Dissertations / Theses on the topic 'Drosophila muscles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Drosophila muscles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Laddada, Lilia. "Etude du développement des tendons et de leur interaction avec les précurseurs de muscles lors de la myogenèse appendiculaire chez la Drosophile." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC011/document.
Full textThe formation of the musculo-(exo)skeletal system in drosophila is a remarkable example of tissue patterning making it a suitable model for studying multiple tissue interactions during development.The aim of our study is to better understand appendicular myogenesis through the identification of early interactions between tendon and muscle precursors, and by investigating the mechanisms governing the specification of tendon cell precursors of the leg disc. In order to characterize the interaction between these two tissues, we adapted the GRASP method (GFP Reconstitution Across Synaptic Partners) and set up live imaging experiments to reveal cellular interactions between tendon precursors and myoblasts. We have also conducted a genome wide cell-specific analysis using Fluorescence-activated cell sorting (FACS) on imaginal discs which allowed us to perform a tendon cell specific transcriptional analysis.To test whether reciprocal muscle-tendon interactions are necessary for correct muscle-tendon development, I performed experiments to specifically interfere with the development of tendon or muscle precursors. By altering tendon precursors formation during the early steps of leg development, we affect the spatial localization of the associated myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon precursors in the leg disc.In the second part of my project, I investigated the role of Notch pathway and odd-skipped genes in the differentiation and morphogenesis of tendon precursors. Thus, I have demonstrated that Notch signalling pathway is necessary and locally sufficient for the initiation of stripe expression, and that both odd-skipped genes and stripe are required downstream of Notch to promote morphological changes associated with formation of long tubular tendons
Orfanos, Zacharias. "Dynamics of sarcomere assembly in drosophila indirect flight muscles." Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533510.
Full textCripps, Richard Matthew. "Genetical and biochemical studies of Drosophila indirect flight muscles." Thesis, University of York, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276490.
Full textVarshney, Gaurav. "Identification of downstream targets of ALK signaling in Drosophila melanogaster /." Doctoral thesis, Umeå : Umeå universitet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1894.
Full textYang, Hairu. "Drosophila skeletal muscles regulate the cellular immune response against wasp infection." Doctoral thesis, Umeå universitet, Institutionen för molekylärbiologi (Medicinska fakulteten), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-125842.
Full textShirinian, Margret. "Midgut and muscle development in Drosophila melanogaster." Doctoral thesis, Umeå universitet, Institutionen för molekylärbiologi (Medicinska fakulteten), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-22137.
Full textIslam, Riswana. "The role of [beta]FTZ-F1 in the innervation of the abdominal and pharyngeal muscles in Drosophila /." Connect to online version, 2005. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2005/92.pdf.
Full textSoler, Cédric. "La formation des muscles de la patte chez Drosophila melanogaster : un nouveau modèle d'étude de la myogenèse appendiculaire." Clermont-Ferrand 1, 2005. http://www.theses.fr/2005CLF1MM20.
Full textBernard, Frédéric. "Etude du rôle du gène vestigial au cours de la myogenèse adulte chez Drosophila Melanogaster." Paris 7, 2006. http://www.theses.fr/2006PA077073.
Full textDrosophila melanogaster is an attractive experimental model System because of its short generation time and the easy handling of the flies. This model also benefit from a wide range of methods for carrying out molecular genetic analysis ; these include transgenesis, controlled gene-overexpression System based on the yeast GAL4-UAS System, and a tool (the Flp-FRT System) for performing site-specific recombination. Flight muscles in Drosophila are located in the thorax and are subdivided into two distinct classes : the Direct Flight Muscles (DFMs) attached to the wing hinge and directly responsible for wing movement, and the Indirect Flight Muscles (IFMs) attached to the cuticule and contributing to flight by deformation of the thorax. The IFMs represent the majority of the thoracic muscles. During my PhD, I was interested in IFM development in Drosophila melanogaster. I focus my work on the function of a mammalian-confserved transcription factor Vestigial - Scalloped (VG-SD) during this process. I have shown that VG is necessary for developmental identity of IFM and that an absence of VG leads to IFM specific degeneration through an apoptotic process. I have also obtained some results involving VG in muscle differentiation through Notch pathway inhibition. Finally, I have studied the régulation of vg gene during this process and I have isolated a genomic sequence responsible for the muscular expression of this gene
Caine, Charlotte. "Etude des interactions entre MEF2 et la voie de signalisation Notch au cours de la myogenèse adulte chez Drosophila melanogaster." Paris 7, 2012. http://www.theses.fr/2012PA077248.
