To see the other types of publications on this topic, follow the link: Drug Resistance.

Journal articles on the topic 'Drug Resistance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Drug Resistance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

K, Tiwari. "Drug Resistance: Challenges and Updates." Journal of Natural & Ayurvedic Medicine 3, no. 3 (July 15, 2019): 1–2. http://dx.doi.org/10.23880/jonam-16000196.

Full text
Abstract:
Use of antibiotics increased dramatically in last two decades. To cure most of the diseases broad spectrum antibiotics given. Human society and healthcare is going in wrong direction. One way the pharmaceutical companies are making huge money from it. The other way around is the overuse of these antibiotics, by patients knowing or unknowingly, not only making pathogens adapted but also the normal flora organisms becoming pathogens in coming future? Present article highlight the issues and possible solution of the present scenario.
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, Amresh Kumar. "Resistance patterns and trends of extensively drug-resistant tuberculosis: 5-year experience." Journal of Microbiology and Infectious Diseases 03, no. 04 (December 1, 2013): 169–75. http://dx.doi.org/10.5799/ahinjs.02.2013.04.0103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dyary, Hiewa Othman. "Veterinary Anthelmintics and Anthelmintic Drug Resistance." Journal of Zankoy Sulaimani - Part A 18, no. 1 (November 12, 2015): 191–206. http://dx.doi.org/10.17656/jzs.10463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Çelik, Cem. "Increasing antimicrobial resistance in nosocomial pathogens; multidrug-resistant extensively drug-resistant and pandrug-resistant Acinetobacter baumannii." Journal of Microbiology and Infectious Diseases 4, no. 1 (March 1, 2014): 7–12. http://dx.doi.org/10.5799/ahinjs.02.2014.01.0116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giaccone, Giuseppe, and Herbert M. Pinedo. "Drug Resistance." Oncologist 1, no. 1-2 (February 1996): 82–87. http://dx.doi.org/10.1634/theoncologist.1-1-82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hochhauser, D., and A. L. Harris. "Drug resistance." British Medical Bulletin 47, no. 1 (1991): 178–96. http://dx.doi.org/10.1093/oxfordjournals.bmb.a072454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prichard, R. K. "Drug resistance." International Journal for Parasitology 29, no. 1 (January 1999): 137–38. http://dx.doi.org/10.1016/s0020-7519(98)00191-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Texidó, Gemma, and Jürgen Moll. "Drug resistance." Drug Discovery Today: Technologies 11 (March 2014): 1–3. http://dx.doi.org/10.1016/j.ddtec.2014.03.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Köser, Claudio U., Babak Javid, Kathleen Liddell, Matthew J. Ellington, Silke Feuerriegel, Stefan Niemann, Nicholas M. Brown, et al. "Drug-resistance mechanisms and tuberculosis drugs." Lancet 385, no. 9965 (January 2015): 305–7. http://dx.doi.org/10.1016/s0140-6736(14)62450-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Coen, Donald M., and Richard J. Whitley. "Antiviral drugs and antiviral drug resistance." Current Opinion in Virology 1, no. 6 (December 2011): 545–47. http://dx.doi.org/10.1016/j.coviro.2011.10.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hall, Andrew G., and Julie Irving. "New drugs, new drug resistance mechanisms." Expert Review of Anticancer Therapy 2, no. 3 (June 2002): 239–340. http://dx.doi.org/10.1586/14737140.2.3.239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kumar, Saurabh, and Richa Prasad Mahato. "DRUG RESISTANCE AND RESISTANCE REVERSAL STRATEGIES IN MALARIA PARASITE." Journal of microbiology, biotechnology and food sciences 13, no. 5 (February 5, 2024): e10384. http://dx.doi.org/10.55251/jmbfs.10384.

Full text
Abstract:
The public health care system is currently facing a major problem with malaria. Globally, malarial deaths have decreased by an estimated 40% in the past two decades because of the clinically effective drugs (artemisinin-based combination therapies) against Plasmodium falciparum. In recent years, P falciparum develop resistance against all antimalarial drugs and then becomes developed multidrug resistance that a major challenge. Even though drug discovery programs have made substantial progress in the past decade, the potential for new drugs/combinations to improve the effectiveness of current malaria control strategies. Beyond, we have compiled a comprehensive review of clinically approved anti-malarial drugs with resistance mechanisms and a novel drug-resistance reversal approach in one place to meet this demand. The review aimed to provide detailed information on drug resistance, its regulatory molecular mechanisms responsible for resistance, and the novel available treatment of malaria. In this review, the article will help in developing effective interventions, potential approaches, and strategies to handle antimalarial resistance. This will prevent life-threatening infections.
APA, Harvard, Vancouver, ISO, and other styles
13

Yusuf, Yenni. "ANTI-MALARIAL DRUG RESISTANCE." Majalah Kedokteran Andalas 37, no. 1 (May 3, 2015): 64. http://dx.doi.org/10.22338/mka.v37.i1.p64-69.2014.

Full text
Abstract:
AbstrakTujuan studi ini adalah untuk menjelaskan mekanisme resistensi parasit malaria danusaha-usaha yang dapat dilakukan untuk menghadapi munculnya strain parasit yangresisten terhadap artemisinin. Metode yang digunakan adalah studi kepustakaan. ResistensiP.falciparum terhadap obat-obat anti malaria disebabkan oleh perubahan spontan yangterjadi pada beberapa gen seperti P.falciparum multi drug resistance1 (Pfmdr1), P.falciparumchloroquine transporter (Pfcrt), P.falciparum dihydropteroate synthase (Pfdhps), P.falciparumdihydrofolate reductase (Pfdhfr), and P.falciparum multidrug resistance-associated proteins(Pfmrp). Penyebaran resistensi tersebut dipengaruhi oleh tingkat transmisi di sebuah wilayah.WHO telah menjalankan usaha untuk menanggulangi penyebaran resistensi tersebut misalnyadengan merekomendasikan penghentian monoterapi artemisinin, dan pemberian anti malariasetelah konfirmasi laboratorium. Selain itu, perlu adanya penggunaan obat kombinasi, produksirejimen dosis tetap, dan pengembangan obat anti malaria baru. Kesimpulan dari hasil studiini ialah munculnya malaria resisten terhadap artemisinin akan menghambat usaha eradikasimalaria karena itu diperlukan usaha-usaha untuk menanggulanginya.AbstractThe objective of this study was to describe the development of anti-malarial drug resistanceof the parasites and the efforts taken to contain the emergence of artemisinin resistant malaria.This was a literature study. The development of resistance to anti-malarial drugs are due tospontaneous changes in certain genes such as of P.falciparum multi drug resistance1 (Pfmdr1),P.falciparum chloroquine resistance transporter (Pfcrt), P.falciparum dihydropteroate synthase(Pfdhps), P.falciparum dihydrofolate reductase (Pfdhfr), and P.falciparum multidrug resistanceassociatedproteins (Pfmrp). The spread of the resistance depends on the transmission ratewithin each area. WHO has established a global plan to contain the spread of this resistance,such as recommendation to withdraw artemisinin-based monotherapies and administrationof treatment after laboratory confirmation. In addition, administration of anti-malarial drugcombination, production of fixed dose regimen and development of new drugs are necessary.The Conclusion is emergence of artemisinin resistant malaria will threaten malaria eradicationthus some efforts are necessarily needed to contain it.Afiliasi penulis: Bagian Parasitologi Fakultas Kedokteran Universitas Hasanudin
APA, Harvard, Vancouver, ISO, and other styles
14

Nyce, J., S. Leonard, D. Canupp, S. Schulz, and S. Wong. "Epigenetic mechanisms of drug resistance: drug-induced DNA hypermethylation and drug resistance." Proceedings of the National Academy of Sciences 90, no. 7 (April 1, 1993): 2960–64. http://dx.doi.org/10.1073/pnas.90.7.2960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hossain, Chowdhury Mobaswar, Lisa Kathleen Ryan, Meeta Gera, Sabyasachi Choudhuri, Nazmun Lyle, Kazi Asraf Ali, and Gill Diamond. "Antifungals and Drug Resistance." Encyclopedia 2, no. 4 (October 10, 2022): 1722–37. http://dx.doi.org/10.3390/encyclopedia2040118.

Full text
Abstract:
Antifungal drugs prevent topical or invasive fungal infections (mycoses) either by stopping growth of fungi (termed fungistatic) or by killing the fungal cells (termed fungicidal). Antibiotics also prevent bacterial infections through either bacteriostatic or bactericidal mechanisms. These microorganisms successfully develop resistance against conventional drugs that are designed to kill or stop them from multiplying. When a fungus no longer responds to antifungal drug treatments and continues to grow, this is known as antifungal drug resistance. Bacteria have an amazing capacity to become resistant to antibiotic action as well, and the effectiveness of the scarce antifungal arsenal is jeopardised by this antibiotic resistance, which poses a severe threat to public health.
APA, Harvard, Vancouver, ISO, and other styles
16

Perfect, John R., and Gary M. Cox. "Drug resistance in Cryptococcus neoformans." Drug Resistance Updates 2, no. 4 (August 1999): 259–69. http://dx.doi.org/10.1054/drup.1999.0090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kennedy, David A., and Andrew F. Read. "Why does drug resistance readily evolve but vaccine resistance does not?" Proceedings of the Royal Society B: Biological Sciences 284, no. 1851 (March 29, 2017): 20162562. http://dx.doi.org/10.1098/rspb.2016.2562.

Full text
Abstract:
Why is drug resistance common and vaccine resistance rare? Drugs and vaccines both impose substantial pressure on pathogen populations to evolve resistance and indeed, drug resistance typically emerges soon after the introduction of a drug. But vaccine resistance has only rarely emerged. Using well-established principles of population genetics and evolutionary ecology, we argue that two key differences between vaccines and drugs explain why vaccines have so far proved more robust against evolution than drugs. First, vaccines tend to work prophylactically while drugs tend to work therapeutically. Second, vaccines tend to induce immune responses against multiple targets on a pathogen while drugs tend to target very few. Consequently, pathogen populations generate less variation for vaccine resistance than they do for drug resistance, and selection has fewer opportunities to act on that variation. When vaccine resistance has evolved, these generalities have been violated. With careful forethought, it may be possible to identify vaccines at risk of failure even before they are introduced.
APA, Harvard, Vancouver, ISO, and other styles
18

Croft, Simon L., Shyam Sundar, and Alan H. Fairlamb. "Drug Resistance in Leishmaniasis." Clinical Microbiology Reviews 19, no. 1 (January 2006): 111–26. http://dx.doi.org/10.1128/cmr.19.1.111-126.2006.

Full text
Abstract:
SUMMARY Leishmaniasis is a complex disease, with visceral and cutaneous manifestations, and is caused by over 15 different species of the protozoan parasite genus Leishmania. There are significant differences in the sensitivity of these species both to the standard drugs, for example, pentavalent antimonials and miltefosine, and those on clinical trial, for example, paromomycin. Over 60% of patients with visceral leishmaniasis in Bihar State, India, do not respond to treatment with pentavalent antimonials. This is now considered to be due to acquired resistance. Although this class of drugs has been used for over 60 years for leishmaniasis treatment, it is only in the past 2 years that the mechanisms of action and resistance have been identified, related to drug metabolism, thiol metabolism, and drug efflux. With the introduction of new therapies, including miltefosine in 2002 and paromomycin in 2005-2006, it is essential that there be a strategy to prevent the emergence of resistance to new drugs; combination therapy, monitoring of therapy, and improved diagnostics could play an essential role in this strategy.
APA, Harvard, Vancouver, ISO, and other styles
19

de Koning, Harry P. "Drug resistance in protozoan parasites." Emerging Topics in Life Sciences 1, no. 6 (December 22, 2017): 627–32. http://dx.doi.org/10.1042/etls20170113.

Full text
Abstract:
As with all other anti-infectives (antibiotics, anti-viral drugs, and anthelminthics), the limited arsenal of anti-protozoal drugs is being depleted by a combination of two factors: increasing drug resistance and the failure to replace old and often shamefully inadequate drugs, including those compromised by (cross)-resistance, through the development of new anti-parasitics. Both factors are equally to blame: a leaking bathtub may have plenty of water if the tap is left open; if not, it will soon be empty. Here, I will reflect on the factors that contribute to the drug resistance emergency that is unfolding around us, specifically resistance in protozoan parasites.
APA, Harvard, Vancouver, ISO, and other styles
20

Kurt Yilmaz, Nese, and Celia A. Schiffer. "Introduction: Drug Resistance." Chemical Reviews 121, no. 6 (March 24, 2021): 3235–37. http://dx.doi.org/10.1021/acs.chemrev.1c00118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Emery, VC. "Cytomegalovirus Drug Resistance." Antiviral Therapy 3, no. 4 (May 1998): 239–42. http://dx.doi.org/10.1177/135965359800300403.

Full text
Abstract:
Clinical resistance of cytomegalovirus (CMV) against the currently licensed antiviral drugs is becoming an increasingly recognized problem. This review focuses on the molecular basis of resistance and describes mutations in the UL54 DNA polymerase leading to resistance against cidofovir, foscarnet and ganciclovir. The review highlights two important developments in our appreciation of resistance. Firstly, the use of more rapid molecular based assays to detect genotypic resistance and secondly, the relationship between resistance profiles in multiple organ systems of the same host. Finally, the changing face of CMV disease in the era of highly active antiviral chemotherapy is considered with respect to its impact on the frequency of CMV resistance in the clinic.
APA, Harvard, Vancouver, ISO, and other styles
22

Clavel, François, and Allan J. Hance. "HIV Drug Resistance." New England Journal of Medicine 350, no. 10 (March 4, 2004): 1023–35. http://dx.doi.org/10.1056/nejmra025195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Richman, D. D. "HIV Drug Resistance." Annual Review of Pharmacology and Toxicology 33, no. 1 (April 1993): 149–64. http://dx.doi.org/10.1146/annurev.pa.33.040193.001053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Davies, Peter, and Damian Cullen. "Antituberculosis drug resistance." Clinical Medicine 9, no. 1 (February 1, 2009): 91.1–91. http://dx.doi.org/10.7861/clinmedicine.9-1-91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Perrin, Luc. "Drug resistance mutations." AIDS 18, no. 8 (May 2004): 1201–2. http://dx.doi.org/10.1097/00002030-200405210-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

White, Nicholas J. "Antimalarial drug resistance." Journal of Clinical Investigation 113, no. 8 (April 15, 2004): 1084–92. http://dx.doi.org/10.1172/jci21682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tesio, Melania. "Starving Drug Resistance." HemaSphere 4, no. 6 (November 10, 2020): e495. http://dx.doi.org/10.1097/hs9.0000000000000495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pizzorno, Andrés, Yacine Abed, and Guy Boivin. "Influenza Drug Resistance." Seminars in Respiratory and Critical Care Medicine 32, no. 04 (August 2011): 409–22. http://dx.doi.org/10.1055/s-0031-1283281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

COEN, DONALD M. "Antiviral Drug Resistance." Annals of the New York Academy of Sciences 616, no. 1 AIDS (December 1990): 224–36. http://dx.doi.org/10.1111/j.1749-6632.1990.tb17843.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Weitzman, Jonathan B. "Cancer drug resistance." Genome Biology 2 (2001): spotlight—20010626–01. http://dx.doi.org/10.1186/gb-spotlight-20010626-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Flintoff, Wayne F. "Acquired drug resistance." Genome 31, no. 1 (January 1, 1989): 447. http://dx.doi.org/10.1139/g89-073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gold, Howard S., and Robert C. Moellering. "Antimicrobial-Drug Resistance." New England Journal of Medicine 335, no. 19 (November 7, 1996): 1445–53. http://dx.doi.org/10.1056/nejm199611073351907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Phelps, Charles E. "Bug/Drug Resistance." Medical Care 27, no. 2 (February 1989): 194–203. http://dx.doi.org/10.1097/00005650-198902000-00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Robertson, John D. "CANCER DRUG RESISTANCE." Shock 26, no. 6 (December 2006): 638. http://dx.doi.org/10.1097/01.shk.0000248599.09507.90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

RICHMAN, DOUGLAS D. "HIV Drug Resistance." AIDS Research and Human Retroviruses 8, no. 6 (June 1992): 1065–71. http://dx.doi.org/10.1089/aid.1992.8.1065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schmit, Jean-Claude. "HIV drug resistance." HIV Clinical Trials 3, no. 3 (May 2002): 225–26. http://dx.doi.org/10.1310/kmkn-ke48-2gwu-g0he.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Richman, Douglas D. "Viral drug resistance." Current Opinion in Infectious Diseases 3, no. 6 (December 1990): 819–23. http://dx.doi.org/10.1097/00001432-199012000-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Loeffler, Juergen, and David A. Stevens. "Antifungal Drug Resistance." Clinical Infectious Diseases 36, Supplement_1 (January 15, 2003): S31—S41. http://dx.doi.org/10.1086/344658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Richman, Douglas D. "Antiviral drug resistance." Antiviral Research 71, no. 2-3 (September 2006): 117–21. http://dx.doi.org/10.1016/j.antiviral.2006.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Calmy, Alexandra, Fernando Pascual, and Nathan Ford. "HIV Drug Resistance." New England Journal of Medicine 350, no. 26 (June 24, 2004): 2720–21. http://dx.doi.org/10.1056/nejm200406243502621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Pillay, D., and A. M. Geddes. "Antiviral drug resistance." BMJ 313, no. 7056 (August 31, 1996): 503–4. http://dx.doi.org/10.1136/bmj.313.7056.503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Richman, Douglas D. "Antiretroviral drug resistance." AIDS 5, Supplement (January 1991): 189. http://dx.doi.org/10.1097/00002030-199101001-00027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Richman, Douglas D. "HIV DRUG RESISTANCE." AIDS 8, Supplement 4 (November 1994): S3. http://dx.doi.org/10.1097/00002030-199411004-00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

STEVENSON, AUDREY M. "Emerging Drug Resistance." MCN, The American Journal of Maternal/Child Nursing 23, no. 4 (July 1998): 216. http://dx.doi.org/10.1097/00005721-199807000-00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Pillay, D., and M. Zambon. "Antiviral drug resistance." BMJ 317, no. 7159 (September 5, 1998): 660–62. http://dx.doi.org/10.1136/bmj.317.7159.660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Field, Hugh J., and Siân E. Goldthorpe. "Antiviral drug resistance." Trends in Pharmacological Sciences 10, no. 8 (August 1989): 333–37. http://dx.doi.org/10.1016/0165-6147(89)90069-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dannenberg, Jan-Hermen, and Anton Berns. "Drugging Drug Resistance." Cell 141, no. 1 (April 2010): 18–20. http://dx.doi.org/10.1016/j.cell.2010.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hampton, Tracy. "Cancer Drug Resistance." JAMA 309, no. 1 (January 2, 2013): 20. http://dx.doi.org/10.1001/jama.2012.173440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

McCloskey, William W. "Microbial Drug Resistance." JAMA: The Journal of the American Medical Association 278, no. 6 (August 13, 1997): 523. http://dx.doi.org/10.1001/jama.1997.03550060099047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hampton, Tracy. "Melanoma Drug Resistance." JAMA 296, no. 4 (July 26, 2006): 384. http://dx.doi.org/10.1001/jama.296.4.384-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography