Academic literature on the topic 'Drug delivery in cancer therapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drug delivery in cancer therapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Drug delivery in cancer therapy"
SL, Prabu. "Nano based Drug Delivery System for Cancer Therapy: A Next Generation Theranostics." Bioequivalence & Bioavailability International Journal 6, no. 2 (July 15, 2022): 1–17. http://dx.doi.org/10.23880/beba-16000178.
Full textYadav, Neena, Arul Prakash Francis, Veeraraghavan Vishnu Priya, Shankargouda Patil, Shazia Mustaq, Sameer Saeed Khan, Khalid J. Alzahrani, et al. "Polysaccharide-Drug Conjugates: A Tool for Enhanced Cancer Therapy." Polymers 14, no. 5 (February 27, 2022): 950. http://dx.doi.org/10.3390/polym14050950.
Full textAnitha, P., J. Bhargavi, G. Sravani, B. Aruna, and Ramkanth S. "RECENT PROGRESS OF DENDRIMERS IN DRUG DELIVERY FOR CANCER THERAPY." International Journal of Applied Pharmaceutics 10, no. 5 (September 8, 2018): 34. http://dx.doi.org/10.22159/ijap.2018v10i5.27075.
Full textVasir, Jaspreet K., and Vinod Labhasetwar. "Targeted Drug Delivery in Cancer Therapy." Technology in Cancer Research & Treatment 4, no. 4 (August 2005): 363–74. http://dx.doi.org/10.1177/153303460500400405.
Full textSubhan, Md Abdus, and Vladimir P. Torchilin. "Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate." Pharmaceutics 15, no. 4 (April 14, 2023): 1242. http://dx.doi.org/10.3390/pharmaceutics15041242.
Full textYu, Han, Na Ning, Xi Meng, Chuda Chittasupho, Lingling Jiang, and Yunqi Zhao. "Sequential Drug Delivery in Targeted Cancer Therapy." Pharmaceutics 14, no. 3 (March 5, 2022): 573. http://dx.doi.org/10.3390/pharmaceutics14030573.
Full textSayyed, Adil A., Piyush Gondaliya, Palak Bhat, Mukund Mali, Neha Arya, Amit Khairnar, and Kiran Kalia. "Role of miRNAs in Cancer Diagnostics and Therapy: A Recent Update." Current Pharmaceutical Design 28, no. 6 (February 2022): 471–87. http://dx.doi.org/10.2174/1381612827666211109113305.
Full textLi, Jiayao, Yinan Liu, and Hend Abdelhakim. "Drug Delivery Applications of Coaxial Electrospun Nanofibres in Cancer Therapy." Molecules 27, no. 6 (March 10, 2022): 1803. http://dx.doi.org/10.3390/molecules27061803.
Full textMontané, Xavier, Anna Bajek, Krzysztof Roszkowski, Josep M. Montornés, Marta Giamberini, Szymon Roszkowski, Oliwia Kowalczyk, Ricard Garcia-Valls, and Bartosz Tylkowski. "Encapsulation for Cancer Therapy." Molecules 25, no. 7 (March 31, 2020): 1605. http://dx.doi.org/10.3390/molecules25071605.
Full textShakil, Md Salman, Kazi Mustafa Mahmud, Mohammad Sayem, Mahruba Sultana Niloy, Sajal Kumar Halder, Md Sakib Hossen, Md Forhad Uddin, and Md Ashraful Hasan. "Using Chitosan or Chitosan Derivatives in Cancer Therapy." Polysaccharides 2, no. 4 (October 13, 2021): 795–816. http://dx.doi.org/10.3390/polysaccharides2040048.
Full textDissertations / Theses on the topic "Drug delivery in cancer therapy"
Yung, Bryant Chinung. "NANOPARTICLE DRUG DELIVERY SYSTEMS FOR CANCER THERAPY." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417614665.
Full textZi, Hong. "Polymers for drug delivery in cancer therapy /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textLiu, Yang. "Development of Novel Drug Delivery Systems for Cancer Therapy." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu153105342400785.
Full textXu, Leyuan. "Engineering of Polyamidoamine Dendrimers for Cancer Therapy." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3773.
Full textQin, Yiru. "Graphene Quantum Dots-Based Drug Delivery for Ovarian Cancer Therapy." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6358.
Full textMan, Kwun-wai Dede, and 文冠慧. "Oleanolic acid delivery using biodegradable nanoparticles for cancer therapy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2015. http://hdl.handle.net/10722/208550.
Full textEscolà, Jané Anna. "Somatostatin analogues as drug delivery systems for receptor-targeted cancer therapy." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663804.
Full textLa somatostatina (SST o SRIF14) es una hormona peptídica secretada por el sistema nervioso central y el tracto gastrointestinal que tiene efectos anti-secretores, anti-proliferativos y anti-angiogénicos. Aunque su administración como fármaco es eficaz en ciertas condiciones, su uso terapéutico está limitado por su corta vida media plasmática (<3 min), el amplio espectro de respuestas biológicas y la falta de selectividad entre sus receptores. Con el fin de obtener análogos más estables y selectivos, hemos incorporado aminoácidos aromáticos no naturales ricos y pobres en electrones en posiciones clave de la secuencia nativa para superar dichos inconvenientes. Así, se obtuvieron diferentes análogos que fueron estudiados por RMN obteniendo la estructura de sus conformaciones mayoritarias. También se determinó su perfil de unión a los receptores y sus vidas medias. Entre los análogos, uno destacó por tener una vida media de 40 h, la más alta conocida para un análogo de 14 aminoácidos. Además, mostró un conjunto de conformaciones en solución parecido y una gran selectividad para SSTR2. Recientemente, la terapia contra el cáncer dirigida a receptores ha ganado interés ya que ciertos receptores están sobre-expresados en las células cancerosas. Este es el caso de los receptores de somatostatina en tumores endocrinos. Así, acoplamos diferentes moléculas en la parte N-terminal del análogo mencionado anteriormente. La primera fue un cromóforo que nos permitió seguir la internalización del análogo en dos líneas celulares: CHO-K1 de tipo salvaje (WT) y CHO-K1 con SSTR2 sobre-expresado (ST); dicha internalización fue mucho mejor en ST que en WT. Al ver estos resultados prometedores, fuimos un paso más allá y probamos el análogo cómo sistema de liberación de fármacos, acoplándolo a un cromóforo que cambia de color (verde: unido al péptido, azul: cuando se libera). Cómo antes, tanto la internalización como la liberación fueron mejores en ST que en WT. El último paso fue probar el análogo como inhibidor de p38α acoplando el inhibidor directamente en la parte N-terminal. Cómo en los ensayos anteriores, la inhibición de p-Hsp27 (diana downstream de p38α) fue mejor en ST que en WT, lo que se atribuyó a una mejor internalización del análogo en ST.
Riaz, Muhammad Kashif. "Peptide functionalized drug delivery system for an efficient lung cancer therapy." HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/609.
Full textKALAJA, ODETA. "Nanoparticles based delivery System of Flavonoids for Cancer Therapy." Doctoral thesis, Università degli Studi di Trieste, 2018. http://hdl.handle.net/11368/2917683.
Full textCheng, Yu. "Gold Nanoparticles as Drug Delivery Vectors for Photodynamic Therapy of Cancers." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1301503263.
Full textBooks on the topic "Drug delivery in cancer therapy"
Brown, Dennis M. Drug Delivery Systems in Cancer Therapy. New Jersey: Humana Press, 2003. http://dx.doi.org/10.1385/1592594271.
Full textL, Domellöf, ed. Drug delivery in cancer treatment. Berlin: Springer-Verlag, 1987.
Find full textRazelle, Kurzrock, and Markman Maurie, eds. Targeted cancer therapy. Totowa, N.J: Humana Press, 2008.
Find full textFeng, Tao, and Yanli Zhao. Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3299-8.
Full textHybrid nanostructures in cancer therapy. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textmissing], [name. Tumor targeting in cancer therapy. Totowa, NJ: Humana Press, 2003.
Find full textSenter, Peter, Felix Kratz, and Henning Steinhagen. Drug delivery in oncology: From basic research to cancer therapy. Weinheim: Wiley-VCH, 2012.
Find full textGutiérrez, Lucía M. Neuro-oncology and cancer targeted therapy. New York: Nova Biomedical Books, 2010.
Find full textM, Amiji Mansoor, ed. Nanotechnology for cancer therapy. Boca Raton: CRC/Taylor & Francis, 2007.
Find full textKumar, C. S. S. R., ed. Nanomaterials for cancer therapy. Weinheim: Wiley-VCH, 2006.
Find full textBook chapters on the topic "Drug delivery in cancer therapy"
Alexis, Frank, Eric M. Pridgen, Robert Langer, and Omid C. Farokhzad. "Nanoparticle Technologies for Cancer Therapy." In Drug Delivery, 55–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00477-3_2.
Full textAlley, Stephen C., Simone Jeger, Robert P. Lyon, Django Sussman, and Peter D. Senter. "Empowered Antibodies for Cancer Therapy." In Drug Delivery in Oncology, 289–323. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634057.ch10.
Full textSankar, Renu, V. K. Ameena Shirin, Chinnu Sabu, and K. Pramod. "Carbon Nanotubes in Cancer Therapy." In Drug Delivery Using Nanomaterials, 287–309. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003168584-12.
Full textZhu, Zhenping, and Daniel J. Hicklin. "Antibody-Mediated Drug Delivery in Cancer Therapy." In Cellular Drug Delivery, 311–44. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-745-1_17.
Full textYhee, Ji Young, Sejin Son, Sohee Son, Min Kyung Joo, and Ick Chan Kwon. "The EPR Effect in Cancer Therapy." In Cancer Targeted Drug Delivery, 621–32. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7876-8_23.
Full textMatsumura, Yasuhiro, Masahiro Yasunaga, and Shino Manabe. "Cancer Stromal Targeting (CAST) Therapy and Tailored Antibody Drug Conjugate Therapy Depending on the Nature of Tumor Stroma." In Cancer Targeted Drug Delivery, 161–81. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7876-8_6.
Full textBarar, Jaleh, Yadollah Omidi, and Gumbleton Mark. "Molecular Targeted Therapy of Lung Cancer: Challenges and Promises." In Pulmonary Drug Delivery, 263–84. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118799536.ch12.
Full textTraore, Mahama A., Ali Sahari, and Bahareh Behkam. "Construction of Bacteria-Based Cargo Carriers for Targeted Cancer Therapy." In Targeted Drug Delivery, 25–35. New York, NY: Springer US, 2018. http://dx.doi.org/10.1007/978-1-4939-8661-3_3.
Full textXiao, Zeyu, Jillian Frieder, Benjamin A. Teply, and Omid C. Farokhzad. "Aptamer Conjugates: Emerging Delivery Platforms for Targeted Cancer Therapy." In Drug Delivery in Oncology, 1263–81. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634057.ch39.
Full textBurke, Thomas G., Tian-Xiang Xiang, Bradley D. Anderson, and Lori J. Latus. "Recent Advances in Camptothecin Drug Design and Delivery Strategies." In Camptothecins in Cancer Therapy, 171–90. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-866-8:171.
Full textConference papers on the topic "Drug delivery in cancer therapy"
Sinsuebphon, Nattawut, Alena Rudkouskaya, Margarida Barroso, and Xavier Intes. "Whole body lifetime FRET imaging in transmission and reflectance for the assessment of drug delivery efficacy in small animals." In Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.48.
Full textMadhusudhanan, J., P. Arivazhagi, J. Balavignesh, and K. Sathish Kumar. "Invivo drug delivery for cancer therapy using gold nanoparticle." In International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-2013). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609399.
Full textInai, Mizuho, Masaya Yamauchi, Norihiro Honda, Hisanao Hazama, Shoji Tachikawa, Hiroyuki Nakamura, Tomoki Nishida, Hidehiro Yasuda, Yasufumi Kaneda, and Kunio Awazu. "Hemagglutinating virus of Japan envelope (HVJ-E) allows targeted and efficient delivery of photosensitizer for photodynamic therapy against advanced prostate cancer." In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/omp.2015.om2d.3.
Full textChizenga, Elvin Peter, and Heidi Abrahamse. "Enhancing Photodynamic Therapy of Cancer by Intracellular Delivery of Photosensitizer." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jtu5a.67.
Full textWeerathunga, Dulanga, and Koshala Chathuri De Silva. "NANOTECHNOLOGY BASED TARGETED DRUG DELIVERY SYSTEMS IN BREAST CANCER THERAPY." In International Conference on Bioscience and Biotechnology. The International Institute of Knowledge Management (TIIKM), 2017. http://dx.doi.org/10.17501/biotech.2017.2105.
Full textRajeswari, N. Raja, and P. Malliga. "Microfluidic system using microneedles for targeted drug delivery in cancer therapy." In 2013 IEEE International Conference on Smart Structures and Systems (ICSSS). IEEE, 2013. http://dx.doi.org/10.1109/icsss.2013.6623000.
Full textSorace, Anna G., Reshu Saini, Marshall J. Mahoney, and Kenneth Hoyt. "Targeted molecular ultrasound therapy improves chemotherapeutic drug delivery in cancer cells." In 2012 IEEE International Ultrasonics Symposium. IEEE, 2012. http://dx.doi.org/10.1109/ultsym.2012.0106.
Full textZhang, Aili, Xipeng Mi, and Lisa X. Xu. "Study of Thermally Targeted Nano-Particle Drug Delivery for Tumor Therapy." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52383.
Full textSingh, Rajesh, Shailesh Singh, Guru P. Sonpavde, and James W. Lillard. "Abstract 5531: Combination drug delivery using PBM nanoparticle to improve prostate cancer therapy." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-5531.
Full textHasan, Tayyaba. "Spatiotemporally synchronized cancer combination therapy using photo-activated nanoparticle drug delivery systems (Conference Presentation)." In Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXV, edited by David H. Kessel and Tayyaba Hasan. SPIE, 2016. http://dx.doi.org/10.1117/12.2217533.
Full textReports on the topic "Drug delivery in cancer therapy"
Esenaliev, Rinat O. Novel Drug Delivery Technique for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada410175.
Full textEsenaliev, Rinat O. Novel Drug Delivery Technique for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada435264.
Full textEsenaliev, Rinat O. Novel Drug Delivery Technique for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada418735.
Full textBand, Hamid, Srikumar Raja, and Tatiana Bronich. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada577110.
Full textBronich, Tatiana, Hamid Band, and Srikumar Raja. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada580965.
Full textBand, Hamid, and Tatiana Bronich. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada599969.
Full textBronich, Tatiana, and Hamid Band. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada600027.
Full textWang, Paul C. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada613187.
Full textWang, Paul C. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada568802.
Full textWang, Paul C. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada597692.
Full text