scaling questions, data demand, computational efficiency and deficient implementations of retention and re-mobilisation processes for the river and reservoir networks. To overcome some limitations of current modelling approaches, the semi-process-based, spatially semi-distributed modelling framework WASA-SED (Vers. 1) was developed for water and sediment transport in large dryland catchments. The WASA-SED model simulates the runoff and erosion processes at the hillslope scale, the transport and retention processes of suspended and bedload fluxes in the river reaches and the retention and remobilisation processes of sediments in reservoirs. The modelling tool enables the evaluation of management options both for sustainable land-use change scenarios to reduce erosion in the headwater catchments as well as adequate reservoir management options to lessen sedimentation in large reservoirs and reservoir networks. The model concept, its spatial discretisation scheme and the numerical components of the hillslope, river and reservoir processes are described and a model application for the meso-scale dryland catchment Isábena in the Spanish Pre-Pyrenees (445 km2) is presented to demonstrate the capabilities, strengths and limits of the model framework. The example application showed that the model was able to reproduce runoff and sediment transport dynamics of highly erodible headwater badlands, the transient storage of sediments in the dryland river system, the bed elevation changes of the 93 hm3 Barasona reservoir due to sedimentation as well as the life expectancy of the reservoir under different management options.
APA, Harvard, Vancouver, ISO, and other styles
8

SOUTHWELL, MARK, and MARTIN THOMS. "Patterns of Nutrient Concentrations across Multiple Floodplain Surfaces in a Large Dryland River System." Geographical Research 49, no. 4 (May 10, 2011): 431–43. http://dx.doi.org/10.1111/j.1745-5871.2011.00699.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mackay, Alana K., Mark P. Taylor, and Karen A. Hudson-Edwards. "Water and sediment quality of dry season pools in a dryland river system: the upper Leichhardt River, Queensland, Australia." Journal of Environmental Monitoring 13, no. 7 (2011): 2050. http://dx.doi.org/10.1039/c0em00396d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hamilton, Stephen K., Stuart E. Bunn, Martin C. Thoms, and Jonathan C. Marshall. "Persistence of aquatic refugia between flow pulses in a dryland river system (Cooper Creek, Australia)." Limnology and Oceanography 50, no. 3 (May 2005): 743–54. http://dx.doi.org/10.4319/lo.2005.50.3.0743.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dryland river system"

1

McGinness, Heather M., and n/a. "SPATIAL HETEROGENEITY AND HYDROLOGICAL CONNECTIVITY IN A DRYLAND, ANABRANCHING FLOODPLAIN RIVER SYSTEM." University of Canberra. Resource, Environmental & Heritage Sciences, 2007. http://erl.canberra.edu.au./public/adt-AUC20070731.094606.

