Academic literature on the topic 'Drug metabolism; Drug-drug interactions; Enzymes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drug metabolism; Drug-drug interactions; Enzymes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Drug metabolism; Drug-drug interactions; Enzymes"
Rekka, Eleni A., Panos N. Kourounakis, and Maria Pantelidou. "Xenobiotic Metabolising Enzymes: Impact on Pathologic Conditions, Drug Interactions and Drug Design." Current Topics in Medicinal Chemistry 19, no. 4 (April 11, 2019): 276–91. http://dx.doi.org/10.2174/1568026619666190129122727.
Full textAnderson, Gail D. "A Mechanistic Approach to Antiepileptic Drug Interactions." Annals of Pharmacotherapy 32, no. 5 (May 1998): 554–63. http://dx.doi.org/10.1345/aph.17332.
Full textKlomp, Florian, Christoph Wenzel, Marek Drozdzik, and Stefan Oswald. "Drug–Drug Interactions Involving Intestinal and Hepatic CYP1A Enzymes." Pharmaceutics 12, no. 12 (December 11, 2020): 1201. http://dx.doi.org/10.3390/pharmaceutics12121201.
Full textThomas, Roger E. "Optimising Seniors’ Metabolism of Medications and Avoiding Adverse Drug Events Using Data on How Metabolism by Their P450 Enzymes Varies with Ancestry and Drug–Drug and Drug–Drug–Gene Interactions." Journal of Personalized Medicine 10, no. 3 (August 11, 2020): 84. http://dx.doi.org/10.3390/jpm10030084.
Full textXie, Zhang, Zhang, and Yuan. "Metabolism, Transport and Drug–Drug Interactions of Silymarin." Molecules 24, no. 20 (October 14, 2019): 3693. http://dx.doi.org/10.3390/molecules24203693.
Full textRao Gajula, Siva Nageswara, Gangireddy Navitha Reddy, Dannarm Srinivas Reddy, and Rajesh Sonti. "Pharmacokinetic drug–drug interactions: an insight into recent US FDA-approved drugs for prostate cancer." Bioanalysis 12, no. 22 (November 2020): 1647–64. http://dx.doi.org/10.4155/bio-2020-0242.
Full textBachmann, Kenneth A., and Jeffrey D. Lewis. "Predicting Inhibitory Drug—Drug Interactions and Evaluating Drug Interaction Reports Using Inhibition Constants." Annals of Pharmacotherapy 39, no. 6 (June 2005): 1064–72. http://dx.doi.org/10.1345/aph.1e508.
Full textChadwick, Ben, Derek G. Waller, and J. Guy Edwards. "Potentially hazardous drug interactions with psychotropics." Advances in Psychiatric Treatment 11, no. 6 (November 2005): 440–49. http://dx.doi.org/10.1192/apt.11.6.440.
Full textNemeroff, Charles B., Sheldon H. Preskorn, and C. Lindsay DeVane. "Antidepressant Drug-Drug Interactions: Clinical Relevance and Risk Management." CNS Spectrums 12, S7 (2007): 1–16. http://dx.doi.org/10.1017/s1092852900026043.
Full textYin, Jiayi, Fengcheng Li, Ying Zhou, Minjie Mou, Yinjing Lu, Kangli Chen, Jia Xue, et al. "INTEDE: interactome of drug-metabolizing enzymes." Nucleic Acids Research 49, no. D1 (October 12, 2020): D1233—D1243. http://dx.doi.org/10.1093/nar/gkaa755.
Full textDissertations / Theses on the topic "Drug metabolism; Drug-drug interactions; Enzymes"
Maitland, Vivien. "Isozyme-specific induction of cytochrome P450 in rat hepatocyte cultures." Thesis, University of Aberdeen, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302485.
Full textWurden, Colleen J. "Metabolism of carbamazepine and inhibitory drug interactions /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/7977.
Full textBradshaw, Jennifer Jean. "Isoflurane : interaction with hepatic microsomal enzymes." Doctoral thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/27138.
Full textUusitalo, J. (Jouko). "The role of drug metabolism in drug discovery and development:case ospemifene." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526210223.
Full textTiivistelmä Lääkeainemetabolia on lääkeaineen farmakokinetiikassa tärkeä puhdistuma- ja eliminaatioaskel, jonka rooli on ymmärretty varsin hyvin. Lääkeainemetabolialla on myös merkittävä vaikutus lääkeaineen toksisuuteen ja lääkkeen käytön turvallisuuteen. Osa lääkeainemetaboliaan liittyvistä toksisuusmekanismeista selvitetty hyvin, mutta erityisesti reaktiivisiin metaboliitteihin liittyvä osa vaatii vielä tutkimusta. Tämän työn kirjallisuusosassa katselmoidaan lääkeainemetabolian merkitystä lääkekehitysprosessissa painottaen erityisesti lääkeainemetabolian sekä reaktiivisten ja verenkierrossa kiertävien metaboliatuoteiden vaikutusta toksisuuteen ihmisellä ja merkitystä turvalliseen lääkkeiden käyttöön. Ospemifeeni on uusi ei-steroidinen selektiivinen estrogeenireseptorimodulaattori, joka on hyväksytty yhdynnänaikaisesta kivusta kärsivien postmenopausaalisten naisten vulvan ja vaginan limakalvojen kuivumisen hoitoon. Tässä tutkimuksessa selvitettiin ospemifeenin lääkeainemetaboliaa ihmisellä ja koe-eläimillä sekä mahdollisia lääkeinteraktioita. Tutkimuksessa tunnistettiin tärkeimmät metaboliitit ihmisellä ja arvioitiin eläinkokeissa käytettyjen koe-eläinten altistumisen kattavuus niille. Työssä selvitettiin myös tärkeimmät päämetaboliitteja katalysoivat sytokromi P450 -entsyymit ja arvioitiin löydösten kliinistä merkitystä. Lisäksi tutkittiin aiheuttaako ospemifeeni lääkeinteraktioita muille lääkeaineille indusoimalla tai inhiboimalla sytokromi P450 -entsyymejä. Tutkimustulosten perusteella ospemifeenia voidaan pitää lääkeainemetabolian suhteen turvallisena lääkkeenä. Tämä tutkimus oli osa ospemifeenin lääkekehitysohjelmaa ja käytännössä kaikki tutkimustyön in vitro -tietoaineisto oli mukana ospemifeenin myyntilupa-hakemuksissa lääketurvallisuusviranomaisille. Ospemifeenia käytettiin tutkimustyön aikana myös yhtenä esimerkkimolekyylinä kehitettäessä uusia menetelmiä lääkeainemetabolian ja lääkeinteraktioiden tutkimiseen
Turpeinen, M. (Miia). "Cytochrome P450 enzymes—in vitro, in vivo, and in silico studies." Doctoral thesis, University of Oulu, 2006. http://urn.fi/urn:isbn:9514282205.
Full textLundahl, Anna. "In vivo Pharmacokinetic Interactions of Finasteride and Identification of Novel Metabolites." Doctoral thesis, Uppsala universitet, Institutionen för farmaci, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-129362.
Full textVicente, David Gil Marques Borrero. "An overview of the role of cytochrome P450 enzyme system in food-drug interactions and possible applications in veterinary medicine." Bachelor's thesis, Universidade Técnica de Lisboa. Faculdade de Medicina Veterinária, 2009. http://hdl.handle.net/10400.5/1003.
Full textCytochrome P450 enzymes (CYP) are hemoproteins belonging to the group of monooxygenases and one of the main enzymatic systems responsible for drug metabolism. In the present study, in vitro approach was applied to evaluate the relation of CYP-catalyzed activities between human, rabbit, minipig and mouse, using single substrate assays (MultiCYP 7-ethoxycoumarin 0-deethylase (ECOD), CYP1A1/2 7-ethoxyresorufin 0- deethylase (EROD), CYP2A6 coumarin 7-hydroxylase (COH), CYP3A4 midazolam 1- hydroxylase (OH-MDZ), and CYP2E1 chlorzoxazone 6-hydroxylase (OH-CLZ)). It was also studied plant extracts (Pinus sylvestris, Angelica archangelica, Mentha sp., Citrus grandis) and phytochemicals (8-Hydroxybergapten, 5,6-dihydroxyangelicin, α, β-Thujone, α-Thujone, angelicin, bergamottin, bergapten, bergaptol, cnidilin, imperatorin, isobergapten, isopimpinellin, lanatin, phellopterin, psoralen, sphondin, xanthotoxin) as potential inhibitors in CYP-related activities of hepatic human microsomes (CYP1A1/2 (EROD), CYP2A6 (COH), CYP3A4 (OH-MDZ)). This study showed that the lowest ECOD activity was detected in humans and there was no similarity between other species. CYP1A1/2 showed equivalent activities. The highest CYP activities in humans were found for CYP2A6 and CYP3A4. In CYP2E1 activity, two similar groups were recognized: human and mouse versus rabbit and minipig. EROD reaction was the most inhibited CYP-mediated reaction. COH reaction was inhibited by few compounds. The highest inhibition was detected among angular furocoumarins. Linear furocoumarins group had the lower inhibitory concentration of CYP3A4. Thujone showed weak inhibition of CYP activities.
RESUMO - As enzimas do sistema citocromo P450 (CYP) são hemoproteinas pertencentes ao grupo das monoxigenases e um dos principais sistemas enzimáticos responsáveis pela metabolização de fármacos. Neste estudo foi avaliada a relação da actividade catalítica de diferentes CYPs entre humanos, coelhos, minipig e murganhos, recorrendo a substratos como sondas individuais in vitro para mensurar reacções especificas (MultiCYP 7-etoxicumarina 0-deetilase (ECOD), CYP1A1/2 7-etoxiresorufina 0-deetilase (EROD), CYP2A6 cumarina 7-hidroxilase (COH), CYP3A4 midazolam 1-hidroxilase (OH-MDZ), e CYP2E1 clorozoxazona 6-hidroxilase (OH-CLZ)). Também foram estudados extractos de plantas (Pinus sylvestris, Angelica archangelica, Mentha sp., Citrus grandis) e fitoquímicos (8-hidroxibergaptem, 5,6-dihidroxiangelicina, α, β-tujona, α-tujona, angelicina, bergamottin, bergapteno, bergaptol, cnidilina, imperatorina, isobergapteno, isopimpinelina, lanatin, felopterina, psoraleno, sphondin, xantotoxina) como potenciais inibidores da actividade catalítica dos CYPs microssomais hepáticos humanos (CYP1A1/2 (EROD), CYP2A6 (COH), CYP3A4 (OH-MDZ)). Neste estudo não foram detectadas actividades similires entre espécies na reacção ECOD e a actividade mais baixa foi detectada nos humanos. A reacção EROD dos CYP1A1/2 demonstrou actividades similares entre as diferentes espécies. As maiores actividades cataliticas verificadas nos humanos correspondem aos CYP2A6 e CYP3A4. No estudo da reacção do CYP2E1 foram determinados dois grupos distintos com actividades cataliticas similares: 1) humanos e murganhos, 2) coelhos e minipigs. No estudo de potenciais inibidores dos CYPs, a reacção EROD foi a mais inibida. Pelo contrário, a reacção COH foi inibida por poucos compostos. A maioria das inibições ocorreu por exposição a furocumarinas angulares. O grupo de furocumarinas lineares teve a menor concentração inibitória da reacção OH-MDZ do CYP3A4. Os fitoquímicos α, β-tujona e α- tujona demonstraram ter um fraco poder inibitório na actividade dos CYPs analisados.
Kabulski, Jarod L. "Development of Au-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for In vitro to In vivo drug metabolism predictions." Morgantown, W. Va. : [West Virginia University Libraries], 2010. http://hdl.handle.net/10450/10892.
Full textTitle from document title page. Document formatted into pages; contains xiv, 180 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
Habenschus, Maísa Daniela. "Estudos de inibição das enzimas do citocromo P450 pelo produto natural (-)-grandisina utilizando microssomas hepáticos de humanos." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/59/59138/tde-06072016-095943/.
Full text(-)-grandisin (GRA) is a lignanic natural product found in many species of plants from North and Northeast of Brazil. This compound has several biological properties, such as trypanocide, anti-inflammatory, antinociceptive, antileukemia activity and antitumor activity against Ehrlich tumor. Because of these biological properties, GRA is considered a potential drug candidate, however, before becoming a new drug, GRA has to undergo various tests, including preclinical drug-drug interactions (DDI) studies. Most of the times, DDI occur because of direct and time-dependent inhibitions of cytochrome P450 (CYP450) enzymes, an enzyme superfamily responsible for metabolizing the vast majority of drugs administered. Preclinical drug-drug interactions studies involve the evaluation of the potential of a drug candidate to inhibit this superfamily of enzymes and these studies can be conducted using in vitro models, such as human liver microsomes (HLM). Therefore, in this project, the inhibitory effect of GRA on the activity of some CYP450 isoforms was evaluated and the isoforms that catalyze the formation of GRA\'s metabolites were also determined. Results showed that multiple CYP450 isoforms participate in the GRA\'s metabolites formation, highlighting CYP2C9, which catalyzes the formation of all metabolites. The inhibition studies showed that GRA is a weak inhibitor of CYP1A2 and CYP2D6, with IC50 values greater than 200 µM and 100 µM, respectively, and a moderate and competitive inhibitor of CYP2C9, with IC50 value equal to 40.85 µM and Ki value equal to 50.60 µM. The capability of GRA to inhibit CYP3A4 was evaluated using two different substrates. GRA showed to be a moderate and competitive dose- dependent inhibitor of this isoform and also a mechanism-based time-dependent inhibitor with potential of inactivation comparable to irinotecan, a clinically significant mechanism-based inhibitor. IC50 and Ki values obtained using nifedipine as substrate were 78.09 µM and 48.71 µM, respectively, and inactivation kinetics parameters were KI= 6.40 µM, kinact= 0,037 min-1 e Clinact= 5.78 mL min-1 µmol-1. On the other hand, IC50 and Ki values using midazolam as substrate were 48.87 µM and 31.25 µM, respectively, and the values of inactivation kinetics parameters were KI= 31.53 µM, kinact= 0,049 min-1 and Clinact= 1.55 mL min-1 µmol-1. With respect to CYP2E1, it was observed that GRA increases its activity significantly from a concentration of 4 µM. Therefore, it is possible to conclude that there is no risk of DDI between GRA and drugs metabolized by CYP1A2 and CYP2D6, while for CYP2C9, although GRA is a moderate inhibitor of this isoform, the risk is low. Finally, for drugs metabolized by CYP3A4 and CYP2E1 there is risk of DDI and this should be carefully monitored in humans, mainly because CYP3A4 is an isoform responsible for catalyzing the metabolism of most drugs in use.
Nguyen, San. "Inhibitory Properties of Functional Food Plants on CYP Enzymes and Cree Traditional Medicines on Aldose Reductase." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20070.
Full textNous avons étudié dans cette thèse les capacités de 46 plantes comestibles, disponibles sur le marché canadien, à inhiber le cytochrome P450 (CYP), enzyme responsable du métabolisme des médicaments, les propriétés antimicrobiennes, et les propriétés inhibitrices de l'aldose réductase à partir de 17 médicaments antidiabétiques traditionnellement utilisés par les Cris. Les profils de l'activité inhibitrice du CYP 3A4, 3A5, 3A7 et 2D6 ont été réalisés pour les 46 plantes à l'étude. Les plantes les plus actives dans le test d'inhibition du CYP furent les épices, plantes appartenant aux familles des Apiaceae et Lamiaceae. De même, les plantes les plus actives dans le bioessai antimicrobien furent aussi les plantes de ces deux mêmes familles. Un homogénat de cristallin de porc a été utilisé comme modèle nouveau pour le test d'inhibition de l'aldose réductase. Plusieurs plantes, utilisées par la nation Cri, qui ont été sélectionnées pour l'étude ont montré une forte activité inhibitrice de l’aldose réductase, principalement dans les échantillons qui contenaient des teneurs élevées en composés phénoliques. Une corrélation positive a été observée entre la teneur totale en composés phénoliques et l'inhibition de l'aldose réductase (r2 = 0.44, p = 0.05). Des extraits bruts de Rhododendron groenlandicum ont montré des activités inhibitrices de 35.11 ± 0.16%. Le sous-fractionnement et l'analyse HPLC de R. groenlandicum ont aussi révélé des teneurs élevées des composés phénoliques, incluant la catéchine, l'épicatéchine, la quercétine et les glycosides de quercétine. Cette étude a montré que les plantes médicinales et alimentaires contiennent des composés phytochimiques qui peuvent avoir à la fois des effets biologiques bénéfique et préjudiciable.
Books on the topic "Drug metabolism; Drug-drug interactions; Enzymes"
Pang, K. Sandy. Enzyme- and transporter-based drug-drug Interactions: Progress and future challenges. New York: Springer, 2010.
Find full textGiralt, Ernest, Mark Peczuh, and Xavier Salvatella. Protein surface recognition: Approaches for drug discovery. Chichester, West Sussex: John Wiley & Sons, 2011.
Find full textCozza, Kelly L. Concise guide to the cytochrome P450 system: Drug interaction principles for medical practice. Washington, DC: American Psychiatric Pub., 2001.
Find full textLyubimov, Alexander V. Encyclopedia of drug metabolism and interactions. Hoboken, N.J: Wiley, 2012.
Find full textEnzyme kinetics in drug metabolism: Fundamentals and applications. New York: Humana Press, 2014.
Find full textT, Walsh Carol, and Schwartz-Bloom Rochelle D, eds. Pharmacology: Drug actions and reactions. 6th ed. New York: Parthenon Pub. Group, 2000.
Find full textT, Walsh Carol, and Schwartz Rochelle D, eds. Pharmacology: Drug actions and reactions. 5th ed. New York: Parthenon Pub. Group, 1996.
Find full textMethods for studying nucleic acid/drug interactions. Boca Raton: Taylor & Francis, 2012.
Find full textBook chapters on the topic "Drug metabolism; Drug-drug interactions; Enzymes"
Louie, Steven W., and Magang Shou. "Drug-Metabolizing Enzymes, Transporters, and Drug-Drug Interactions." In Mass Spectrometry in Drug Metabolism and Disposition, 83–149. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470929278.ch4.
Full textHouston, J. Brian, and Aleksandra Galetin. "In Vitro Techniques to Study Drug–Drug Interactions of Drug Metabolism: Cytochrome P450." In Enzyme- and Transporter-Based Drug-Drug Interactions, 169–215. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0840-7_7.
Full textKadlubar, Susan, and Fred F. Kadlubar. "Enzymatic Basis of Phase I and Phase II Drug Metabolism." In Enzyme- and Transporter-Based Drug-Drug Interactions, 3–25. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0840-7_1.
Full textYeung, Catherine K., Ping Zhao, Danny D. Shen, and Kenneth E. Thummel. "Drug Disposition and Drug–Drug Interactions: Importance of First-Pass Metabolism in Gut and Liver." In Enzyme- and Transporter-Based Drug-Drug Interactions, 415–35. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0840-7_17.
Full textHachad, Houda, Isabelle Ragueneau-Majlessi, and René H. Levy. "Management of Drug Interactions of New Drugs in Multicenter Trials Using the Metabolism and Transport Drug Interaction Database©." In Enzyme- and Transporter-Based Drug-Drug Interactions, 371–86. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0840-7_15.
Full textOesch, F., F. Fähndrich, H. R. Glatt, B. Oesch-Bartlomowicz, K. L. Platt, and D. Utesch. "Use of Mechanistic Information for Adequate Metabolic Design of Genotoxicity Studies and Toxicological Interactions of Drugs and Environmental Chemicals." In Molecular Aspects of Oxidative Drug Metabolizing Enzymes, 397–409. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79528-2_17.
Full textD’Arcy, P. F. "Drug Interactions and Drug-Metabolising Enzymes." In Mechanisms of Drug Interactions, 151–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61015-8_5.
Full textWard, L., P. Butler, and R. Riley. "Metabolism Drug Interactions." In The ADME Encyclopedia, 1–11. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51519-5_89-1.
Full textChang, Thomas K. H. "Drug-Metabolizing Enzymes." In Handbook of Drug-Nutrient Interactions, 85–117. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-362-6_4.
Full textKhojasteh, Siamak Cyrus, Harvey Wong, and Cornelis E. C. A. Hop. "Drug Metabolizing Enzymes." In Drug Metabolism and Pharmacokinetics Quick Guide, 17–46. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-5629-3_2.
Full textConference papers on the topic "Drug metabolism; Drug-drug interactions; Enzymes"
Ma, Liang, Jeremy Barker, Changchun Zhou, Biaoyang Lin, and Wei Li. "A Perfused Two-Chamber System for Anticancer Drug Screening." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34326.
Full textTian, Haijin, Paul Quehl, Joel Hollender, and Joachim Jose. "Surface display of human cytochrome P450 enzymes 3A4, 1A2, 2C9, 2C19 and 2D6 with cytochrome P450 reductase for drug metabolism studies." In 5th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2019. http://dx.doi.org/10.3390/ecmc2019-06333.
Full textTourlomousis, Filippos, and Robert C. Chang. "Computational Modeling of 3D Printed Tissue-on-a-Chip Microfluidic Devices as Drug Screening Platforms." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38454.
Full text