Academic literature on the topic 'Drug nanoparticles'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drug nanoparticles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Drug nanoparticles"

1

Wijaya, Christian J., Suryadi Ismadji, and Setiyo Gunawan. "A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals." Molecules 26, no. 3 (January 28, 2021): 676. http://dx.doi.org/10.3390/molecules26030676.

Full text
Abstract:
Due to their biocompatibility, biodegradability, and non-toxicity, lignocellulosic-derived nanoparticles are very potential materials for drug carriers in drug delivery applications. There are three main lignocellulosic-derived nanoparticles discussed in this review. First, lignin nanoparticles (LNPs) are an amphiphilic nanoparticle which has versatile interactions toward hydrophilic or hydrophobic drugs. The synthesis methods of LNPs play an important role in this amphiphilic characteristic. Second, xylan nanoparticles (XNPs) are a hemicellulose-derived nanoparticle, where additional pretreatment is needed to obtain a high purity xylan before the synthesis of XNPs. This process is quite long and challenging, but XNPs have a lot of potential as a drug carrier due to their stronger interactions with various drugs. Third, cellulose nanocrystals (CNCs) are a widely exploited nanoparticle, especially in drug delivery applications. CNCs have low cytotoxicity, therefore they are suitable for use as a drug carrier. The research possibilities for these three nanoparticles are still wide and there is potential in drug delivery applications, especially for enhancing their characteristics with further surface modifications adjusted to the drugs.
APA, Harvard, Vancouver, ISO, and other styles
2

Rajeswari, R., and R. Jothilakshmi. "Magnetic Nanoparticles as Drug Carriers: Review." Materials Science Forum 807 (November 2014): 1–12. http://dx.doi.org/10.4028/www.scientific.net/msf.807.1.

Full text
Abstract:
Magnetic nanoparticles are made up of magnetic elements such as iron, nickel, cobalt and their oxides. Their unique physical and chemical properties, biocompatibility and their ability to be manipulated by external magnetic fields have made them as popular drug carriers in recent years. They offer various advantages such as ability to carry drugs to the desired areas in the body, and the ability to release the drugs in a controlled manner which in turn help in reducing side effects to other organs and in providing correct dosage of drugs. However, the complexity of the drug delivery system is a challenge in further improving the efficiency of magnetic nanoparticle drug delivery. In order to overcome this challenge, computational tools help in understanding the complexity of the drug delivery process and to design magnetic nanoparticles which are more efficient in drug delivery. In this chapter we propose to review various properties of magnetic nanoparticles, applications of magnetic nanoparticles as drug carriers, challenges in using them for drug delivery, various computational tools which aid in modeling magnetic nanoparticle drug delivery and in designing magnetic nanoparticles for efficient targeted drug delivery.
APA, Harvard, Vancouver, ISO, and other styles
3

Sizochenko, Natalia, and Jerzy Leszczynski. "Drug-Nanoparticle Composites." Journal of Nanotoxicology and Nanomedicine 2, no. 1 (January 2017): 1–10. http://dx.doi.org/10.4018/jnn.2017010101.

Full text
Abstract:
Polymeric nanoparticles represent attractive targets for the controlled delivery of therapeutic drugs. Drug-nanoparticle conjugates are convenient targets to enhance solubility and membrane permeability of drugs, prolong circulation time and minimize non-specific uptake. The behavior of drugs-loaded nanoparticles is governed by various factors. Understanding of these effects is very important for design of drug-nanoparticle systems, that could be suitable for treating the particular diseases. The aim of the current study is a complementary molecular docking followed by quantitative structure-activity relationships modeling for drugs payload on polymeric nanoparticles. Twenty-one approved drugs were considered. Docking of drugs was performed towards a simplified polymeric surface. Binding energies agreed well with the observed mass loading. Quantitative structure-activity relationships model supported this data. Effects of electronegativity and hydrophobicity were discussed. Developed model may contribute to the development of other useful nano-sized polymeric drug carriers to deliver a spectrum of therapeutic and imaging agents for medical purposes.
APA, Harvard, Vancouver, ISO, and other styles
4

A.Asha, A. Asha, and G. S. Prabha Littis Malar. "Cytotoxicity, Antidiabetic and Anticancer Studies of Insulin and Curcumin-Loaded Polymeric Nanoparticles." Biomedical and Pharmacology Journal 15, no. 3 (September 29, 2022): 1653–61. http://dx.doi.org/10.13005/bpj/2503.

Full text
Abstract:
Cytotoxicity measurement is needed for all drug-loaded nanoparticles. Because, if the nanoparticles have toxicity means, the drug-loaded polymeric nanoparticles cannot be used for the drug delivery. Generally cell viability is measured in the cytotoxicity measurement. In this work, the nanoparticle have synthesized from the natural polymeric material. These nanoparticles have been prepared using a nano-precipitation technique. Drugs, Insulin and Curcumin are added to these synthesized nanoparticles. This drug was coated on the surface of the nanoparticles to enhance the biocompatibility. These drug-loaded polymeric nanoparticles are used for the drug delivery. L929 cells have been to prove the cytotoxicity of these drug loaded polymeric nanoparticles by Neutral red assay method. From the cytotoxicity assay TPIG, TPCG and CCIG, CCCG nanoparticles are not cytotoxic. Insulin-loaded Tapioca/pectin and a Casein/chitosan nanoparticle were used to study the anti- diabetic assay. Curcumin-loaded Tapioca/pectin and Casein/Chitosan nanoparticle were used for Anti-cancer studies, by making use of Human Osteosarcoma cells (HOS). From these studies, the Insulin and Curcumin-loaded Tapioca/pectin and Casein/chitosan nanoparticles are not cytotoxic, and they can be used for drug delivery.
APA, Harvard, Vancouver, ISO, and other styles
5

Chandra, Arun, and Nalina C. "Review on nanoparticles technology and applications based on drug delivery." IP International Journal of Comprehensive and Advanced Pharmacology 6, no. 3 (October 15, 2021): 117–20. http://dx.doi.org/10.18231/j.ijcaap.2021.021.

Full text
Abstract:
This review is about nanocrystal technology and applications of nanocrystals based on drug delivery. Nanocrystal technology is applied to the drug molecules to access for good drug delivery as nano dimensioned carrier. Nanoparticle has at least one dimension smaller than 100 nanometers. The major properties of nanoparticles are increases dissolution velocity by surface area enlargement and increase in saturation solubility. Nanoparticle’s productions are done with different methods such as precipitation method, Milling method, and homogenized method. Nanoparticles has got wide range of applications based on drug delivery such as gastrointestinal tract, brain, tumor cell targeting, respiratory tract, and gene delivery.
APA, Harvard, Vancouver, ISO, and other styles
6

Shukla, Prashant, Shweta Sharma, and Padma Rao. "Nanoparticulate drug delivery systems: A revolution in design and development of drugs." Journal of Drug Delivery and Therapeutics 11, no. 5-S (October 15, 2021): 188–93. http://dx.doi.org/10.22270/jddt.v11i5-s.5023.

Full text
Abstract:
The recent developments in nanoparticle-based drug formulations have been helping to address issues around treating challenging diseases. Nanoparticles come in different sizes but usually vary between 100nm to 500nm. For the past few years there has been research going on in the area of drug delivery using particulate delivery systems. Various drug molecules have been modified for both pharmacokinetic and pharmacodynamic properties using nanoparticles as physical approach. Various polymers have been used in the formulation of nanoparticles for drug delivery research to increase therapeutic benefit, while minimizing side effects. Here, we review various aspects of nanoparticle formulation, characterization, effect of their characteristics and their applications in delivery of drug molecules and therapeutic genes. Keywords: nanoparticles, applications in delivery, Liposomes, Dendrimers
APA, Harvard, Vancouver, ISO, and other styles
7

Pieper, Sebastian, Hannah Onafuye, Dennis Mulac, Jindrich Cinatl, Mark N. Wass, Martin Michaelis, and Klaus Langer. "Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity." Beilstein Journal of Nanotechnology 10 (October 29, 2019): 2062–72. http://dx.doi.org/10.3762/bjnano.10.201.

Full text
Abstract:
Background: Nanoparticles are under investigation as carrier systems for anticancer drugs. The expression of efflux transporters such as the ATP-binding cassette (ABC) transporter ABCB1 is an important resistance mechanism in therapy-refractory cancer cells. Drug encapsulation into nanoparticles has been shown to bypass efflux-mediated drug resistance, but there are also conflicting results. To investigate whether easy-to-prepare nanoparticles made of well-tolerated polymers may circumvent transporter-mediated drug efflux, we prepared poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and PEGylated PLGA (PLGA-PEG) nanoparticles loaded with the ABCB1 substrate doxorubicin by solvent displacement and emulsion diffusion approaches and assessed their anticancer efficiency in neuroblastoma cells, including ABCB1-expressing cell lines, in comparison to doxorubicin solution. Results: The resulting nanoparticles covered a size range between 73 and 246 nm. PLGA-PEG nanoparticle preparation by solvent displacement led to the smallest nanoparticles. In PLGA nanoparticles, the drug load could be optimised using solvent displacement at pH 7 reaching 53 µg doxorubicin/mg nanoparticle. These PLGA nanoparticles displayed sustained doxorubicin release kinetics compared to the more burst-like kinetics of the other preparations. In neuroblastoma cells, doxorubicin-loaded PLGA-PEG nanoparticles (presumably due to their small size) and PLGA nanoparticles prepared by solvent displacement at pH 7 (presumably due to their high drug load and superior drug release kinetics) exerted the strongest anticancer effects. However, nanoparticle-encapsulated doxorubicin did not display increased efficacy in ABCB1-expressing cells relative to doxorubicin solution. Conclusion: Doxorubicin-loaded nanoparticles made by different methods from different materials displayed substantial discrepancies in their anticancer activity at the cellular level. Optimised preparation methods resulted in PLGA nanoparticles characterised by increased drug load, controlled drug release, and high anticancer efficacy. The design of drug-loaded nanoparticles with optimised anticancer activity at the cellular level is an important step in the development of improved nanoparticle preparations for anticancer therapy. Further research is required to understand under which circumstances nanoparticles can be used to overcome efflux-mediated resistance in cancer cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Lohcharoenkal, Warangkana, Liying Wang, Yi Charlie Chen, and Yon Rojanasakul. "Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy." BioMed Research International 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/180549.

Full text
Abstract:
Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.
APA, Harvard, Vancouver, ISO, and other styles
9

Mills, Hilla, Ronald Acquah, Nova Tang, Luke Cheung, Susanne Klenk, Ronald Glassen, Magali Pirson, Alain Albert, Duong Trinh Hoang, and Thang Nguyen Van. "A Critical Scrutiny on Liposomal Nanoparticles Drug Carriers as Modelled by Topotecan Encapsulation and Release in Treating Cancer." Evidence-Based Complementary and Alternative Medicine 2022 (August 9, 2022): 1–7. http://dx.doi.org/10.1155/2022/7702512.

Full text
Abstract:
The medical field is looking for drugs and/or ways of delivering drugs without harming patients. A number of severe drug side effects are reported, such as acute kidney injury (AKI), hepatotoxicity, skin rash, and so on. Nanomedicine has come to the rescue. Liposomal nanoparticles have shown great potential in loading drugs, and delivering drugs to specific targeted sites, hence achieving a needed bioavailability and steady state concentration, which is achieved by a controlled drug release ability by the nanoparticles. The liposomal nanoparticles can be conjugated to cancer receptor tags that give the anticancer-loaded nanoparticles specificity to deliver anticancer agents only at cancerous sites, hence circumventing destruction of normal cells. Also, the particles are biocompatible. The drugs are shielded by attack from the liver and other cytochrome P450 enzymes before reaching the desired sites. The challenge, however, is that the drug release is slow by these nanoparticles on their own. Scientists then came up with several ways to enhance drug release. Magnetic fields, UV light, infrared light, and so on are amongst the enhancers used by scientists to potentiate drug release from nanoparticles. In this paper, synthesis of liposomal nanoparticle formulations (liposomal-quantum dots (L-QDs), liposomal-quantum dots loaded with topotecan (L-QD-TPT)) and their analysis (cytotoxicity, drug internalization, loading efficiency, drug release rate, and the uptake of the drug and nanoparticles by the HeLa cells) are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Raman, Subashini, Syed Mahmood, Ayah R. Hilles, Md Noushad Javed, Motia Azmana, and Khater Ahmed Saeed Al-Japairai. "Polymeric Nanoparticles for Brain Drug Delivery - A Review." Current Drug Metabolism 21, no. 9 (December 14, 2020): 649–60. http://dx.doi.org/10.2174/1389200221666200508074348.

Full text
Abstract:
Background: Blood-brain barrier (BBB) plays a most hindering role in drug delivery to the brain. Recent research comes out with the nanoparticles approach, is continuously working towards improving the delivery to the brain. Currently, polymeric nanoparticle is extensively involved in many therapies for spatial and temporal targeted areas delivery. Methods: We did a non-systematic review, and the literature was searched in Google, Science Direct and PubMed. An overview is provided for the formulation of polymeric nanoparticles using different methods, effect of surface modification on the nanoparticle properties with types of polymeric nanoparticles and preparation methods. An account of different nanomedicine employed with therapeutic agent to cross the BBB alone with biodistribution of the drugs. Results: We found that various types of polymeric nanoparticle systems are available and they prosper in delivering the therapeutic amount of the drug to the targeted area. The effect of physicochemical properties on nanoformulation includes change in their size, shape, elasticity, surface charge and hydrophobicity. Surface modification of polymers or nanocarriers is also vital in the formulation of nanoparticles to enhance targeting efficiency to the brain. Conclusion: More standardized methods for the preparation of nanoparticles and to assess the relationship of surface modification on drug delivery. While the preparation and its output like drug loading, particle size, and charge, permeation is always conflicted, so it requires more attention for the acceptance of nanoparticles for brain delivery.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Drug nanoparticles"

1

Sepassi-Ashtiani, Shadi. "Polymer-stabilised drug nanoparticles." Thesis, King's College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tirop, Lucy. "Polymer-surfactant stabilised drug nanoparticles." Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/polymersurfactant-stabilised-drug-nanoparticles(46bd0161-25d6-4337-ba65-f9fe3627e804).html.

Full text
Abstract:
Wet bead milling, in which the drug is milled in presence of stabilisers such as polymers and surfactants, has enabled the formulation of poorly water-soluble drugs as nanoparticles, with five products having reached the market. During the milling process, the polymer and/or surfactant adsorbs onto the freshly cleaved drug surfaces to provide ionic or steric stabilisation. Despite the success of wet bead milling, mastery of the mechanism behind nanoparticle stabilization is still lacking. To investigate whether any relationship exists between drug, stabiliser and stabilisation, eight structurally different poorly water-soluble drugs were milled in presence of thirteen different pharmaceutically acceptable stabilisers and the resultant particle size determined by photon correlation spectroscopy. Nanoparticles of the BCS class II drugy griseofulvin, could only be produced in presence of anionic stabilisers namely sodium dodecyl sulphate, aerosol-OT or hydroxypropylmethylcellulose acetate succinate. Surfactant adsorption isotherms obtained indirectly by measuring their depletion from solution revealed a maximum surfactant adsorption of ~ 2.2 mg/m2 on the griseofulvin nanoparticle surfaces. The use of ionic surfactants/polymers in oral formulations is however sub-optimal. Consequently, polymer-surfactant co-stabilisation, used to take advantage of the synergy between ionic and non-ionic stabilisers, was investigated by the inclusion of the non-ionic polymer hydroxypropylmethylcellulose (HPMC) into the anionic surfactant-drug slurry prior to milling. The effect of varying HPMC molecular weight and concentration on griseofulvin nanoparticle production was established. Polymer adsorption isotherms were obtained directly via small angle neutron scattering.
APA, Harvard, Vancouver, ISO, and other styles
3