Full text
Abstract:
Riverine landscapes are complex. More than just a single channel, they comprise a shifting mosaic of hydrogeomorphic patches with varying physical and biological characteristics. These patches are connected by water during flows of varying magnitude and frequency, at a range of spatial and temporal scales. Combined, landscape complexity and hydrological connectivity create biological diversity that in turn maintains the productivity, ecological function, and resilience of these systems. This thesis investigates the ecological importance of spatial heterogeneity and temporal hydrological connectivity in a dryland floodplain river landscape. It focuses on anabranch channels, and uses major carbon sources in these and adjacent landscape patches as indicators of ecological pattern and process. A conceptual model was proposed, describing the potential effects upon the distribution and availability of major carbon sources of: a) a spatial mosaic of hydrogeomorphic patches in the landscape (e.g. anabranches, river channel, and wider floodplain); and b) four primary temporal phases of hydrological connection during flow pulses (disconnection, partial connection, complete connection, and draining). This was then tested by data collected over a three year period from a 16 km reach of the lower Macintyre River (NSW/QLD Australia). Results were examined at multiple spatial scales (patch scale � river channel vs. anabranches vs. floodplain; between individual anabranches; and within anabranches � entry, middle and exit sites). The data indicate that spatial heterogeneity in the lower Macintyre River landscape significantly influences ecological pattern. Carbon quantity was greater in anabranch channels compared to adjacent river channel patches, but not compared to the floodplain; while carbon quality was greater in anabranch channels compared to both adjacent river channel and floodplain patches. Stable isotope analysis indicated that carbon sources that were predominantly found in anabranch channels supported both anabranch and river organisms during a winter disconnection phase. Other carbon sources found in the main river channel and the wider floodplain appeared to play a comparatively minimal role in the food web. Different phases of hydrological connection between anabranch channels and the main river channel were associated with differences in the availability of carbon sources. In the river channel, draining of water from anabranches (the draining phase) was associated with relatively high concentrations of dissolved organic carbon (DOC) and low concentrations of phytoplankton. Conversely, the disconnection phase was associated with relatively low concentrations of DOC and high concentrations of phytoplankton in the river channel. In anabranch channels and their waterbodies, the disconnection and draining phases were associated with high concentrations of both DOC and phytoplankton. Concentrations of these carbon sources were lowest in anabranches during the partial and complete connection phases. Different hydrological connection phases were also associated with changes in trophic status in the aquatic components of the landscape. On the riverbanks, relatively low rates of benthic production and respiration during the complete connection phase were associated with heterotrophy. The remaining phases appeared to be autotrophic. Benthic production on riverbanks was greatest during the disconnection phase, and respiration was greatest during the partial connection phase. In the anabranch channels, rates of production and respiration were similar during the disconnection phase, and were associated with heterotrophy in the anabranch waterbodies. The remaining phases appeared to be autotrophic. Respiration was greatest in anabranches during the disconnection phase, and production was greatest during the draining phase. Both production and respiration were lowest during complete connection. These differences and changes varied according to the landscape patch examined. At a landscape scale, anabranch channels act as both sinks and suppliers of carbon. High rates of sediment deposition facilitate their role as sinks for sediment-associated carbon and other particulate, refractory carbon sources. Simultaneously, anabranch channels supply aquatic carbon sources from their waterbodies, as well as via processes such as inundation-stimulated release of DOC from surface sediments. Modelled data indicated that water resource development reduces the frequency and duration of connection between anabranch channels and the main river channel. This loss of landscape complexity via loss of connectivity with anabranches has the potential to reduce the total availability of carbon sources to the ecosystem, as demonstrated by a modelled 13% reduction in potential dissolved organic carbon release from anabranch sediments. This thesis has demonstrated the importance of spatial heterogeneity in riverine landscapes, by documenting its association with variability in the distribution and quality of primary energy sources for the ecosystem. It has shown that this variability is augmented by different phases of hydrological connectivity over time. Spatial heterogeneity and hydrological connectivity interact to increase the diversity and availability of ecological energy sources across the riverine landscape, at multiple spatial and temporal scales. This has positive implications for the resilience and sustainability of the system. Anabranch channels are particularly important facilitators of these effects in this dryland floodplain river system. Anabranch channels are �intermediate� in terms of spatial placement, temporal hydrological connection, and availability of carbon sources; of high value in terms of high-quality carbon sources; and relatively easy to target for management because of their defined commence-to-flow levels. Further research should be directed toward evaluating other ecological roles of anabranch channels in dryland rivers, thereby providing a more complete understanding of the importance of connectivity between these features and other patches. This knowledge would assist management of floodplain river landscapes at larger regional scales, including amelioration of the effects of water resource development.
APA, Harvard, Vancouver, ISO, and other styles
2

Boys, Craig Ashley, and n/a. "Fish-Habitat Associations in a Large Dryland River of the Murray-Darling Basin, Australia." University of Canberra. Resource, Environmental & Heritage Sciences, 2007. http://erl.canberra.edu.au./public/adt-AUC20070807.112943.

Full text
Abstract:
Many aspects concerning the association of riverine fish with in-channel habitat remain poorly understood, greatly hindering the ability of researchers and managers to address declines in fish assemblages. Recent insights gained from landscape ecology suggest that small, uni-scalar approaches are unlikely to effectively determine those factors that influence riverine structure and function and mediate fish-habitat associations. There appears to be merit in using multiple-scale designs built upon a geomorphologically-derived hierarchy to bridge small, intermediate and large spatial scales in large rivers. This thesis employs a hierarchical design encompassing functional process zones (referred to hereafter as zones), reaches and mesohabitats to investigate fish-habitat associations as well as explore patterns of in-channel habitat structure in one of Australia's largest dryland river systems; the Barwon-Darling River. In this thesis, empirical evidence is presented showing that large dryland rivers are inherently complex in structure and different facets of existing conceptual models of landscape ecology must be refined when applied to these systems. In-channel habitat and fish exist within a hierarchical arrangement of spatial scales in the riverscape, displaying properties of discontinuities, longitudinal patterns and patch mosaics. During low flows that predominate for the majority of time in the Barwon-Darling River there is a significant difference in fish assemblage composition among mesohabitats. There is a strong association between large wood and golden perch, Murray cod and carp, but only a weak association with bony herring. Golden perch and Murray cod are large wood specialists, whereas carp are more general in there use of mesohabitats. Bony herring are strongly associated with smooth and irregular banks but are ubiquitous in most mesohabitats. Open water (mid-channel and deep pool) mesohabitats are characterised by relatively low abundances of all species and a particularly weak association with golden perch, Murray cod and carp. Murray cod are weakly associated with matted bank, whereas carp and bony herring associate with this mesohabitat patch in low abundance. Nocturnal sampling provided useful information on size-related use of habitat that was not evident from day sampling. Both bony herring and carp exhibited a variety of habitat use patterns throughout the die1 period and throughout their lifetime, with temporal partitioning of habitat use by juvenile bony herring and carp evident. Much of the strong association between bony herring and smooth and irregular banks was due to the abundance of juveniles (<100mm in length) in these mesohabitats. Adult bony herring (>100mm length) occupied large wood more than smooth and irregular banks. At night, juvenile bony herring were not captured, suggesting the use of deeper water habitats. Adult bony herring were captured at night and occupjed large wood, smooth bank and irregular bank. Juvenile carp (<200mm length) were more abundant at night and aggregated in smooth and irregular banks more than any other mesohabitat patch. Adult carp (>200mm length) occupied large wood during both day and night. There is a downstream pattern of change in the fish assemblage among river zones, with reaches in Zone 2 containing a larger proportion of introduced species (carp and goldfish) because of a significantly lower abundance of native species (bony herring, golden perch and Murray cod) than all other zones. In comparison, the fish assemblage of Zone 3 was characterised by a comparatively higher abundance of the native species bony herring, golden perch and Murray cod. A significant proportion of the amongreach variability in fish assemblage composition was explained at the zone scale, suggesting that geomorphological influences may impose some degree of top-down constraint over fish assemblage distribution. Although mesohabitat composition among reaches in the Barwon-Darling River also changed throughout the study area, this pattern explained very little of the large-scale distribution of the fish assemblage, with most of the variability in assemblage distribution remaining unexplained. Therefore, although mesohabitat patches strongly influence the distribution of species within reaches, they explain very little of assemblage composition at intermediate zone and larger river scales. These findings suggest that small scale mesohabitat rehabilitation projects within reaches are unlikely to produce measurable benefits for the fish assemblage over intermediate and large spatial scales in the Barwon-Darling River. This indicates the importance taking a holistic approach to river rehabilitation that correctly identifies and targets limiting processes at the correct scales. The variable nature of flow-pulse dynamics in the Barwon-Darling River creates a shifting habitat mosaic that serves to maintain an ever-changing arrangement of habitat patches. The inundation dynamics of large wood habitat described in this thesis highlights the fragmented nature of mesohabitat patches, with the largest proportion of total in-channel large wood remaining unavailable to fish for the majority of the time. At low flows there is a mosaic of large wood habitat and with increasing discharge more potential large wood habitat becomes available and does so in a complex spatial manner. What results in this dryland river is a dynamic pattern of spatio-temporal patchiness in large wood habitat availability that is seen both longitudinally among different river zones and vertically among different heights in the river channel. Water resource development impacts on this shifting habitat mosaic. Projects undertaking both fish habitat assessment and rehabilitation need to carefully consider spatial scale since the drivers of fish assemblage structure can occur at scales well beyond that of the reach. Fish-habitat associations occurring at small spatial scales can become decoupled by process occurring across large spatial scales, making responses in the fish assemblage hard to predict. As rivers become increasingly channelised, there is an urgent need to apply research such as that conducted in this thesis to better understand the role that in-channel habitats play in supporting fish and other ecosystem processes. Habitat rehabilitation projects need to be refined to consider the appropriate scales at which fish assemblages associate with habitat. Failure to do so risks wasting resources and forgoes valuable opportunities for addressing declines in native fish populations. Adopting multi-scalar approaches to understanding ecological processes in aquatic ecosystems, as developed in this thesis, should be a priority of research and management. To do so will enable more effective determination of those factors that influence riverine structure and function at the approariate scale.
APA, Harvard, Vancouver, ISO, and other styles
3

Carini, Giovannella, and n/a. "Effects of Contemporary and Historical Processes on Population Genetic Structure of Two Freshwater Species in Dryland River Systems (Western Queensland, Australia)." Griffith University. Australian School of Environmental Studies, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20050113.081250.

Full text
Abstract:
Arid and semiarid river systems in Western Queensland, Australia, are characterized by the unpredictable and highly variable nature of their hydrological regimes as a result of the episodic nature of rain events in the region. These dryland rivers typically experience episodic floods and extremely low or no flow periods. During low or no flow periods, water persists only in relatively wide and deep sections of the river channels, which are called 'waterholes'. These isolated waterholes serve as refugia for aquatic species during protracted intervals between floods. In such discontinuous riverine habitat, dispersal of freshwater species may be achieved only during wet seasons, when water is flowing in rivers and the nearby floodplains. Obligate aquatic species occur in habitats that represent discrete sites surrounded by inhospitable terrestrial landscapes. Thus, movements are very much limited by the physical nature and arrangement of the riverine system. In addition, the distribution of a species may be also largely dependent on historical events. Landscape and river courses continually change over geological time, often leaving distinct phylogenetic 'signatures', useful in reconciling species' biology with population connectivity and earth history. The main aim of this study was to resolve the relative importance of contemporary and historical processes in structuring populations of two freshwater species in Western Queensland river systems. To address this aim, a comparative approach was taken in analysing patterns of genetic variation of two freshwater invertebrates: a snail (Notopala sublineata) and a prawn (Macrobrachium australiense). Mitochondrial sequences were used for both the species. In addition, allozyme and microsatellites markers were employed for N. sublineata. These species have similar distributions in Western Queensland region, although N. sublineata appears to be extinct in some catchments. M. australiense is thought to have good dispersal abilities due to a planktonic larval phase in its life cycle and good swimming capabilities, whereas N. sublineata is thought to have limited dispersal abilities, because of its benthic behaviour and because this species is viviparous. It was hypothesised that these freshwater invertebrates, would display high levels of genetic structure in populations, because physical barriers represented by terrestrial inhospitable habitat, are likely to impede gene flow between populations inhabiting isolated river pools. Genetic data for the two species targeted in this study supported this hypothesis, indicating strong population subdivision at all spatial scales investigated (i.e. between and within catchments). This suggests that contemporary dispersal between isolated waterholes is relatively restricted, despite the potential good dispersal abilities of one of the species. It was hypothesised that levels of gene flow between populations of aquatic species were higher during the Quaternary (likely movements of individuals across catchment boundaries) and that they have been isolated relatively recently. There is evidence that historically gene flow was occurring between populations, suggesting that episodic dispersal across catchment boundaries was likelier in the past. Episodic historical movements of aquatic fauna were facilitated by higher patterns of river connectivity as a result of the climate changes of the Pleistocene. Because the two species targeted in this study exhibit analogous spatial patterns of evolutionary subdivision it is likely that they have a shared biogeographic history. The unpredictable flow regime of rivers in Western Queensland is likely to have considerable effects on the genetic diversity of aquatic populations. First, if populations of obligate freshwater organisms inhabiting less persistent waterholes are more likely to experience periodic bottlenecks than those inhabiting more persistent ones, they would be expected to have lower levels of genetic diversity. Second, if populations inhabiting less persistent waterholes periodically undergo local extinction with subsequent recolonisation, there should be higher levels of genetic differentiation among them, due to the founder effects, than among those populations inhabiting more persistent waterholes. Contrary to the first prediction, the observed levels of genetic diversity in both N. sublineata and M. australiense were high in both more persistent and less persistent waterholes. There was no tendency for genetic diversity to be lower in less persistent than in more persistent waterholes. However, when Cooper waterholes were ranked in order of persistence, positive correlation between water persistence time in waterholes and genetic diversity was detected in N. sublineata but not in M. australiense. Contrary to the second prediction, highly significant genetic differentiation was found among populations from both less persistent and more persistent waterholes. This indicates that not only populations from less persistent but also those from more persistent waterholes were very dissimilar genetically. This study demonstrated the importance of both contemporary and historical processes in shaping the population structure of obligate freshwater species in Western Queensland river systems. It has indicated that contemporary movements of freshwater species generally are extremely limited across the region, whereas episodic dispersal across catchment boundaries was possible during the Pleistocene, due to different patterns of river connectivity.
APA, Harvard, Vancouver, ISO, and other styles
4

Cunha, Costa Alexandre. "Analyzing and modelling of flow transmission processes in river-systems with a focus on semi-arid conditions." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5969/.

Full text
Abstract:
One of the major problems for the implementation of water resources planning and management in arid and semi-arid environments is the scarcity of hydrological data and, consequently, research studies. In this thesis, the hydrology of dryland river systems was analyzed and a semi-distributed hydrological model and a forecasting approach were developed for flow transmission processes in river-systems with a focus on semi-arid conditions. Three different sources of hydrological data (streamflow series, groundwater level series and multi-temporal satellite data) were combined in order to analyze the channel transmission losses of a large reach of the Jaguaribe River in NE Brazil. A perceptual model of this reach was derived suggesting that the application of models, which were developed for sub-humid and temperate regions, may be more suitable for this reach than classical models, which were developed for arid and semi-arid regions. Summarily, it was shown that this river reach is hydraulically connected with groundwater and shifts from being a losing river at the dry and beginning of rainy seasons to become a losing/gaining (mostly losing) river at the middle and end of rainy seasons. A new semi-distributed channel transmission losses model was developed, which was based primarily on the capability of simulation in very different dryland environments and flexible model structures for testing hypotheses on the dominant hydrological processes of rivers. This model was successfully tested in a large reach of the Jaguaribe River in NE Brazil and a small stream in the Walnut Gulch Experimental Watershed in the SW USA. Hypotheses on the dominant processes of the channel transmission losses (different model structures) in the Jaguaribe river were evaluated, showing that both lateral (stream-)aquifer water fluxes and ground-water flow in the underlying alluvium parallel to the river course are necessary to predict streamflow and channel transmission losses, the former process being more relevant than the latter. This procedure not only reduced model structure uncertainties, but also reported modelling failures rejecting model structure hypotheses, namely streamflow without river-aquifer interaction and stream-aquifer flow without groundwater flow parallel to the river course. The application of the model to different dryland environments enabled learning about the model itself from differences in channel reach responses. For example, the parameters related to the unsaturated part of the model, which were active for the small reach in the USA, presented a much greater variation in the sensitivity coefficients than those which drove the saturated part of the model, which were active for the large reach in Brazil. Moreover, a nonparametric approach, which dealt with both deterministic evolution and inherent fluctuations in river discharge data, was developed based on a qualitative dynamical system-based criterion, which involved a learning process about the structure of the time series, instead of a fitting procedure only. This approach, which was based only on the discharge time series itself, was applied to a headwater catchment in Germany, in which runoff are induced by either convective rainfall during the summer or snow melt in the spring. The application showed the following important features: • the differences between runoff measurements were more suitable than the actual runoff measurements when using regression models; • the catchment runoff system shifted from being a possible dynamical system contaminated with noise to a linear random process when the interval time of the discharge time series increased; • and runoff underestimation can be expected for rising limbs and overestimation for falling limbs. This nonparametric approach was compared with a distributed hydrological model designed for real-time flood forecasting, with both presenting similar results on average. Finally, a benchmark for hydrological research using semi-distributed modelling was proposed, based on the aforementioned analysis, modelling and forecasting of flow transmission processes. The aim of this benchmark was not to describe a blue-print for hydrological modelling design, but rather to propose a scientific method to improve hydrological knowledge using semi-distributed hydrological modelling. Following the application of the proposed benchmark to a case study, the actual state of its hydrological knowledge and its predictive uncertainty can be determined, primarily through rejected hypotheses on the dominant hydrological processes and differences in catchment/variables responses.
