Academic literature on the topic 'Drosophila Indirect Flight Muscles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drosophila Indirect Flight Muscles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Drosophila Indirect Flight Muscles"
Fernandes, J., and K. VijayRaghavan. "The development of indirect flight muscle innervation in Drosophila melanogaster." Development 118, no. 1 (May 1, 1993): 215–27. http://dx.doi.org/10.1242/dev.118.1.215.
Full textDeSimone, S., C. Coelho, S. Roy, K. VijayRaghavan, and K. White. "ERECT WING, the Drosophila member of a family of DNA binding proteins is required in imaginal myoblasts for flight muscle development." Development 122, no. 1 (January 1, 1996): 31–39. http://dx.doi.org/10.1242/dev.122.1.31.
Full textFernandes, J., M. Bate, and K. Vijayraghavan. "Development of the indirect flight muscles of Drosophila." Development 113, no. 1 (September 1, 1991): 67–77. http://dx.doi.org/10.1242/dev.113.1.67.
Full textOas, Sandy T., Anton L. Bryantsev, and Richard M. Cripps. "Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila." Journal of Cell Biology 206, no. 7 (September 22, 2014): 895–908. http://dx.doi.org/10.1083/jcb.201405058.
Full textGhazi, A., S. Anant, and K. Vijay Raghavan. "Apterous mediates development of direct flight muscles autonomously and indirect flight muscles through epidermal cues." Development 127, no. 24 (December 15, 2000): 5309–18. http://dx.doi.org/10.1242/dev.127.24.5309.
Full textDahl-Halvarsson, Martin, Montse Olive, Malgorzata Pokrzywa, Katarina Ejeskär, Ruth H. Palmer, Anne Elisabeth Uv, and Homa Tajsharghi. "Drosophila model of myosin myopathy rescued by overexpression of a TRIM-protein family member." Proceedings of the National Academy of Sciences 115, no. 28 (June 26, 2018): E6566—E6575. http://dx.doi.org/10.1073/pnas.1800727115.
Full textCripps, R. M., K. D. Becker, M. Mardahl, W. A. Kronert, D. Hodges, and S. I. Bernstein. "Transformation of Drosophila melanogaster with the wild-type myosin heavy-chain gene: rescue of mutant phenotypes and analysis of defects caused by overexpression." Journal of Cell Biology 126, no. 3 (August 1, 1994): 689–99. http://dx.doi.org/10.1083/jcb.126.3.689.
Full textFernandes, J. J., and H. Keshishian. "Nerve-muscle interactions during flight muscle development in Drosophila." Development 125, no. 9 (May 1, 1998): 1769–79. http://dx.doi.org/10.1242/dev.125.9.1769.
Full textChan, W. P., and M. H. Dickinson. "In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis." Journal of Experimental Biology 199, no. 12 (December 1, 1996): 2767–74. http://dx.doi.org/10.1242/jeb.199.12.2767.
Full textAnant, S., S. Roy, and K. Vijay Raghavan. "Twist and Notch negatively regulate adult muscle differentiation in Drosophila." Development 125, no. 8 (April 15, 1998): 1361–69. http://dx.doi.org/10.1242/dev.125.8.1361.
Full textDissertations / Theses on the topic "Drosophila Indirect Flight Muscles"
Orfanos, Zacharias. "Dynamics of sarcomere assembly in drosophila indirect flight muscles." Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533510.
Full textCripps, Richard Matthew. "Genetical and biochemical studies of Drosophila indirect flight muscles." Thesis, University of York, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276490.
Full textHarrison, Andrew. "Suppression of indirect flight muscle mutants in Drosophila melanogaster." Thesis, University of York, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297111.
Full textChakravorty, Samya. "Role of the Drosophila Melanogaster Indirect Flight Muscles in Flight and Male Courtship Song: Studies on Flightin and Mydson Light Chain - 2." ScholarWorks @ UVM, 2013. http://scholarworks.uvm.edu/graddis/1.
Full textSevdali, Maria. "Drosophila indirect flight muscles as a model system for the study of human thin filament myopathies." Thesis, University of York, 2009. http://etheses.whiterose.ac.uk/21058/.
Full textFranco-Cea, Omar Ari. "The role of microtubular motors and other cytoskeletal proteins in the development of Drosophila melanogaster indirect flight muscles." Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444303.
Full textWinckler, Fernanda Fernandez. "Estudo ultra-estrutural e citoquímico da relação entre o desenvolvimento da musculatura do vôo e a demanda por vôo dos componentes de colônias de abelhas eussociais /." Rio Claro : [s.n.], 2008. http://hdl.handle.net/11449/100544.
Full textBanca: Ana Maria Costa Leonardo
Banca: Flávio Henrique Caetano
Banca: Zilá Luz Paulino Simões
Banca: José Eduardo Serrão
Resumo: Apini e Meliponini são tribos compostas por espécies de abelhas classificadas como eussociais avançadas e, portanto, apresentam divisão de trabalho reprodutivo entre as castas femininas e complexas adaptações comportamentais, adquiridas durante a evolução pelas operárias, para desempenhar as tarefas relativas à manutenção da colônia. A capacidade de voar dos adultos destes insetos está intrinsecamente ligada à maioria de suas atividades como o vôo nupcial para o acasalamento no caso das rainhas e machos e a exploração de novo habitat, fontes de alimentos e estabelecimento de novos ninhos no caso das operárias. Tanto em Apis mellifera, quanto em Scaptotrigona postica, o vôo é realizado por músculos denominados músculos indiretos do vôo por não apresentarem ligação direta com as asas. A contração desses músculos produz mudanças de volume no tórax e indiretamente, o movimento das asas. O objetivo deste projeto foi realizar medidas das fibras desse músculo em cada indivíduo e em cada fase da vida, aplicando aos resultados teste estatístico apropriado para verificar possíveis diferenças de desenvolvimento que possam ser relacionadas à função muscular e comparar a ultraestrutura e citoquímica da musculatura do vôo das castas femininas (rainhas e operárias) e machos em diferentes fases da vida, tendo em vista as diferenças comportamentais e fisiológicas entre as classes de indivíduos das duas espécies. O exame da musculatura do vôo, tanto com microscopia de luz como com microscopia eletrônica de varredura e transmissão, mostrou que o arranjo e a morfologia dos feixes musculares e das fibras que os compõe são similares nas duas espécies, no entanto os feixes musculares de Apis mellifera são formados por número maior de fibras. Medições das larguras das fibras mostraram diferenças estatisticamente significante entre as fases da vida... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Apini and Meliponini are tribes composed of species of advanced eusocial bees and therefore present division of reproductive labor between females and complex behavioral adaptations, acquired during the evolution by workers, to attend the responsibilities for the maintenance of the colony. The ability of adults to fly is intrinsically linked to most of their activities as the nuptial flight for mating in the case of queens and males and exploitation of new habitat, sources of food and establishment of new nests in the case of workers. Both in Apis mellifera, as in Scaptotrigona postica, the flight is accomplished by muscles called indirect flight muscles by not make a direct connection with the wings. The contraction of muscles produces changes in volume in the torax and indirectly, movement of the wings. The objective of this project was to perform measurements of muscle fibers from every individual in every stage of life, applying the appropriate statistical test to results in order determine possible differences in development that may be related to muscle function. Alsoo compare the ultra-structure of and cytochemistry of workers, queens and males flight muscle at different stages of life, with the behavioral and physiological differences between the classes of individuals of the two species. The examination of the muscles of the flight, both with light microscopy, and with scanning and transmission electron microscopy, showed that the arrangement and morphology of the muscle fibers bundles arrangement is similar in the two species, however the muscle bundles of Apis mellifera are formed by larger number of musclefibres. Measurements of the width of the fibers showed statistically significant differences between the life phases of the colonies components and between species. Similarly the ultra-structural examination showed that workers of both species emerge with... (Complete abstract click electronic access below)
Doutor
Winckler, Fernanda Fernandez [UNESP]. "Estudo ultra-estrutural e citoquímico da relação entre o desenvolvimento da musculatura do vôo e a demanda por vôo dos componentes de colônias de abelhas eussociais." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/100544.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Apini e Meliponini são tribos compostas por espécies de abelhas classificadas como eussociais avançadas e, portanto, apresentam divisão de trabalho reprodutivo entre as castas femininas e complexas adaptações comportamentais, adquiridas durante a evolução pelas operárias, para desempenhar as tarefas relativas à manutenção da colônia. A capacidade de voar dos adultos destes insetos está intrinsecamente ligada à maioria de suas atividades como o vôo nupcial para o acasalamento no caso das rainhas e machos e a exploração de novo habitat, fontes de alimentos e estabelecimento de novos ninhos no caso das operárias. Tanto em Apis mellifera, quanto em Scaptotrigona postica, o vôo é realizado por músculos denominados músculos indiretos do vôo por não apresentarem ligação direta com as asas. A contração desses músculos produz mudanças de volume no tórax e indiretamente, o movimento das asas. O objetivo deste projeto foi realizar medidas das fibras desse músculo em cada indivíduo e em cada fase da vida, aplicando aos resultados teste estatístico apropriado para verificar possíveis diferenças de desenvolvimento que possam ser relacionadas à função muscular e comparar a ultraestrutura e citoquímica da musculatura do vôo das castas femininas (rainhas e operárias) e machos em diferentes fases da vida, tendo em vista as diferenças comportamentais e fisiológicas entre as classes de indivíduos das duas espécies. O exame da musculatura do vôo, tanto com microscopia de luz como com microscopia eletrônica de varredura e transmissão, mostrou que o arranjo e a morfologia dos feixes musculares e das fibras que os compõe são similares nas duas espécies, no entanto os feixes musculares de Apis mellifera são formados por número maior de fibras. Medições das larguras das fibras mostraram diferenças estatisticamente significante entre as fases da vida...
Apini and Meliponini are tribes composed of species of advanced eusocial bees and therefore present division of reproductive labor between females and complex behavioral adaptations, acquired during the evolution by workers, to attend the responsibilities for the maintenance of the colony. The ability of adults to fly is intrinsically linked to most of their activities as the nuptial flight for mating in the case of queens and males and exploitation of new habitat, sources of food and establishment of new nests in the case of workers. Both in Apis mellifera, as in Scaptotrigona postica, the flight is accomplished by muscles called indirect flight muscles by not make a direct connection with the wings. The contraction of muscles produces changes in volume in the torax and indirectly, movement of the wings. The objective of this project was to perform measurements of muscle fibers from every individual in every stage of life, applying the appropriate statistical test to results in order determine possible differences in development that may be related to muscle function. Alsoo compare the ultra-structure of and cytochemistry of workers, queens and males flight muscle at different stages of life, with the behavioral and physiological differences between the classes of individuals of the two species. The examination of the muscles of the flight, both with light microscopy, and with scanning and transmission electron microscopy, showed that the arrangement and morphology of the muscle fibers bundles arrangement is similar in the two species, however the muscle bundles of Apis mellifera are formed by larger number of musclefibres. Measurements of the width of the fibers showed statistically significant differences between the life phases of the colonies components and between species. Similarly the ultra-structural examination showed that workers of both species emerge with... (Complete abstract click electronic access below)
Maity, Chaitali. "Determining the role of a candidate gene in Drososphila muscle development." Oxford, Ohio : Miami University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1145459719.
Full textFirdaus, Hena. "Genetics of Drosophila Indirect Flight Muscles : Unraveling the Roles of Genes Involved in Muscle Development and Function." Thesis, 2010. http://etd.iisc.ac.in/handle/2005/4114.
Full textBooks on the topic "Drosophila Indirect Flight Muscles"
Garcia, Christian Joel. The Regulation of Mitochondrial Complex I Biogenesis in Drosophila Flight Muscles. [New York, N.Y.?]: [publisher not identified], 2020.
Find full textNature's versatile engine: Insect flight muscle inside and out. Georgetown, Tex: Landes Bioscience/Eurekah.com, 2006.
Find full textBook chapters on the topic "Drosophila Indirect Flight Muscles"
Dubey, Madhavi, Kumari Pragati Nanda, and Hena Firdaus. "Cryodissection and Tissue Preparation of Drosophila Thorax for Indirect Flight Muscle Imaging." In Springer Protocols Handbooks, 65–76. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9756-5_6.
Full textHeppner, John B., D. G. Boucias, J. C. Pendland, Andrei Sourakov, Timothy Ebert, Roger Downer, Kun Yan Zhu, et al. "Indirect Flight Muscles." In Encyclopedia of Entomology, 1924. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_1519.
Full textYamakawa, Mineo, Jeffrey Warmke, Scott Falkenthal, and David Maughan. "Frequency Analysis of Skinned Indirect Flight Muscle From a Myosin Light Chain 2 Deficient Mutant of Drosophila Melanogaster with a Reduced Wing Beat Frequency." In Advances in Experimental Medicine and Biology, 455–60. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6003-2_38.
Full textVigoreaux, Jim O., Jeffrey R. Moore, and David W. Maughan. "Role of the Elastic Protein Projectin in Stretch Activation and Work Output of Drosophila Flight Muscles." In Advances in Experimental Medicine and Biology, 237–50. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4267-4_14.
Full textConference papers on the topic "Drosophila Indirect Flight Muscles"
Loya, Amy K., and Douglas M. Swank. "Comparative proteomics of Drosophila indirect flight muscle and tergal depressor of the trochanter to determine expression of troponin isoforms." In 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC). IEEE, 2015. http://dx.doi.org/10.1109/nebec.2015.7117175.
Full text