Fallon, Marissa S. "Drug overdose treatment by nanoparticles." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qin, Jian. "Nanoparticles for multifunctional drug delivery systems." Licentiate thesis, Stockholm : Kemi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Song, Wenxing. "Magnetic nanoparticles for drug/gene delivery." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22310/.

Full text
Abstract:
Although various drugs have been developed to treat different diseases such as cancer, the therapeutic effects of many drugs have been limited by their undesirable properties such as poor solubility, poor bioactivity, rapid clearance in blood and non-specific distribution. Nanoparticles as carriers have received more and more attention in the last two decades due to their ability of overcoming these obstacles and enhancing the therapeutic efficiency of the conventional drugs. In this thesis, various kinds of nanoparticles were developed aiming at improving the therapeutic efficiency and targeted delivery of anti-cancer drug and gene. Curcumin is a promising anti-cancer drug but its applications in cancer therapy are limited due to its poor solubility, short half-life and low bioavailability. In this thesis, magnetic-polymer core-shell nanoparticles based on non-toxic, biocompatible and biodegradable polymers such as silk fibroin, alginate and chitosan were prepared and optimized to improve the uptake efficiency and cell growth inhibition effect of curcumin towards cancer cells. The size, zeta potential, surface morphology, drug loading / release profile, in vitro uptake and growth inhibition effect to cancer and normal cells of these curcumin loaded nanoparticles were investigated. The results indicated that the curcumin loaded particles exhibited enhanced uptake efficiency and growth inhibition effect on MDA-MB-231 cancer cells compared with free curcumin. Higher uptake efficiency and cytotoxicity to MDA-MB-231 cells than normal human dermal fibroblast cells were observed, suggesting they have specific effects against cancer cells. Moreover, in vitro targeted delivery of curcumin to specific areas of cells was achieved with the presence of an external magnetic field, suggesting these magnetic nanoparticles are promising for targeted delivery of drugs to desired sites applying magnetic forces. Apart from drug delivery the applications of magnetic nanoparticles in gene delivery was also investigated. Polyethyleneimine is one of the most efficient non-viral transfection agents for gene delivery due to its high cationic charge density. In this thesis, silk fibroin was selected to fabricate magnetic-silk / polyethyleneimine core-shell nanoparticles and silk-polyethyleneimine nanoparticles for the transfection of an anticancer gene (c-myc antisense oligodeoxynucleotides) into MDA-MB-231 breast cancer cells and human dermal fibroblast cells. The results illustrated that the cytotoxicity of magnetic-silk / polyethyleneimine core-shell nanoparticles was significantly lower than polyethyleneimine coated magnetic nanoparticles which is widely studied as a gene delivery carrier. The magnetic-silk / polyethyleneimine core-shell nanoparticles were capable of delivering c-myc antisense oligodeoxynucleotides into MDA-MB-231 cells and significantly inhibiting the cell growth. Employing magnetic-silk / polyethyleneimine core-shell nanoparticles, high uptake efficiency of c-myc antisense oligodeoxynucleotides was achieved within 20 min via magnetofection. In addition, magnetic-silk / polyethyleneimine core-shell nanoparticles exhibited higher cytotoxic effect against MDA-MB-231 breast cancer cells than normal human dermal fibroblast. Moreover, in vitro targeted delivery of oligodeoxynucleotides can be achieved using magnetic-silk / polyethyleneimine core-shell nanoparticles under a magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
6

Czapar, Anna. "Virus-Based Nanoparticles Cancer Drug Delivery." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1499438915195222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Redhead, Helen Margaret. "Drug loading of biodegradable nanoparticles for site specific drug delivery." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Comenge, Farre Joan. "Gold Nanoparticles as Drug Delivery Agents. Detoxifying the Chemotherapeutic Drug Cisplatin." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/125963.