Full textMyogenesis of indirect flight muscles (IFM) in Drosophila melanogaster follows a well defined cellular developmental scheme. During embryogenesis, a subset of cells, the Adult Muscle Precursors (AMPs), are specified. These cells will become proliferating myoblasts during the larval stages which will then give rise to the adult IFM. Our work focused on the interactions required during the transition between proliferating myoblasts to differentiated myoblasts ready to fuse to the muscle fiber. It has been previously shown that proliferating myoblasts express the Notch pathway, and that this pathway is inhibited in developing muscle fibers. On the other hand, it has also been shown that the Myocyte Enhancing Factor 2 (MEF2), Vestigial (VG) and Scalloped (SD) transcription factors are necessary for IFM development and that VG is required for Notch pathway repression in differentiating fibers. Our study focuses on the interactions between Notch and MEF2 and mechanisms by which the Notch pathway is inhibited during differentiation. Here we show that MEF2 is capable of inhibiting the Notch pathway in non myogenic cells. A previous screen for MEF2 potential targets identified Delta and Neuralized, two components of the Notch pathway. Both are expressed in developing fibers where MEF2, SD and VG are expressed. Our preliminary results show that MEF2 is required for Delta expression in developing IFMs and that this regulation is potentially dependent on an enhancer to which MEF2 and SD bind. We have identified a similar neuralized enhancer that seems to be potentially regulated by MEF2 and NICD. During my thesis I studied the effect of MEF2 on these targets in vivo and in vitro to understand the rote they play during IFM differentiation
Lavergne, Guillaume. "Caractérisation des précurseurs de muscles adultes et de leurs interactions au cours de l'embryogenèse chez Drosophila melanogaster." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC105.
Full textAdult muscle precursors (or AMPs) represent a transient muscle stem cell population in Drosophila. These cells arise from the embryonic mesoderm and are characterized by the activation of the Notch pathway as well as the maintenance of a high expression of the transcription factor Twist. The distribution of AMPs is established during embryogenesis in a stereotyped manner: we distinguish 6 AMPs per abdominal hemisegment in ventral, lateral, dorso-lateral and dorsal positions. After specification and until the beginning of the second larval instar, AMPs are maintained in a quiescent state where they stay in close contact with muscle fibers and motor axons. The main objective of my PhD project was the characterization of the role and the behavior of these AMP cells during embryogenesis. Firstly, I could demonstrate that AMPs are able to attract motor axons responsible for the innervation of embryonic muscles. This attraction goes through the establishment of contacts between these two tissues via a high filopodial dynamic. Moreover, a sub-population of AMPs in the lateral region in responsible of the formation of one of the nervous branches which will innervate the segmental border muscle. Secondly, this project focused on the behavior of these cells, as well as the analysis of the role of several genes expressed by AMPs. Thus, I could highlight new interactions between lateral AMPs and their muscle environment. Furthermore, I identified new markers of AMPs such as the receptor Unc-5, the metalloproteinase MMP1 and the guidance molecule Sidestep. One of the major contributions of this project was the establishment for the first time of the role of the muscle stem cells AMPs in the setup of the motor nervous system. The addition of this new actor will allow a better comprehension of the mechanisms behind the guidance of axons during muscle innervation
Sevdali, Maria. "Drosophila indirect flight muscles as a model system for the study of human thin filament myopathies." Thesis, University of York, 2009. http://etheses.whiterose.ac.uk/21058/.
Full textFranco-Cea, Omar Ari. "The role of microtubular motors and other cytoskeletal proteins in the development of Drosophila melanogaster indirect flight muscles." Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444303.
Full textWester, Jorge Victor Wilfredo Cachay. "Caracterização molecular do módulo regulador TT (Traqueia-Tórax) de >Drosophila melanogaster." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/17/17136/tde-06062017-163006/.
Full textPrevious functional studies identified in the DNA puff BhC4-1 promoter region a 67 bp (- 253/-187) cis-regulatory module (CRM) that drives reporter gene expression in the ring gland of D. melanogaster. A bioinformatics analysis identified 67 Drosophila melanogaster sequences that are similar to sequences contained in the ring gland CRM. One of the identified sequences resides in a 657 bp genomic fragment located about 2500 bp upstream CG13711, about 400 bp upstream CG12493, in a genomic region that constitutes one of the introns of CG32239 (Gef64C). The preliminary characterization of three transgenic lines transformed with a 657 bp-lacZ construct revealed reporter gene expression in the larval/prepupal tracheal system and in adult thorax. Based on the pattern of expression driven by this CRM we named it Trachea-Thorax (TT). The main goal of this work was to extend the molecular characterization of the lines of the TT-lacZ series. Initially ?-galactosidase histochemical assays were performed in embryos, first, second and third instar larvae, 0h, 1h and 2h prepupae, 24 h pupae and 1, 3 and 5 days old adults. Reporter gene expression is initially detected during the third larval instar in the tracheal system and continues to be detected in this tissue at 0 h, 1h and 2 h prepupa and, 24 h pupa. During the adult stage, reporter gene expression is verified in the dorsal longitudinal muscles of 3 and 5 days old adults. Since the TT CRM lies in an intergenic region and the available information about the nearby CGs is still scarce it was not possible to infer which of the CGs is regulated by the TT CRM. In this context, the mRNA pattern of expression of the lacZ reporter gene and of CG13711, CG12493 and CG32239 was investigated in the tracheal system of both larvae and prepupae and in adult thoraxes of one of the transgenic lines of the TT-lacZ series using RTqPCR. The lacZ mRNA expression levels increase about 3 times in 0 h prepupae when compared to the lacZ mRNA expression levels present in the tracheal system of third instar larvae. A similar pattern of expression was observed for both CG32239 and CG13711. In three and five days old adult thoraxes lacZ mRNA expression levels increase about 37 times and 11 times, respectively, when compared to lacZ mRNA expression levels present in one day old thoraxes. In the adult thorax, the only CG that presents a similar pattern of expression constitutes CG12493. Overall, we conclude that the TT CRM drives a dynamic pattern of ii expression throughout development. Additionally, based on RT-qPCR results, we suggest that the TT CRM regulates the expression of CG32239 mRNA in the tracheal system during the larvae to prepupae transition, as well as the expression of CG12493 mRNA in the thorax of 3 and 5 days old adults. Besides extending the functional characterization of a novel CRM our results also contribute new information about the developmental patterns of expression of three Drosophila melanogaster CGs.
Chakravorty, Samya. "Role of the Drosophila Melanogaster Indirect Flight Muscles in Flight and Male Courtship Song: Studies on Flightin and Mydson Light Chain - 2." ScholarWorks @ UVM, 2013. http://scholarworks.uvm.edu/graddis/1.
Full textKasherov, Petar. "Etude de la régulation du gène vestigial au cours de la myogenèse adulte chez Drosophila melanogaster." Paris 7, 2010. http://www.theses.fr/2010PA077112.
Full textIn Drosophila two waves of myogenesis occur - the larval myogenesis and the adult myogenesis. The first wave allows the formation of the larval muscles, while the second lead to the formation of all adult muscles including the flight muscles. The flight muscles are subdivided into Direct Flight Muscles (DFM) and Indirect Flight Muscles (IFM). During my thesis I have investigated the regulation of one of the key myogenic factors for IFM formation - the vestigial (vg) gene. We showed that its regulation involves two distinct mechanisms: one mechanism is dependent on the Notch pathway takes place in proliferating myoblasts and a second mechanism in muscle fibers and some differentiating myoblasts independent of the Notch pathway. We showed that this second mechanism requires a regulatory sequence located in intron 4 of vg gene that we named vgAME (for vg Adult Muscle Enhancer). The activity of this sequence is controlled by several known myogenic factors - positively by Myocyte enhancer factor 2 (MEF2), Scalloped (SD) and VG and negatively by Twist (TWI) and N. In vivo study of this sequence allowed us to highlight some functional (MEF2, SD and TWI) and physical (MEF2-SD and MEF2 -TWI) interactions between myogenic factors. Thereafter we continued to examine the biological significance of these interactions implicating VG, MEF2 and N. Our preliminary results show that the activity of N can be negatively regulated by MEF2
Aradhya, Rajaguru. "Characterization of quiescent state and reactivation of adult muscle precursor cells in Drosophila melanogaster." Thesis, Clermont-Ferrand 1, 2013. http://www.theses.fr/2013CLF1MM16.
Full textUse of stem cells in regenerative medicine has attracted great interest in the past decade. Muscle stem cells such as satellite cells were shown to regenerate skeletal muscle tissue after injury and to contribute to muscle growth. These properties have raised an enormous interest in using satellite cells for the therapy of skeletal muscle wasting disorders where the intrinsic stem cell population is unable to repair muscle tissue. However, better understanding of the mechanisms controlling satellite cell lineage progression and self-renewal is crucial to exploit the power of these cells in combating myopathic conditions. In the studies described here, the mechanisms regulating the in vivo behavior and maintenance of quiescence of Drosophila Adult Muscle Precursors (AMPs) that share several properties with the vertebrate satellite cells are analyzed. We show that undifferentiated embryonic AMPs display homing behavior and that their survival depends on the somatic muscles. We observe that AMPs establish direct contact with muscle fibers by sending thin filopodia and that this AMP-muscle interaction is crucial for AMPs spatial positioning. Larval muscles also play an important role in promoting the AMP cell proliferation. They achieve this by secreting Drosophila Insulin like peptide 6 (dIlp6) that activate the AMPs from their quiescent state and induce proliferation during the end of the second larval instar. We also demonstrate that Notch acts downstream of Insulin pathway and positively regulates proliferation of AMPs via dMyc. In the second part of the thesis manuscript we report that the affected formation ofadult muscles impacts on persisting abdominal larval templates. In this section role of the Notch signaling pathway in specification of the Adult founder cells is also demonstrated. Finally, we report generation of new tools for the cell type specific genome wide approaches that can be applied to identify global gene expression profiles in quiescent versus activated AMPs. Together these studies identified several new features of AMPs and enhance our understanding on the processes regulating stem cells homing, quiescence and reactivation
Maity, Chaitali. "Determining the role of a candidate gene in Drososphila muscle development." Oxford, Ohio : Miami University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1145459719.
Full textHancock, Daniel H. "Role of Mef2 in Drosophila muscle development." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/55033/.
Full textLiotta, David. "Dmeso17A : a novel inhibitor of Drosophila muscle differentiation." Thesis, Cardiff University, 2005. http://orca.cf.ac.uk/56020/.
Full textSchönbauer, Cornelia. "Genetic analysis of Drosophila adult muscle type specification." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-170130.
Full textWeitkunat, Manuela. "Mechanistic dissection of adult muscle formation in Drosophila." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-178864.
Full textVishal, Kumar. "EGF signaling regulates adult muscle patterning in Drosophila." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1416505009.
Full textFrei, Ryan. "Regulatory Elements of Drosophila Non-Muscle Myosin II." Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/12954.
Full text2015-07-11
Sudarsan, Vikram. "Coordinating cell fate signalling during Drosophila development." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247190.
Full textBoukhatmi, Hadi. "Mise en place de l'identité des muscles au cours de la spécification des myoblastes chez la drosophile." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1777/.
Full textThe somatic musculature of the Drosophila embryo is a classical model to study the regulatory processes that generate cellular diversity. Muscle formation is a multistep process: the first step is the specification, within the mesoderm, of a group of competent cells, called promuscular cluster. The second step is the selection of a progenitor cell (PC) from this cluster. Asymmetric division of each PC then generates muscle founder cells (FC). Finally, each FC undergoes a fusion process with fusion competent myoblasts (FCM) to generate a muscle fiber. Each muscle is formed of a single multinucleate fiber. Each Drosophila muscle has a specific identity, as it can be distinguished by its position, shape, orientation, attachment, and innervation pattern. Muscle identity reflects the expression by each PC/FC of a specific combination of identity Transcription Factors (iTF). In the laboratory, we study the control of muscle identity, using as entry point, the expression and requirement of the iTF Collier (Col) during development of a dorso-lateral (DA3) muscle. I started my PhD by characterizing col transcriptional regulation during early steps of DA3 muscle formation. Starting from computational predictions, I identified an early col cis regulatory module (Early CRM) responsible for col activation in a promuscular cluster. A late col CRM, active from the PC stage, had previously been characterized in the laboratory. To determine with more precision the temporal windows of activity of each of these CRM, I designed a novel intron-containing reporter gene in order to detect primary transcripts. This allowed me to show that the late and the early CRMs together reproduce precisely the endogenous col expression pattern. Characterization of the early mesodermal col CRM also allowed to do lineage experiments and determine the fate of FCMs that transiently express Col at the promuscular stage. I found that these myoblasts contribute mostly to dorso-lateral muscles. During the second part of my thesis, I described a new role of the LIM-homeodomain TF Tailup/Islet1 (Tup) in specifying dorsal muscles. I first showed that Tup is specifically expressed in the four dorsal muscles. In tup null mutants, on one hand, the dorsal musculature is severely disorganized and, on the other hand, the dorsal DA2 muscle ectopically expresses Col and is transformed into a dorso-lateral DA3-like muscle. I showed that the DA2 PC is singled out from the Col promuscular cluster when cells of this cluster still express (transitorily) the homeodomain TF Tinman/Nkx2. 5 (Tin). The DA2 PC gives rise to the DA2 FC and a (dorso-lateral) adult muscle precursor (AMP). Tup activation by Tin in the DA2 PC is required to repress col and establish a DA2 instead of DA3 identity. In conclusion, my work allowed to propose a model which connects a temporal sequence of transcriptional regulation of iTFs to the specification of muscle PC identity and final muscle pattern. It provides a novel, dynamic view of how muscle identity is specified. These findings also provide novel parallels with the specification of pharyngeal muscles in vertebrates
Taffin, de Tilques Mathilde de. "Contrôle transcriptionnel de l'identité musculaire chez la drosophile : modules cis-régulateurs et gènes cibles directs de Collier." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2232/.
Full textThe COE (Collier/Early B cell Factor) family is a metazoan-specific family of transcription factors (TF) that are involved in the control of numerous biological processes, including hematopoiesis, neurogenesis and muscle identity. Mutant analysis of COE TFs across several organisms showed defects in the specification of different cell types, like neuron subtypes or, in mammalians, B lymphocytes and brown adipocytes. However, the COE target genes are mostly unknown. Drosophila (fruit fly) is an excellent model to study the functional diversity of COE TFs. The core of my PhD work was the identification of Collier direct target genes in the DA3 muscle lineage, and the characterization of the corresponding CRM to better understand how COE proteins activate specific target genes in a tissue-dependent manner. I performed chromatin immuno-precipitation on whole embryos followed by systematic sequencing of the immuno-precipitated fragments (ChIPseq). By bio-informatics, I identified Col in vivo binding motif and showed that Col binding in vivo is context-dependent. Several candidate genes were validated by in situ hybridizations and functional analysis of the Col binding CRM. TF are over-represented among these targets. All together, the results reveal an unexpected complexity of gene regulatory networks that control muscle identity in Drosophila and confirm the critical role for Col in several transcription regulatory networks in the embryo. Considering the evolutionary conservation of COE proteins and their in vivo DNA binding properties, these results bring new insight into the complexity of COE function in other organisms, including mammals
Render, Timothy John. "A study of muscle pattern formation in Drosophila melanogaster." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240123.
Full textHarrison, Andrew. "Suppression of indirect flight muscle mutants in Drosophila melanogaster." Thesis, University of York, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297111.
Full textCollins, Mary Ann. "Mechanisms of nuclear movement during muscle development in Drosophila:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108690.
Full textSkeletal muscle is a syncytial cell type in which the multiple nuclei are evenly spaced along the cell periphery. During muscle development, the myonuclei undergo an elaborate set of movements to achieve this precise positioning throughout the muscle. The importance of proper nuclear positioning is highlighted by the correlation between mispositioned nuclei and muscle disease. However, the mechanisms that govern this energetically expensive process as well as the influence nuclear positioning has on muscle cell function remains to be elucidated. The goal of this thesis is to determine the molecular factors and subsequent mechanisms that regulate nuclear movement and how such pathways are disrupted in various muscle diseases. Since many of the key cellular features are conserved between Drosophila and mammalian muscles, we utilize Drosophila musculature as a model system to study myonuclear positioning during muscle development. In this thesis, we provide the first evidence that nuclei experience attractive and repulsive interactions with one another as they actively migrate. Furthermore, we demonstrate that these nucleus-nucleus interactions are critical for proper nuclear positioning, and that they are distinctly regulated by genes that are associated with two different muscle diseases, Emery-Dreifuss muscular dystrophy and Centronuclear myopathy (Chapter 2). We then elaborate upon the genetic mechanisms through which CNM-linked genes regulate nuclear positioning (Chapter 3). Finally, we show that proper nuclear movement requires both the separation of nuclei from their neighbors as well as the transmission of force, that is generated from the cytoskeleton, to move nuclei within the cell (Chapter 4). Together, the work presented in this thesis provides new perspective and mechanistic insights into the genetic factors and physical forces that regulate nuclear movement during muscle development and how such pathways are disrupted in disease, while emphasizing the importance of studying such dynamic processes within an in vivo system
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Picchio, Lucie. "Mise en place, caractérisation phénotypique et transcriptomique d'un modèle de Drosophilie de la Dystrophie Myotonique de type 1." Thesis, Clermont-Ferrand 1, 2013. http://www.theses.fr/2013CLF1MM15/document.
Full textMyotonic Dystrophy Type 1 (DM1) or Steinert's disease is the most common genetic neuromuscular disorder affecting 1 out of 8000 people worldwide. This multisystemic disease affects particularly the skeletal muscles (myotonia, muscle weakness and wasting) and the heart, which can exhibit various symptoms like conduction disturbances and arrhythmia (auricular fibrillation and flutter). DM1 is caused by an unstable CTG repeat expansion in the 3' non-translated region of the DMPK gene. In healthy individuals, the number of CTG repeats ranges from 5 to 37 whereas DM1 patients carry from 50 to thousands repeats. It is well established that when expanded non-coding repeats aggregate into foci within muscle nuclei and sequester the MBNL1 splicing factor. However, the involvement of the stabilization and accumulation of CUGBP1 following PKC hyper-phosphorylation in the disease is a controversial matter in the DM1 community. Lately, in addition to the disruption of the balance between MBNL1/CUGBP1, several mechanisms were identified as part of the DM1 pathogenesis. Among them, transcription factors perturbations, altered maturation of miRNA, kinases activation… each of them leading eventually to transcriptomic alterations. In order to investigate the effect of toxic repeat expression on phenotypic and transcriptomic alterations, we generated three inducible site-specific Drosophila lines expressing 240, 600 and 960 triplet repeats. We worked in parallel on a mbl (MBNL1 orthologue) knocked-down line and two bru-3 (CUGBP1 orthologue) gain of function lines. When expressed in somatic muscles, CTG repeats lead to altered motility, fiber splitting, reduced fiber size and affected myoblast fusion process in a Mbl and Bru-3 dependent manner. In addition, toxic repeats cause fiber hyper-contraction in a Mbldependentmanner due to dSERCA mis-splicing. Comparative transcriptional profiling performed on larval muscles of different conditions show that mbl attenuation reproduces 70-82% of DM1 transcriptomic deregulations whereas bru-3 gain of function represents 32-53% of transcritomic alterations. Thus Mbl appears as a key factor of transcripts deregulations observed in DM1 muscles. On the contrary, physiologic analyses performed on adult hearts suggest that Bru-3 is a key factor for cardiac phenotypes. Indeed, on one hand, mbl attenuated flies display dilated cardiomyopathy, a symptom barely diagnosed in patients. On the other hand, bru-3 gain of function line and DM1 lines display fibrillation, which evolves withage or repeat size into a phenotype reminiscent of heart insufficiency in patients
Clayton, Jonathan David. "Suppression of a mutation in the Act88F gene of Drosophila melanogaster." Thesis, University of York, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387180.
Full textGreen, Hannah Jane. "Diverse functions for intern associated proteins in Drosophila adult muscle." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/264024.
Full textBelu, Mirela. "Comparative Analysis of Muscle and Locomotion Patterns in Drosophila Species." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1301331017.
Full textMiller, Becky M. "Functional analysis of Drosophila melanogaster muscle myosin heavy chain alternative domains /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3138951.
Full textChang, Whei-meih. "Identification of transcriptional regulatory elements in muscle promoter of Ca⁺⁺-activated potassium channel, slowpoke, in Drosophila /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textRicketson, Derek Lee. "Drosophila non-muscle myosin II bipolar filament formation : importance of charged residues and specific domains for self-assembly /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10285.
Full textGunthorpe, D. "Muscle differentiation in Drosophila : analysis of the roles of DMEF2 and Dmeso47C." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599783.
Full textWong, Ming-Ching. "Regulation of twist activity during mesoderm and somatic muscle development in drosophila /." Access full-text from WCMC, 2008. http://proquest.umi.com/pqdweb?did=1642921011&sid=7&Fmt=2&clientId=8424&RQT=309&VName=PQD.
Full textLaurichesse, Quentin. "Caractérisation génétique des précurseurs de tendons appendiculaires au cours des étapes précoces de la métamorphose chez Drosophila melanogaster : rôle du Krüppel-like factor Dar1 dans le développement des précurseurs de tendons appendiculaires." Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC072.
Full textMusculoskeletal development is a coordinated process that requires the integration of multiple cues and the interaction between muscles and connective tissues (CT). Despite the lack of internal skeleton, the drosophila leg, like the vertebrate limb, shows long internal tendons, which are connected with muscle fibres. These muscle attachment sites share similar function with their mammalian counterpart; they transmit the strength generated by the muscles to allow locomotion. They also share well-known molecular orthologs that are required for their development and homeostasis. Thus, the study of this long internal tendons within the drosophila leg is of great interest to understand the development of this sort of structure. Based on these observations and knowledge, we decided to investigate the genes that are responsible for the development of such particular tendons. We focused on leg tendon precursors, which in fly, develop into tube-like CT structures. We developed a cell-specific approach to isolate tendon precursors and perform RNAseq analysis. This experiment led us to identify approximately 900 transcripts enriched in tendon precursors, in which 68 of them encode for transcription factors (TF). Amongst them, the Krüppel-like factor Dar1 is specifically expressed in tendon leg precursors during the early stages of metamorphosis. Tissue sections of fly legs with attenuated dar1 expression revealed aberrant leg muscle organization with a loss of internal appendicular tendons. These results suggest that Dar1 plays a key role in tendon development. Interestingly, Dar1 orthologs KLF- 4 and 5 are also expressed in mouse tendon precursors and studies conducted on chicken explants suggest that it could impact CT development. This work allowed Dar1 to be identified as a specific marker of long tendon of the leg that could also be required for the development of connective tissues in the vertebrate limb
Schönbauer, Cornelia [Verfasser], and Matthias [Akademischer Betreuer] Mann. "Genetic analysis of Drosophila adult muscle type specification / Cornelia Schönbauer. Betreuer: Matthias Mann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2013. http://d-nb.info/1052778852/34.
Full textKatzemich, Anja R. "Expression and function of the large modular muscle protein Obscurin in Drosophila melanogaster." Thesis, University of York, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533525.
Full textWeitkunat, Manuela Verfasser], and Ulrike [Akademischer Betreuer] [Gaul. "Mechanistic dissection of adult muscle formation in Drosophila / Manuela Weitkunat. Betreuer: Ulrike Gaul." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1066206600/34.
Full textJagla, Teresa. "Etude de la fonction des genes a homeoboite, ladybird, dans la myogenese chez drosophila melanogaster (doctorat)." Clermont-Ferrand 1, 2000. http://www.theses.fr/2000CLF1MM09.
Full textPerkins, Alexander David. "A systematic analysis of the role of the cytoskeleton in Drosophila melanogaster muscle maintenance." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44235.
Full textManieu, Seguel Catalina Paz. "The role of muscle-tendon cell interaction during epithelial notum morphogenesis of Drosophila melanogaster." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/168536.
Full textTissue-tissue interaction is essential to drive morphogenesis and contributing to the final shape of tissues and organs. The interaction between muscles and tendons during the establishment of the muscle-skeletal system is a great model to study this problem. During Drosophila melanogaster metamorphosis a group of cells of the dorsal thorax (notum) epithelium, specialized as tendon cells, attach to the developing Indirect Flight Muscles (IFMs). Likewise, epithelial cells anchor to the cuticle exoskeleton through apical projections. Both interactions enable the adaptation of notum epithelium to mechanical strain generated by muscle contraction, by modulating its mechanoresponse. However, scarce evidence exists about how muscle-tendon interaction contributes to the final shape of the notum. Thus, we hypothesized that the interaction between IFMs and tendon cells plays a role in notum epithelium morphogenesis. Geometric morphometric analysis of adult thorax shape shows that interfering with muscle development results in dorsal thorax deformation, however, the absence of muscles does not affect,collective-epithelial movement of the epithelium towards anterior during notum morphogenesis, suggesting that early cellular mechanisms such as cell division, rearrangements and cell delamination are not altered. Conversely, force distribution along epithelium plane changes in muscle depletion condition during notum morphogenesis, displaying anisotropic tendency in tendon-cell and midline domains. Further, impairing muscle-contraction does not affect adult thorax shape compared with wild-type conditions, indicating that muscle function as a structural support for thorax epithelium. On the other hand, the ability of notum epithelium to adapt to the mechanical strain during IFMs contraction becomes crucial to maintain the shape and integrity of the tissue. Notum epithelium lacking Chascon, a scaffold/adaptor protein involved in cytoskeleton organization upstream of Jbug/Filamin, displays epithelium deformations and impaired collective-epithelial movement during morphogenesis. Interestingly, IFMs ablation rescues backward epithelial movement associated with chascon knockdown condition, resembling wild-type phenotype, although it affects tissue-movement velocity and the ability of tendon cells to guide collective cell movement. Since notum epithelium anchors apically to the cuticle we tested whether Chascon is required for this interaction. We found that chascon knockdown in tendon cells results in epithelial detachment from the cuticle during muscles shortening stage, supporting the role of Chascon in cell adhesion and collective epithelial-cell movement. Additionally, we observed an increased anisotropy at tendon cell domains in absence of Chascon after muscle shortening, indicating the great unbalance in mechanical homeostasis after muscle pulling under this condition. Since muscle-tendon interaction is required for tendon cell differentiation in embryos we tested whether muscle was required for the expression of chascon and dumpy, a membrane protein responsible for exoskeleton-epithelium attachment, which along with Chascon is enriched in tendon cell domains during terminal differentiation. We found no significant differences in mRNA levels of chascon and dumpy, between animals lacking muscles versus wild type during muscle shortening, suggesting a muscle-independent alternative regulation of chascon and dumpy expression. Our results support the notion that Chascon is required for tension-adaptation response of notum epithelium during muscle-contraction, ensuring collective-epithelial cell movement through regulation of tendon-cell attachment to the cuticle. We suggest that Chascon, along with a multi-protein complex, regulate the mechano-response of tendon-cells during muscle contraction, by enabling collective-epithelial cell movement under mechanical load due to muscle development. Finally, these analyses will contribute to a better understanding of the role of tissue-tissue interaction in tissue morphogenesis and differentiation.
Jacques, Cécile. "Etude du rôle et du mécanisme d'action des facteurs de transcription glial cell deficient/glial cells missing au cours du développement." Université Louis Pasteur (Strasbourg) (1971-2008), 2007. https://publication-theses.unistra.fr/public/theses_doctorat/2007/JACQUES_Cecile_2007.pdf.
Full textGcm-Gcm2 transcription factors are known for their role in glial and plasmatocytes differentiation in Drosophila embryo. During my PhD, I have shown that gcm-gcm2 genes are required for terminal differentiation of a subpopulation of tendon cells. Thereafter, we showed that the chicken c-GCM1 orthologue is required during embryogenesis for the differentiation of spinal cord neural precursors into neurons. We have also shown that gcm genes are expressed and required in post-embryonic neural brain lineages of Drosophila. All these studies show that the specific role of Gcm transcription factors depends on the cellular context in which they are expressed. A two hybrid screen enabled me to identify the cofactor dpias and its study has allowed me to show the implication of Gcm in larval hematopoiesis
Rodriguez, Deyra Marie. "Isolation and characterization of stretchin-myosin light chain kinase mutants in drosophila melanogaster." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1079994503.
Full textSuslak, Thomas James. "There and back again : a stretch receptor's tale." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10474.
Full textZhou, Lili. "The role of Lasp in the «Drosophila» male stem cell niche and in muscle development." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95064.
Full textChez la drosophile, Lasp est la seule protéine représentante de la famille des Nébuline. Lasp contient un domaine LIM, deux répétitions de type Nébuline et un domaine SH3, et présente une forte homologie avec la famille Lasp des mammifères. Afin identifier le rôle de Lasp, nous avons généré une mutation nulle, nommée Lasp1. Les mutants Lasp1 sont homozygotes viables, mais les mâles stériles. Lasp se localise dans cellules kyste, dans les cellules germinales, les cellules hub et au niveau des cônes d'actine. Chez les mutants Lasp1, les cellules souches ne sont plus ancré à l'extrémité apicale du testicule, et la migration des cônes d'actine est perturbée, conduisant à une individualisation irrégulière des spermatides. Lasp est colocalisée avec l'intégrine βPS et interagit génétiquement avec l'intégrine βPS, amenant une délocalization des cellules hub, indiquant que Lasp module adhésion intégrine dans ce contexte. Les larves mutantes pour Lasp se déplacent avec difficulté et les adultes ont avec une capacité d'escalade et de vols réduite. Lasp se localise aux lignes Z dans les muscles des larves du troisième stade. Chez les adultes Lasp1, les muscles des ailes présentent une longueur réduite des filaments minces ainsi que des sarcomères, alors que l'ultrastructure du sarcomère ne semble pas être significativement affectée. Les muscles larvaires présentent le phenotype. De plus, on observe un dérèglement de la longueur du sarcomère en surexprimant Lasp dans un contexte sauvage. Ce phénotype est très similaire à celui des souris mutantes pour la nébuline, indiquant que Lasp joue un rôle dans la régulation de la longueur du filament mince, mais avec seulement deux répétitions nébuline.