Die Bewirtschaftung von Wasserressourcen in ariden und semiariden Landschaften ist mit einer Reihe besonderer Probleme konfrontiert. Eines der größten Probleme für die Maßnahmenplanung und für das operationelle Management ist der Mangel an hydrologischen Daten und damit zusammenhängend auch die relativ kleine Zahl wissenschaftlicher Arbeiten zu dieser Thematik. In dieser Arbeit wurden 1) die grundlegenden hydrologischen Bedingungen von Trockenflusssystemen analysiert, 2) ein Modellsystem für Flüsse unter semiariden Bedingungen, und 3) ein nichtparametrisches Vorhersage-verfahren für Abflussvorgänge in Flüssen entwickelt. Der Wasserverlust in einem großen Abschnitt des Jaguaribe Flusses im nordöstlichen Brasilien wurde auf Basis von Daten zu Abflussraten, Grundwasserflurabstände und mit Hilfe multitemporaler Satellitendaten analysiert. Dafür wurde zuerst ein konzeptionelles hydrologisches Modell über die Mechanismen der Transferverluste in diesem Abschnitt des Trockenflusses erstellt. Dabei ergab sich, dass der Flussabschnitt mit dem Grundwasser hydraulisch verbunden ist. Der Flussabschnitt weist in der Trockenenzeit und am Anfang der Regenzeit nur Wasserverlust (Sickerung) zum Grundwasser auf. Im Laufe der Regenzeit findet auch ein gegenseitiger Austausch vom Grundwasser mit dem Flusswasser statt. Aufgrund dieser hydraulischen Kopplung zwischen Flusswasser und Grundwasser sind für diesen Flussabschnitt hydrologische Modellansätze anzuwenden, die generell für gekoppelte Fluss-Grundwassersysteme, v.a. in feuchtgemäßigten Klimaten, entwickelt wurden. Es wurde ein neuartiges hydrologisches Simulationsmodell für Transferverluste in Trockenflüssen entwickelt. Dieses Modell ist für unterschiedliche aride und semiaride Landschaften anwendbar und hat eine flexible Modellstruktur, wodurch unterschiedliche Hypothesen zur Relevanz einzelner hydrologische Prozesse getestet werden können. Es wurde für den zuvor genannten großen Abschnitt des Jaguaribe Flusses im nordöstlichen Brasilien und für einen kleinen Flussabschnitt im „Walnut Gulch Experimental Watershed“ (WGEW) in Arizona, Südwest-USA, angewendet. Für die eine prozess-orientierte Simulation von Abflussbedingungen und Transferverlusten im Einzugsgebiet des Jaguaribe hat sich gezeigt, dass die am besten geeignete Modellstruktur sowohl den Austausch zwischen Flusswasser und Grundwasser (senkrecht zur Fließrichtung des Flusses) als auch die parallel zum Fluss verlaufende Grundwasserströmung enthält. Die Simulationsexperimente mit unterschiedlichen Modellstrukturen („Hypothesentest“) reduzierte nicht nur die Modellstrukturunsicherheit, sondern quantifizierte auch die Qualität der Modellergebnisse bei folgenden Varianten der Modellstruktur: a) Abflluss im Fluss ohne Interaktion mit dem Grundwasser (keine Transferverluste) und b) Interaktion zwischen Fluss und Grundwasser ohne parallelen Grundwasserstrom zum Flussstrom. Durch die Anwendung auf die beiden unterschiedlichen Trockenflusssysteme wurden neue Erkenntnisse über die Sensitivität des Modells unter verschiedenen Bedingungen erworben. Beispielsweise waren die Parameter der ungesättigten Zone, die von hoher Relevanz für den kleinen Flussabschnitt im WGEW waren, viel sensitiver als die Parameter der gesättigten Zone, die besonders relevant für den Jaguaribe Flussabschnitt in Brasilien waren. Die Ursache für diese sehr unterschiedliche Sensitivität liegt darin, dass beim WGEW das Flusswasser nur mit der ungesättigten Zone in Kontakt steht, da sich in diesem Gebiet, welche im Vergleich zur Jaguaribe-Region noch deutlich trockener ist, kein Grund-wasserleiter bildet. Letztlich wurde ein nicht-parametrisches Verfahren, zur Simulation der deterministischen Evolution und stochastischen Fluktuation der Abflussdynamik entwickelt. Im Unterschied zu prozessbasiertem Modellsystemen basiert dieses Verfahren nicht auf Modellkalibrierung sondern auf einem Lernprozess, basierend auf Zeitreihendaten. Als Anwendungsbeispiel wurde ein mesoskaliges Einzugsgebiet im Erzgebirge, NO-Deutschland gewählt, in dem starke Abflussereignisse entweder durch konvektive Niederschlagsereignisse oder durch Schneeschmelze generiert werden. Die folgenden wichtigsten Ergebnisse wurden erzielt: • Regressionsmodellansätze basierend auf den zeitlichen Änderungen der Abflüsse liefern bessere Ergebnisse gegenüber Ansätzen basierend auf direkten Abflussdaten; • mit zunehmendem Vorhersagehorizont wandelt sich das hydrologische System von einem mit Zufallsanteilen verrauschten dynamischen System zu einem linearen probabilistischen Zufallsprozess; • Bei zunehmendem Abfluss (ansteigenden Ganglinie) erfolgt meist eine Abflussunterschätzung, bei abnehmendem Abfluss (fallende Ganglinie) erfolgt meist eine Abflussüberschätzung. Dieses nichtparametrische Verfahren ergibt im Vergleich mit einem prozess-orientierten und flächenverteilten hydrologischen Hochwasservorhersagemodell bis zu einem Vorhersagezeitraum von 3 Stunden Ergebnisse von vergleichbar guter Qualität. Letztendlich wurde ein Vorgehen bzgl. künftiger Forschungen zu hydrologischer Modellierung vorgeschlagen. Das Ziel dabei war ein wissenschaftliches Verfahren zur Verbesserung des hydrologischen Wissens über ein Einzugsgebiet. Diese Verfahren basiert auf einem Hypothesentest zu den relevanten hydrologischen Prozessen und der Untersuchung der Sensitivitäten der hydrologischen Variablen bei unterschiedlichen Einzugsgebieten.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dryland river system"

1

Amede, Tilahun, Seleshi Bekele Awulachew, Bancy Matti, and Muluneh Yitayew. "Managing Rainwater for Resilient Dryland Systems in Sub-Saharan Africa: Review of Evidences." In Nile River Basin, 517–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02720-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shachak, Moshe, and Steward T. A. Pickett. "Species Diversity and Ecosystem Processes in Water-Limited Systems." In Biodiversity in Drylands. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195139853.003.0015.

Full text
Abstract:
There are many relationships between ecosystem properties and species (Jones and Lawton, 1995) with the potential links described by five hypotheses: 1. The null hypothesis claims that there is no effect of species diversity on ecosystem processes. The following hypotheses imply biological mechanisms. 2. The diversity–stability hypothesis predicts that ecosystem productivity and recovery increase as the number of species increases (Johnson et al. 1996). 3. The rivet hypothesis predicts a threshold in species richness, below which ecosystem function declines steadily and above which changes in species richness are not reflected by changes in ecosystem function (Ehrlich and Ehrlich 1981; Vitousek and Hooper 1993). 4. The redundant species hypothesis states that species loss has little effect on ecosystem processes if the losses are within the same functional group (Walker 1992) 5. The idiosyncratic response hypothesis suggests that as diversity changes so do ecocosystem processes (Lawton 1994, Lawton and Brown 1994). There have been both field and laboratory attempts to test these hypotheses, (Naeem and Li 1998), however, the interpretation and the generality of the results remain contentious (Tilman 1999). A fundamental reason for such uncertainty is that the hypotheses are not driven by a comprehensive theory of the relationship between species properties and ecosystem processes (Tilman et al., 1997). We propose that the foundations for the necessary theory are in models of the distribution of resources and their utilization by organisms. This is because ecosystem processes such as primary production, decomposition, mineralization, and evapotranspiration are dependent on the processing of resources by the species that are producers, consumers, and decomposers. A theory that links the direct participation of species in ecosystem processes may resolve differences among the various hypotheses or identify how they complement each other. From a community perspective, a theory of resource utilization is based on two alternative assumptions: 1. The rate of ecosystem processes is determined by the few species that are most efficient in using and converting resources. For example, in a desert system, dominant species are those that are proficient in using water for biomass production or in converting inorganic matter into organic materials.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dryland river system"

1

Wilson, Glenn. "Flow as a disturbance agent: fish responses to serial flooding in a hydrologically-variable dryland river system, Australia." In 5th European Congress of Conservation Biology. Jyväskylä: Jyvaskyla University Open Science Centre, 2018. http://dx.doi.org/10.17011/conference/eccb2018/108200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography