Academic literature on the topic 'Drug Side Effect Prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drug Side Effect Prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Drug Side Effect Prediction"
Hu, Baofang, Hong Wang, and Zhenmei Yu. "Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network." Molecules 24, no. 20 (October 11, 2019): 3668. http://dx.doi.org/10.3390/molecules24203668.
Full textSeo, Sukyung, Taekeon Lee, Mi-hyun Kim, and Youngmi Yoon. "Prediction of Side Effects Using Comprehensive Similarity Measures." BioMed Research International 2020 (February 28, 2020): 1–10. http://dx.doi.org/10.1155/2020/1357630.
Full textKim, Jinwoo, and Miyoung Shin. "A Knowledge Graph Embedding Approach for Polypharmacy Side Effects Prediction." Applied Sciences 13, no. 5 (February 22, 2023): 2842. http://dx.doi.org/10.3390/app13052842.
Full textArshed, Muhammad Asad, Shahzad Mumtaz, Omer Riaz, Waqas Sharif, and Saima Abdullah. "A Deep Learning Framework for Multi Drug Side Effects Prediction with Drug Chemical Substructure." Vol 4 Issue 1 4, no. 1 (January 22, 2022): 19–31. http://dx.doi.org/10.33411/ijist/2022040102.
Full textMohd Ali, Yousoff Effendy, Kiam Heong Kwa, and Kurunathan Ratnavelu. "Predicting new drug indications from network analysis." International Journal of Modern Physics C 28, no. 09 (September 2017): 1750118. http://dx.doi.org/10.1142/s0129183117501182.
Full textZhao, Xian, Lei Chen, Zi-Han Guo, and Tao Liu. "Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks." Current Bioinformatics 14, no. 8 (December 13, 2019): 709–20. http://dx.doi.org/10.2174/1574893614666190220114644.
Full textDuffy, Áine, Marie Verbanck, Amanda Dobbyn, Hong-Hee Won, Joshua L. Rein, Iain S. Forrest, Girish Nadkarni, Ghislain Rocheleau, and Ron Do. "Tissue-specific genetic features inform prediction of drug side effects in clinical trials." Science Advances 6, no. 37 (September 2020): eabb6242. http://dx.doi.org/10.1126/sciadv.abb6242.
Full textChen, Lei, Tao Huang, Jian Zhang, Ming-Yue Zheng, Kai-Yan Feng, Yu-Dong Cai, and Kuo-Chen Chou. "Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions." BioMed Research International 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/485034.
Full textZhou, Mengshi, Yang Chen, and Rong Xu. "A Drug-Side Effect Context-Sensitive Network approach for drug target prediction." Bioinformatics 35, no. 12 (November 14, 2018): 2100–2107. http://dx.doi.org/10.1093/bioinformatics/bty906.
Full textShaked, Itay, Matthew A. Oberhardt, Nir Atias, Roded Sharan, and Eytan Ruppin. "Metabolic Network Prediction of Drug Side Effects." Cell Systems 2, no. 3 (March 2016): 209–13. http://dx.doi.org/10.1016/j.cels.2016.03.001.
Full textDissertations / Theses on the topic "Drug Side Effect Prediction"
Wang, Chen. "High-throughput prediction and analysis of drug-protein interactions in the druggable human proteome." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5509.
Full textBellón, Molina Víctor. "Prédiction personalisée des effets secondaires indésirables de médicaments." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM023/document.
Full textAdverse drug reaction (ADR) is a serious concern that has important health and economical repercussions. Between 1.9%-2.3% of the hospitalized patients suffer from ADR, and the annual cost of ADR have been estimated to be of 400 million euros in Germany alone. Furthermore, ADRs can cause the withdrawal of a drug from the market, which can cause up to millions of dollars of losses to the pharmaceutical industry.Multiple studies suggest that genetic factors may play a role in the response of the patients to their treatment. This covers not only the response in terms of the intended main effect, but also % according toin terms of potential side effects. The complexity of predicting drug response suggests that machine learning could bring new tools and techniques for understanding ADR.In this doctoral thesis, we study different problems related to drug response prediction, based on the genetic characteristics of patients.We frame them through multitask machine learning frameworks, which combine all data available for related problems in order to solve them at the same time.We propose a novel model for multitask linear prediction that uses task descriptors to select relevant features and make predictions with better performance as state-of-the-art algorithms. Finally, we study strategies for increasing the stability of the selected features, in order to improve interpretability for biological applications
Amanzadi, Amirhossein. "Predicting safe drug combinations with Graph Neural Networks (GNN)." Thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446691.
Full textVillafranca, Steven Wayne. "The effect of early psychostimulant treatment on abuse liability and dopamine receptors." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2824.
Full textDiaz, Boada Juan Sebastian. "Polypharmacy Side Effect Prediction with Graph Convolutional Neural Network based on Heterogeneous Structural and Biological Data." Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288537.
Full textFör att minska dödligheten och sjukligheten hos patienter som lider av komplexa sjukdomar är det avgörande att kunna förutsäga biverkningar från polyfarmaci. Att experimentellt förutsäga biverkningarna är dock ogenomförbart på grund av det stora antalet möjliga läkemedelskombinationer, vilket lämnar in silico-verktyg som det mest lovande sättet att lösa detta problem. Detta arbete förbättrar prestandan och robustheten av ett av det senaste grafiska faltningsnätverken som är utformat för att förutsäga biverkningar från polyfarmaci, genom att mata det med läkemedel-protein-nätverkets komplexitetsegenskaper. Ändringarna involverar också skapandet av en direkt pipeline för att återge resultaten och testa den med olika dataset.
Zayed, Aref. "Development of ICP-MS assays for the study and prediction of the efficacy and side effects of Pt-based drugs in cancer chemotherapy." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9446.
Full textGauthier, Kelly J. "Length of Hospital Stay, Delirium and Discharge Status Outcomes Associated With Anticholinergic Drug Use in Elderly Hospitalized Dementia Patients." VCU Scholars Compass, 2006. http://hdl.handle.net/10156/1704.
Full textWinter, Lara. "Characterisation of the neurosteroid analgesic alphadolone." Monash University, Dept. of Anaesthesia, 2004. http://arrow.monash.edu.au/hdl/1959.1/9669.
Full textKucher, Kellie Lynn. "Effect of preweanling methylphenidate exposure on the induction, extinction and reinstatement of morphine-Induced conditioned place preference in rats." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2892.
Full textGouws, Stephanus Andries. "The impact of hospital surveillance programmes on the incidence of adverse drug reaction reporting in a South African teaching hospital." Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/27186.
Full textBooks on the topic "Drug Side Effect Prediction"
J, Vaz Roy, and Klabunde Thomas, eds. Antitargets: Prediction and prevention of drug side effects. Weinheim: Wiley-VCH, 2008.
Find full textJ, Vaz Roy, and Klabunde Thomas, eds. Antitargets: Prediction and prevention of drug side effects. Weinheim: Wiley-VCH, 2008.
Find full textRoy, Kunal. Quantitative structure-activity relationships in drug design, predictive toxicology, and risk assessment. Hershey PA: Medical Information Science Reference, an imprint of IGI Global, 2015.
Find full textRachlis, Anita. Anti-retroviral treatment: Side effect management : report. [Ottawa]: Health and Welfare Canada, 1991.
Find full textDrug actions and interactions. New York: McGraw-Hill Medical, 2011.
Find full textPhysicians' guide to drug eruptions. New York: Parthenon Pub. Group, 1998.
Find full textGabriele, Cruciani, ed. Molecular interaction fields: Applications in drug discovery and ADME prediction. Weinheim: Wiley-VCH, 2005.
Find full textDetection of new adverse drug reactions. 3rd ed. Basingstoke: Macmillan, 1992.
Find full textCutaneous side effects of drugs. Philadelphia: Saunders, 1988.
Find full textC, Talbot J. C., ed. The detection of new adverse drug reactions. 2nd ed. Basingstoke: Macmillan, 1988.
Find full textBook chapters on the topic "Drug Side Effect Prediction"
Singh, Davinder Paul, Abhishek Gupta, and Baijnath Kaushik. "Anti-Drug Response and Drug Side Effect Prediction Methods: A Review." In Computational Intelligence and Data Analytics, 153–67. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3391-2_11.
Full textMigeon, Jacques. "Prediction of Side Effects Based on Fingerprint Profiling and Data Mining." In Polypharmacology in Drug Discovery, 111–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118098141.ch6.
Full textVijayan, Alpha, and B. S. Chandrasekar. "Drug-Drug Interactions and Side Effects Prediction Using Shallow Ensemble Deep Neural Networks." In Lecture Notes in Electrical Engineering, 377–87. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2281-7_36.
Full textSaad, Abdelrahman, Fahima A. Maghraby, and Yasser M. Omar. "Predicting Drug Target Interaction by Integrating Drug Fingerprint and Drug Side Effect Using Machine Learning." In Advances in Intelligent Systems and Computing, 281–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14118-9_28.
Full textVijayan, Alpha, and B. S. Chandrasekar. "An Ensemble BERT CHEM DDI for Prediction of Side Effects in Drug–Drug Interactions." In International Conference on Innovative Computing and Communications, 569–81. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3679-1_47.
Full textBusatto, Anna, Jonathan Krauß, Evianne Kruithof, Hermenegild Arevalo, and Ilse van Herck. "Electromechanical In Silico Testing Alters Predicted Drug-Induced Risk to Develop Torsade de Pointes." In Computational Physiology, 19–29. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25374-4_2.
Full textKanji, Rakesh, and Ganesh Bagler. "A Generalized Partial Canonical Correlation Model to Measure Contribution of Individual Drug Features Toward Side Effects Prediction." In Advances in Data Science and Management, 159–72. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0978-0_15.
Full textWiseman, E. H., and Y. Noguchi. "Limitations of laboratory models in predicting gastrointestinal toleration of oxicams and other anti-inflammatory drugs." In Side-Effects of Anti-Inflammatory Drugs, 41–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-010-9775-8_3.
Full textPinto, Diogo, Pedro Costa, Rui Camacho, and Vítor Santos Costa. "Predicting Drugs Adverse Side-Effects Using a Recommender-System." In Discovery Science, 201–8. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24282-8_17.
Full textAtias, Nir, and Roded Sharan. "An Algorithmic Framework for Predicting Side-Effects of Drugs." In Lecture Notes in Computer Science, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12683-3_1.
Full textConference papers on the topic "Drug Side Effect Prediction"
Sun, Chengcheng, Yi Zheng, Yan Jia, and Liang Gan. "Drug Side-effect Prediction based on Comprehensive Drug Similarity." In 2016 International Forum on Mechanical, Control and Automation (IFMCA 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/ifmca-16.2017.28.
Full textJahid, Md Jamiul, and Jianhua Ruan. "An ensemble approach for drug side effect prediction." In 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2013. http://dx.doi.org/10.1109/bibm.2013.6732532.
Full textZheng, Yi, Shameek Ghosh, and Jinyan Li. "An Optimized Drug Similarity Framework for Side-effect Prediction." In 2017 Computing in Cardiology Conference. Computing in Cardiology, 2017. http://dx.doi.org/10.22489/cinc.2017.128-068.
Full textLuo, Yifu, Qijun Liu, Wenjian Wu, Fei Li, and Xiaochen Bo. "Predicting drug side effects based on link prediction in bipartite network." In 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2014. http://dx.doi.org/10.1109/bmei.2014.7002869.
Full textZhang, Wen, Yanlin Chen, Shikui Tu, Feng Liu, and Qianlong Qu. "Drug side effect prediction through linear neighborhoods and multiple data source integration." In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822555.
Full textHu, Pengwei, Keith C. C. Chan, Lun Hu, and Henry Leung. "Discovering second-order sub-structure associations in drug molecules for side-effect prediction." In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8218013.
Full textEtani, Noriko. "Prediction Model of Side Effect in Drug Discovery and its Implementation for Web Application." In Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015). Global Science and Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2382-5669_ict-bdcs15.35.
Full textYao, Wenjie, Weizhong Zhao, Xingpeng Jiang, Xianjun Shen, and Tingting He. "MPGNN-DSA: A Meta-path-based Graph Neural Network for drug-side effect association prediction." In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995486.
Full textHu, Pengwei, Zhu-Hong You, Tiantian He, Shaochun Li, Shuhang Gu, and Keith C. C. Chan. "Learning Latent Patterns in Molecular Data for Explainable Drug Side Effects Prediction." In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2018. http://dx.doi.org/10.1109/bibm.2018.8621121.
Full textRozemberczki, Benedek, Stephen Bonner, Andriy Nikolov, Michaël Ughetto, Sebastian Nilsson, and Eliseo Papa. "A Unified View of Relational Deep Learning for Drug Pair Scoring." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/777.
Full textReports on the topic "Drug Side Effect Prediction"
Johnson, Corey, Colton James, Sarah Traughber, and Charles Walker. Postoperative Nausea and Vomiting Implications in Neostigmine versus Sugammadex. University of Tennessee Health Science Center, July 2021. http://dx.doi.org/10.21007/con.dnp.2021.0005.
Full textWideman, Jr., Robert F., Nicholas B. Anthony, Avigdor Cahaner, Alan Shlosberg, Michel Bellaiche, and William B. Roush. Integrated Approach to Evaluating Inherited Predictors of Resistance to Pulmonary Hypertension Syndrome (Ascites) in Fast Growing Broiler Chickens. United States Department of Agriculture, December 2000. http://dx.doi.org/10.32747/2000.7575287.bard.
Full text