Full text
Abstract:
L’ús de nanopartícules (NPs) ha emergit com una eina prometedora pel tractament de càncer. Entre els seus usos en teràpia i en tècniques d’imatge, destaca l’ús com agents de direccionament de fàrmacs. Tot i així, encara es requereix un profund coneixement d’aquests sistemes abans de poder aplicar-los a la clínica. Aquí presentem l’ús de nanopartícules d’or (AuNPs) per a detoxificar un dels fàrmacs de major ús en quimioteràpia, el cisplatí. Aquest fàrmac està lligat a la NP via un enllaç de coordinació sensible a pH per assegurar l’alliberament de fàrmac als endosomes. El tamany de les NPs juga un paper molt important en determinar algunes respostes biològiques com la biodistribució o la seva remoció per part del sistema immune. Per això, és indispensable controlar perfectament el tamany de la NP en la seva síntesis abans de qualsevol aplicació biològica. Aquí descrivim un nou protocol per sintetitzar AuNPs amb un control exquisit del tamany entre 5 i 200 nm. Un dels avantatges d’aquest protocol és l’obtenció de NPs estabilitzades amb citrat que poden ser funcionalitzades a posteriori. D’aquesta manera podem aprofundir aquí en el mecanisme de formació de monocapes autoensamblades (SAM) i capes formades per barreges de surfactants. El control pel que fa a la composició i conformació d’aquestes és molt important doncs determina respostes biològiques com l’adsorció de proteïnes i l’estabilitat col·loïdal en medis fisiològics. Aquests conjugats han servit com a esquelet per enllaçar-hi cisplatí via la formació d’un enllaç de coordinació que asseguri un alliberament de la droga desencadenat per una baixada de pH. Aquesta conjugació està caracteritzada en profunditat per tal de garantir la estabilitat col·loïdal així com la de l’enllaç. Finalment, el disseny del conjugat té efectes significatius en les propietats farmacocinètiques, en l’evolució del propi conjugat i en la manca de toxicitat. En aquest treball mostrem en models animals com la toxicitat deguda a cisplatí disminueix clarament sense afectar això a les propietats terapèutiques del fàrmac. A més a més, les NPs no només actuen com a vehicles sinó que també protegeixen el fàrmac contra la inactivació per part de proteïnes del sèrum fins que els conjugats són internalitzats per cèl·lules i el cisplatí alliberat. La possibilitat de seguir el fàrmac (Pt) i el vehicle (Au) separadament en funció de l’òrgan i el temps aporta també un millor coneixement sobre com els nanovehicles són processats per l’organisme.
The use of nanoparticles (NPs) has emerged as a potential tool to improve cancer treatment. Among the proposed uses in imaging and therapy, their use as a drug delivery scaffold has been extensively highlighted. However, there are still some controversial points which need a deeper understanding before applying them in the clinics. Here, it is presented the use of gold nanoparticles (AuNPs) to detoxify the antitumoral agent cisplatin linked to the nanoparticle via a pH sensitive coordination bond for endosomal release. Since size of NPs plays an important role in determining biological responses such as biodistribution or clearance by immune system, a perfect control on the synthesis of AuNPs is required previously to any biological application of these AuNPs. It is described in this work a new synthetic protocol of biocompatible AuNPs with a perfect control of the size between 5 to 200 nm. One of the advantages of this protocol is the obtaining of citrate-capped AuNPs that can be further functionalized. This allowed us to provide insights on the mechanism of Self-Assembled Monolayers and mixed layers formation. The control of the mixed layer composition and conformation is important since it determines biological outcomes such as protein adsorption and colloidal stability in physiological media. These AuNPs conjugates are used as scaffold for cisplatin attachment via the formation of a coordination bond that ensures a pH-triggered release of the drug. This conjugation is deeply characterized to ensure the maintenance of colloidal and link stability on working conditions. Finally, the NP conjugate design has important effects on pharmacokinetics, conjugate evolution and biodistribution and absence of observed toxicity. Here we show that cisplatin-induced toxicity is clearly reduced without affecting the therapeutic benefits in mice models. The NPs not only act as carriers, but also protect the drug from deactivation by plasma proteins until conjugates are internalised in cells and cisplatin released. Also, the possibility to track the drug (Pt) and the vehicle (Au) separately as a function of organ and time enables a better understanding of how nanocarriers are processed by the organism.
APA, Harvard, Vancouver, ISO, and other styles
9

Chiewpattanakul, Paramaporn. "Isolation and structure elucidation of biosurfactant from microorganism and its application model in drug delivery system." Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL004N/document.

Full text
Abstract:
Des microorganismes produisant des molécules tensioactives ont été isolés à partir d’échantillons de sols contaminés par des huiles, en provenance des provinces de Songkhla et Chiangmai (Thaïlande) et de Shianghai (Chine). Les différentes souches ont été sélectionnées de façon à obtenir les biosurfactants ayant les meilleures propriétés tensioactives et d’émulsification. Parmi 102 souches isolées, 6 microorganismes produisaient des biosurfactants. La souche SK80 a conduit aux meilleures propriétés tensioactives. Des observations morphologiques macroscopiques et microscopiques ont permis de caractériser la souche SK80. L’analyse de la séquence ARNr 28S indique que cette souche appartient à la famille Exophiala Dermatitidis. La composition du milieu de culture (source de carbone et d’azote) et les conditions de culture de ce microorganisme ont été adaptées de façon à obtenir des quantités importantes de biosurfactant. Des analyses spectroscopiques (RMN 1H, RMN 13C, COSY et de masse, APCI MS) ont révélé que ce biosurfactant était un monooléate de glycérol. La monomyristine a été choisie comme constituent synthétique modèle dans des études d’encapsulation. Deux méthodes de préparation, émulsion/évaporation de solvant, nanoprécipitation, ont été employées pour encapsuler la monomyristine dans des nanoparticules recouvertes de dextrane et dont le cœur était constitué de poly(acide lactique) ou de dextrane hydrophobisé. Les conditions d’encapsulation ont été variées afin de maximiser le rendement d’encapsulation et la stabilité colloïdale des particules
Biosurfactant producing microorganisms were isolated from oil contaminated soils collected from Songkhla and Chiangmai province, Thailand and Shianghai, China. Their culture broths were screened for obtaining biosurfactants with the highest surface activity and emulsification ability. Among 102 isolates, 6 microorganisms produced biosurfactants. The culture supernatant of SK80 strain exhibited the highest surface activity. SK80 was identified by macroscopic morphology, microscopic morphology and showed that it is a black mold. The 28S rRNA sequence homology analysis suggested that SK80 belongs to Exophiala dermatitidis. The composition of culture medium such as carbon source, nitrogen source, and culture condition of this microorganism was optimized to obtain high amounts of biosurfactant. 1H NMR, 13C NMR, COSY and Mass Spectrometer (APCI MS) results indicated that this biosurfactant was monoolein (oleoyl glycerol), a kind of monoacylglycerol. Monomyristin was chosen as a monoacylglycerol model to be synthesized and used as nanoparticle encapsulated drug. Two preparation methods, emulsion/solvent evaporation and nanoprecipitation, were used to encapsulate monomyristin in dextran-covered nanoparticles with poly(lactic acid) of hydrophobized dextran as the core material. Encapsulation conditions were optimized with regard to the yield encapsulation and the colloidal stability
APA, Harvard, Vancouver, ISO, and other styles
10

Cleroux, Carolyne. "Biodegradable nanoparticles for sustained occular drug delivery." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28485.

Full text
Abstract:
Apoptosis (programmed cell-death) is a common final pathway through which cells die in retinal degenerative diseases. The purpose of this project was to develop biodegradable nanoparticles that quickly deliver XIAP, an inhibitor of apoptosis, to retinal cells following acute insults. In vitro protein release profiles from different formulations were established, and two cell types were incubated with nanoparticles to assess cellular uptake. Subretinal injections were carried out in rats to assess in vivo localization and possible toxicity. In vitro studies showed an initial burst of protein followed by sustained release, with overall low levels of protein release. Cell culture experiments suggest that particles are mostly membrane-bound, and some may be internalized. In vivo experiments revealed no signs of toxicity, and protein localized within the photoreceptor layer. In conclusion, nanoparticles may provide a good delivery system for XIAP; however higher levels of protein release are needed for neuroprotection, warranting further investigation.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Drug nanoparticles"

1

Joshy, K. S., Sabu Thomas, and Vijay Kumar Thakur, eds. Nanoparticles for Drug Delivery. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2119-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Çapan, Yılmaz, Adem Sahin, and Hayrettin Tonbul. Drug Delivery with Targeted Nanoparticles. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003164739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Svenson, Sonke, and Robert K. Prud'homme, eds. Multifunctional Nanoparticles for Drug Delivery Applications. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2305-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McNeil, Scott E. Characterization of nanoparticles intended for drug delivery. New York: Humana Press/Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

McNeil, Scott E., ed. Characterization of Nanoparticles Intended for Drug Delivery. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60327-198-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McNeil, Scott E., ed. Characterization of Nanoparticles Intended for Drug Delivery. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7352-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Characterization of nanoparticles intended for drug delivery. New York: Humana Press/Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pathak, Yashwant V., ed. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06115-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parfenyuk, E. V. Silica nanoparticles as drug delivery system for immunomodulator GMDP. New York, N.Y: ASME, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haghi, A. K., and G. E. Zaikov. Modern nanochemistry. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Drug nanoparticles"

1

Desai, Neil. "Albumin-Drug Nanoparticles." In Drug Delivery in Oncology, 1133–61. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634057.ch35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Luiz, Marcela Tavares, Juliana Palma Abriata, Giovanni Loureiro Raspantini, and Juliana Maldonado Marchetti. "Polymeric Nanoparticles." In Nanocarriers for Drug Delivery, 1–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63389-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rehman, Nahid, and Anjana Pandey. "Drug Designing and Drug Delivery." In Engineered Nanoparticles as Drug Delivery Systems, 11–24. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003252122-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Menasco, Dan, and Qian Wang. "Nanoparticles as Drug Delivery Vehicles." In Drug Delivery, 299–335. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118833322.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Campos, Patrícia Mazureki, Juliana Palma Abriata, and Priscyla D. Marcato. "Toxicology of Nanoparticles." In Nanocarriers for Drug Delivery, 289–318. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63389-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lanza, G. M., P. M. Winter, S. D. Caruthers, A. H. Schmieder, and S. A. Wickline. "PERFLUOROCARBON NANOPARTICLES." In Drug Delivery Applications of Noninvasive Imaging, 296–307. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118356845.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tariq, Abu, Showkat Ahmad Bhawani, and Abdul Moheman. "Nanoparticles for Drug Delivery." In Nanomaterials for Healthcare, Energy and Environment, 175–97. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9833-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vasilakes, Andrew L., Thomas D. Dziubla, and Paritosh P. Wattamwar. "Polymeric Nanoparticles." In Engineering Polymer Systems for Improved Drug Delivery, 117–61. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118747896.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Watts, Alan B., and Robert O. Williams. "Nanoparticles for Pulmonary Delivery." In Controlled Pulmonary Drug Delivery, 335–66. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9745-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chowdhury, Pallabita, Prashanth K. B. Nagesh, Santosh Kumar, Meena Jaggi, Subhash C. Chauhan, and Murali M. Yallapu. "Pluronic Nanotechnology for Overcoming Drug Resistance." In Bioactivity of Engineered Nanoparticles, 207–37. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5864-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Drug nanoparticles"

1

Karnik, Rohit, Frank X. Gu, Suman Bose, Pamela Basto, Christopher Cannizzaro, Robert Langer, and Omid C. Farokhzad. "Microfluidic Synthesis of Polymeric Nanoparticles." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62218.

Full text
Abstract:
A central challenge in the development of drug-encapsulated polymeric nanoparticles is the inability to control the nanoparticle physicochemical properties that affect their biodistribution, drug release, and efficacy. Nanoparticles may be developed by mixing and nanoprecipitation of polymers and drugs dissolved in organic solvents with non-solvents. Inadequate control over this mixing process is a source of variability in the synthesis of these nanoparticles by nanoprecipitation. We demonstrate that rapid and tunable mixing through hydrodynamic flow focusing in a microfluidic device can be used to control nanoprecipitation of poly(lactic-co-glycolic acid)-bpoly(ethylene glycol) (PLGA-PEG) diblock copolymers as a model polymeric biomaterial for drug delivery.
APA, Harvard, Vancouver, ISO, and other styles
2

Feng, Zhi-Gang, Yusheng Feng, and Maria Andersson. "Shape Effects on the Drag Force and Motion of Nano and Micro Particles in Low Reynolds Number Flows." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89469.

Full text
Abstract:
Particulate flows are commonly found in a variety of applications. For example, nanoparticles have been used in targeted drug delivery systems and improving heat transfer in nanofluids. Crucial to the development of technologies that incorporate nanoparticles is to understand the effect of a nanoparticle’s shape on its motion. The effect of shape on nanoparticles used in drug delivery, in particular, is a very active area of experimental investigation. Also, the determination of the coefficients of hydrodynamic forces or drag forces on nanoparticles of different shapes is crucial in designing effective nanoparticle-mediated therapies. In this study we present a resolved discrete particle method (RDPM), which is also called the Direct Numerical Simulation (DNS), to investigate the effect of shape on drag force in a vicious fluid. Three different shapes of particles are studied: a sphere, a probate ellipsoid, and an oblate ellipsoid. These particles have the same volume and are placed in contact with the bottom wall in simple shear flows. Their drag forces are computed numerically; it is found that the particle shape has a significant effect on the drag forces. In the case of a spherical particle, our results agree very well with the analytical results found in the literature. The motion of three particles of the same volume but different shape in a simple shear flows are also simulated. It shows that different particle shapes cause particles to experience different hydrodynamics forces, leading them to different velocities and paths.
APA, Harvard, Vancouver, ISO, and other styles
3

Smolyanskaya, Olga A., Valery N. Trukhin, Polina G. Gavrilova, Evgeniy L. Odlyanitskiy, Anna V. Semenova, Quentin Cassar, Jean-Paul Guillet, Patrick Mounaix, Kamil G. Gareev, and Dmitry V. Korolev. "Terahertz spectra of drug-laden magnetic nanoparticles." In Colloidal Nanoparticles for Biomedical Applications XIV, edited by Wolfgang J. Parak and Marek Osiński. SPIE, 2019. http://dx.doi.org/10.1117/12.2506870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Musa, Nafisah, and Tin Wui Wong. "Nanoparticles-in-soft microagglomerates as oral colon-specific cancer therapeutic vehicle." In 3rd International Congress of Engineering Sciences and Technology. Facultad de Ciencias de la Ingenierí­a y Tecnología, 2021. http://dx.doi.org/10.37636/recit.cicitec21.1.

Full text
Abstract:
Polymeric nanoparticles can be conjugated with targeting ligand such as folate to elicit oral colon-specific drug delivery to treat colon cancer. Oral chemotherapy can be used as adjuvant, neo-adjuvant, or primary therapy. Nonetheless, oral cancer chemotherapeutics may experience premature drug release at the upper gastrointestinal tract due to the availability of a large specific dissolution surface area of nanoparticles leading to failure in colon cancer targeting. This study designed soft microagglomerates as carrier of nanoparticles to delay drug release. High molecular weight chitosan/pectin with covalent 5-fluorouracil/folate was processed into nanoparticles. Low molecular weight chitosan was spray-dried into nanoparticle aggregation vehicle. The soft agglomerates were produced by blending of nanoparticles and aggregation vehicle in specific weight ratios through vortex method. Adding aggregation vehicle promoted soft agglomeration with nanoparticles deposited onto its surfaces with minimal binary coalescence. Soft agglomerates prepared from 10:18 weight ratio of nanoparticles to nanoparticle aggregation vehicle using 1% chitosan solution concentration reduced the propensity of premature drug release of nanoparticles in the upper gastrointestinal region. Soft agglomerates reduced early drug release of cancer chemotherapeutics and was responsive to intracapsular sodium alginate coat to further sustain drug release. The soft microagglomerates are a viable dosage form in colon-specific drug delivery. Further study will focus on investigating intracapsular-coated soft agglomerates in vivo pharmacokinetics and pharmacodynamics behaviours with respect to local colorectal cancer.
APA, Harvard, Vancouver, ISO, and other styles
5

Rong Tong, Li Tang, Qian Yin, and Jianjun Cheng. "Drug-polyester conjugated nanoparticles for cancer drug delivery." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6092056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stover, Robert J., Pratixa Joshi, Soon Joon Yoon, Avinash K. Murthy, Stanislav Emelianov, Keith P. Johnston, and Konstantin V. Sokolov. "Biodegradable Plasmonic Nanoparticles: Overcoming Clinical Translation Barriers." In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/omp.2015.om3d.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spatarelu, Catalina-Paula, Sidhartha Jandhyala, and Geoffrey P. Luke. "Dual-drug loaded phase-changing nanodroplets for image-guided tumor therapy." In Colloidal Nanoparticles for Biomedical Applications XV, edited by Marek Osiński and Antonios G. Kanaras. SPIE, 2020. http://dx.doi.org/10.1117/12.2542339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lueshen, Eric, Indu Venugopal, and Andreas Linninger. "Intrathecal Magnetic Drug Targeting: A New Approach to Treating Diseases of the Central Nervous System." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93117.

Full text
Abstract:
Intrathecal (IT) drug delivery is a standard technique which involves direct injection of drugs into the cerebrospinal fluid (CSF)-filled space within the spinal canal to treat many diseases of the central nervous system. Currently, in order to reach the therapeutic drug concentration at certain locations within the spinal canal, high drug doses are used. With no method to deliver the large drug doses locally, current IT drug delivery treatments are hindered with wide drug distributions throughout the central nervous system (CNS) which cause harmful side effects. In order to overcome the current limitations of IT drug delivery, we have developed the novel method of intrathecal magnetic drug targeting (IT-MDT). Gold-coated magnetite nanoparticles are infused into a physiologically and anatomically relevant in vitro human spine model and then targeted to a specific site using external magnetic fields, resulting in a substantial increase in therapeutic nanoparticle localization at the site of interest. Experiments aiming to determine the effect of key parameters such as magnet strength, duration of magnetic field exposure, location of magnetic field, and ferrous implants on the collection efficiency of our superparamagnetic nanoparticles in the targeting region were performed. Our experiments indicate that intrathecal magnetic drug targeting and implant-assisted IT-MDT are promising techniques for concentrating and localizing drug-functionalized nanoparticles at required target sites within the spinal canal for potential treatment of diseases affecting the central nervous system.
APA, Harvard, Vancouver, ISO, and other styles
9

Breland, Matthew, Badal Patel, and Hassan Bajwa. "Engineered nanoparticles for targeted drug delivery." In 2012 IEEE Long Island Systems, Applications and Technology Conference (LISAT). IEEE, 2012. http://dx.doi.org/10.1109/lisat.2012.6223198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Coelho, S. C., S. Rocha, M. Carmo Pereira, M. A. N. Coelho, and P. Juzenas. "Functionalized gold nanoparticles for drug delivery." In 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2013. http://dx.doi.org/10.1109/enbeng.2013.6518389.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Drug nanoparticles"

1

Venedicto, Melissa, and Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009774.

Full text
Abstract:
Cervical cancer is one of the most common causes of cancer death for women in the United States. The current treatment with chemotherapy drugs has significant side effects and may cause harm to healthy cells rather than cancer cells. In order to combat the potential side effects, nanoparticles composed of mesoporous silica were created to house the chemotherapy drug doxorubicin (DOX). The silica network contains the drug, and a pH study was conducted to determine the conditions for the nanoparticle to disperse the drug. The introduction of disulfide bonds within the nanoparticle created a framework to efficiently release 97% of DOX in acidic environments and 40% release in neutral environments. The denotation of acidic versus neutral environments was important as cancer cells are typically acidic. The chemistry was proved with the incubation of the loaded nanoparticle into HeLa cells for a cytotoxicity report and confocal imaging. The use of the framework for the anticancer drug was shown to be effective for the killing of cancerous cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Atif Syed, Atif Syed. Targeted Drug Delivery by using Magnetic Nanoparticles. Experiment, June 2013. http://dx.doi.org/10.18258/0788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jo, Seongbong, Han-Joung Cho, Jung-Eun Base, and Vivek K. Garripelli. Hypoxia-sensitive, Multifunctional Nanoparticles for Targeted Drug Delivery to Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Band, Hamid, Srikumar Raja, and Tatiana Bronich. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada577110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bronich, Tatiana, Hamid Band, and Srikumar Raja. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada580965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Band, Hamid, and Tatiana Bronich. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada599969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bronich, Tatiana, and Hamid Band. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada600027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basu, Sayani. Nanoparticle-Based Therapeutics for the Treatment of Stroke. Nature Library Ltd, November 2020. http://dx.doi.org/10.47496/nl.blog.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Paul C. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada613187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Paul C. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada568802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography