Academic literature on the topic 'Drag reduction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drag reduction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Drag reduction"
García-Mayoral, Ricardo, and Javier Jiménez. "Drag reduction by riblets." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1940 (April 13, 2011): 1412–27. http://dx.doi.org/10.1098/rsta.2010.0359.
Full textWatanabe, Osamu. "Drag Reduction by Microbubbles." Proceedings of the Fluids engineering conference 2000 (2000): 176. http://dx.doi.org/10.1299/jsmefed.2000.176.
Full textGILLISSEN, J. J. J., B. J. BOERSMA, P. H. MORTENSEN, and H. I. ANDERSSON. "Fibre-induced drag reduction." Journal of Fluid Mechanics 602 (April 25, 2008): 209–18. http://dx.doi.org/10.1017/s0022112008000967.
Full textHŒPFFNER, JÉRÔME, and KOJI FUKAGATA. "Pumping or drag reduction?" Journal of Fluid Mechanics 635 (September 10, 2009): 171–87. http://dx.doi.org/10.1017/s0022112009007629.
Full textBushnell, D. M., and K. J. Moore. "Drag Reduction in Nature." Annual Review of Fluid Mechanics 23, no. 1 (January 1991): 65–79. http://dx.doi.org/10.1146/annurev.fl.23.010191.000433.
Full textBushnell, Dennis M. "SHOCK WAVE DRAG REDUCTION*." Annual Review of Fluid Mechanics 36, no. 1 (January 2004): 81–96. http://dx.doi.org/10.1146/annurev.fluid.36.050802.122110.
Full textHewitt, Geoffrey F., A. Bismarck, J. M. Griffen, L. Chen, and John Christos Vassilicos. "2.14.1 DRAG REDUCTION: INTRODUCTION." Heat Exchanger Design Updates 11, no. 3 (2004): 5. http://dx.doi.org/10.1615/heatexchdesignupd.v11.i3.10.
Full textHewitt, Geoffrey F., A. Bismarck, J. M. Griffen, L. Chen, and John Christos Vassilicos. "2.14.2 POLYMER DRAG REDUCTION." Heat Exchanger Design Updates 11, no. 3 (2004): 25. http://dx.doi.org/10.1615/heatexchdesignupd.v11.i3.20.
Full textBismarck, A., L. Chen, J. M. Griffen, John Christos Vassilicos, and Geoffrey F. Hewitt. "2.14.3 SURFACTANT DRAG REDUCTION." Heat Exchanger Design Updates 11, no. 3 (2004): 5. http://dx.doi.org/10.1615/heatexchdesignupd.v11.i3.30.
Full textAbdul Bari, Hayder A., Siti Nuraffini Kamaruliza, and Rohaida Che Man. "Investigating Drag Reduction Characteristic using Okra Mucilage as New Drag Reduction Agent." Journal of Applied Sciences 11, no. 14 (July 1, 2011): 2554–61. http://dx.doi.org/10.3923/jas.2011.2554.2561.
Full textDissertations / Theses on the topic "Drag reduction"
Futrzynski, Romain. "Drag reduction using plasma actuators." Licentiate thesis, KTH, Farkost och flyg, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161409.
Full textDenna avhandling behandlar tillämpningen av aktiv strömningskontroll för lastbilshytter, vilket är en ny metod för minskning av luftmotståndet. Mer i detalj är det övergripande målet att visa på hur plasmaaktuatorer kan användas för att minska luftmotståndet orsakat av avlösningen runt A-stolparna. In denna avhandling studeras detta genom numeriska simuleringar. Arbetet är en del av ett projekt där även experimentella försök görs. Effekten av plasmaaktuatorer modelleras genom en masskraft, vilket inte ger nämnvärd ökning av beräkningstiden och är lämplig för implementering i de flesta CFD-lösare. Den rumsliga fördelningen av kraften bestäms av koefficienter vilka i detta arbete beräknades utifrån experimentella data. Modellen har visat sig kunna återskapa en stråle nära väggen med god noggrannhet av en enskild plasmaaktuator för en halvcylinder utan strömning. Samma geometri - en halvcylinder som här används som förenklad geometri av A-stolpen på en lastbil - användes i en preliminär LES studie som visade att enbart aktuatorn vid kontinuerlig drift inte var tillräckligt för att uppnå en signifikant minskning av luftmotståndet. En signifikant minskning av luftmotståndet erhölls genom att helt enkelt öka styrkan på kraften, vilket visats att denna typ av strömningskontroll är relevant för minskning av luftmotståndet. I syfte att förbättra effektiviteten hos aktuatorn, studerades dynamic mode decomposition, som ett verktyg för efterbehandling för att få fram flödesstrukturer. Dessa strukturer identifieras genom deras rumsupplösning och frekvens och kan hjälpa till att förstå hur aktuatorerna bör användas för att minska luftmotståndet. En parallelliserad kod för dynamic mode decomposition utvecklades för att underlätta efterbehandlingen av de stora datamängder som fås från LES-beräkningarna. Slutligen, utvärderades denna kod och LES-beräkningar på ett strömningsfall med pulserande kanalflöde. Metoden, dynamic mode decomposition, visade sig kunna extrahera de oscillerande flödesprofilerna med hög noggrannhet för den påtvingade frekvensen. Övertoner med lägre amplitud jämfört med turbulensintensiteten kunde dock inte erhållas.
QC 20150312
Kulmatova, Dilafruz. "Turbulent drag reduction by additives." Paris 6, 2013. http://www.theses.fr/2013PA066480.
Full textL'ajout d'une quantité infime d'un polymère ou d'un additif tensioactif à un flux turbulent de fluide peut causer une forte diminution de la friction dans les tuyaux et les canalisations. Ces dix dernières années, de nombreuses études ont été réalisées sur les agents réducteurs de friction (ARF). Les ARF sont utilisés pour leurs effets bénéfiques dans de nombreux procédés industriels, tels que l'extraction de pétrole, le chauffage et le refroidissement de circuits de circulation d'eau ainsi que dans des systèmes marins et biomédicaux. L'utilisation d'additifs pour améliorer l'écoulement dans les canalisations de pétrole a été particulièrement étudiée, en raison de son succès commercial en terme de réductions de couts et de consommation d'énergie. Bien que l'action de ces additifs est connue depuis presque cinquante ans, le mécanisme détaillé de la réduction des frictions n'a pas été clairement identifié et est encore sujet à controverses. Le but de cette étude est d'apporter une explication au rôle de ces agents en matière de réduction des frictions, et d'expliquer la nature ce mécanisme. Les résultats présentés ici peuvent influencer significativement la conception des systèmes de pompes, le développement d'agent réducteurs de friction plus stables ainsi que la modélisation de procédés mixtes qui pourraient devenir une considération majeure dans le design de systèmes réels
Snelling, Diana. "Surfactant drag reduction using mixed counterions." Connect to resource, 2006. http://hdl.handle.net/1811/6447.
Full textTitle from first page of PDF file. Document formatted into pages: contains 36 p.; also includes graphics. Includes bibliographical references (p. 31-32). Available online via Ohio State University's Knowledge Bank.
Jukes, Timothy N. "Turbulent drag reduction using surface plasma." Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/12160/.
Full textWang, Cheng. "Aerodynamics drag reduction of commercial trucks." Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/5456.
Full textThis thesis deals with the airflow over a double trailer Gull Wing truck, with a view to reducing the drag of the truck. To investigate the flow over the truck, a 1:20 scale double trailer truck model was designed and constructed from chipboard for wind tunnel experiments. The overall size of the model is 1100 mm long, 130 mm wide and 215 mm high. A same scale numerical model was also built for computational simulations.
Wise, D. J. "Disc actuators for turbulent drag reduction." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/9216/.
Full textRowan, Scott A. "Viscous drag reduction in a scramjet combustor /." St. Lucia, Qld, 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17438.pdf.
Full textShi, Haifeng. "Surfactant Drag Reduction and Heat Transfer Enhancement." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343664380.
Full textKhosh, Aghdam Sohrab. "Turbulent drag reduction through wall-forcing methods." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12589/.
Full textHaffner, Yann. "Manipulation of Three-Dimensional Turbulent Wakes for Aerodynamic Drag Reduction Mechanics of bluff body drag reduction during trnasient near wake reversals Unsteady Coanda Effect and Drag Reduction of a Turbulent Wake Manipulation of Three-Dimensional Asymmetries of a Turbulent Wake for Drag Reduction Large-Scale Asymmetries of a Turbulent Wake: Insights and Closed-Loop Control for Drag Reduction." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2020. http://www.theses.fr/2020ESMA0006.
Full textCombination of passive and active flow control are used to experimentally reduce the aerodynamic drag produced by the turbulent wake past a simplified vehicle geometry with a blunt base. Such wakes are characterized by two main features: important pressure drag linked to the massive flow separation, and large-scale asymmetries. The latter,manifesting as bi-modal dynamics or permanent symmetry-breaking, are shown to contribute for around 10% of the pressure drag. The study of the transient wake reversais occurring in bi-modal dynamics though symmetric states enables to isolate the flow mechanism responsible for increased drag in symmetry-breaking states. An interaction and coupling between the recirculating flow from one side and the shear-layer from opposite side peculiar to symmetry-breaking states triggers shear-layer instabilities and their amplification leading to increased flow entrainment and drag.This mechanism is shown to be characteristic of the wakes of blunt bodies.An active flow control strategy combining tangential pulsed jets along the trailing-edges and small flush-mounted curved surfaces is used to reduce the pressure drag of the geometry. The flow reattachment and separation on thecurved surfaces results in a fluidic boat-tailing of the wake leading to drag reductions up to 12%, independently of the unforced large-scale asymmetry of the wake, and is noticeably influenced by the time-scale of unsteadiness of the forcing. Careful combination between forcing time-scale and size of the curved surfaces is needed to achieve ail thepotential of this unsteady Coanda effect in drag reduction as shown from a simple flow model providing scaling laws of the phenomenon. The model provided allows for an extension of the flow control mechanism to separated flows moregenerally. Furthermore, forcing along only selected edges enables to interact with the large-scale wake asymmetries and has very different impact on the drag depending on the unforced wake equilibrium. Symmetrisation of the wake through asymmetric forcing leads to 7% drag reduction at a reduced energetic cost. Key ingredients are provided to adapt forcing strategies for drag reduction in presence of various wake asymmetries. As global wake equilibrium changes result from minor geometric and flow conditions changes, adaptive and robust flow control strategies are essential for industrial automotive applications
Books on the topic "Drag reduction"
Thiede, Peter, ed. Aerodynamic Drag Reduction Technologies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8.
Full textSchaus, Ph. Viscous drag reduction of horizontal plates. Rhode Saint Genese, Belgium: von Karman Institute for Fluid Dynamics, 1987.
Find full textLi, Feng-Chen, Bo Yu, Jin-Jia Wei, and Yasuo Kawaguchi. Turbulent Drag Reduction by Surfactant Additives. Singapore: John Wiley & Sons Singapore Pte. Ltd., 2011. http://dx.doi.org/10.1002/9781118181096.
Full textGyr, Albert, ed. Structure of Turbulence and Drag Reduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-50971-1.
Full textLi, Feng-Chen. Turbulent drag reduction by surfactant additives. Hoboken, N.J: Wiley, 2011.
Find full textM, Bushnell Dennis, and Hefner Jerry M, eds. Viscous drag reduction in boundary layers. Washington, DC: American Institute of Aeronautics and Astronautics, 1990.
Find full textDam, R. F. van den. SAMID, an interactive system for aircraft drag minimization studies (mathematical models and methods). Amsterdam, Netherlands: National Aerospace Laboratory, 1988.
Find full textGyr, A., and H. W. Bewersdorff. Drag Reduction of Turbulent Flows by Additives. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1295-8.
Full textStanewsky, Egon, Jean Délery, John Fulker, and Wolfgang Geißler, eds. EUROSHOCK - Drag Reduction by Passive Shock Control. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-322-90711-0.
Full textGyr, A. Drag Reduction of Turbulent Flows by Additives. Dordrecht: Springer Netherlands, 1995.
Find full textBook chapters on the topic "Drag reduction"
Merkle, C. L., and S. Deutsch. "Microbubble Drag Reduction." In Lecture Notes in Engineering, 291–335. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83831-6_6.
Full textJiao, Li-Fang, Tomoaki Kunugi, and Feng-Chen Li. "Comparison Between Microbubble Drag Reduction and Viscoelastic Drag Reduction." In Zero-Carbon Energy Kyoto 2010, 223–32. Tokyo: Springer Japan, 2011. http://dx.doi.org/10.1007/978-4-431-53910-0_29.
Full textLang, Amy, Maria Laura Habegger, and Philip Motta. "Shark Skin Drag Reduction." In Encyclopedia of Nanotechnology, 1–8. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_266-2.
Full textGyr, A., and H. W. Bewersdorff. "Drag Reduction and Turbulence." In Drag Reduction of Turbulent Flows by Additives, 69–99. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1295-8_4.
Full textLang, Amy, Maria Laura Habegger, and Philip Motta. "Shark Skin Drag Reduction." In Encyclopedia of Nanotechnology, 3632–39. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_266.
Full textZhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga, et al. "Shark Skin Drag Reduction." In Encyclopedia of Nanotechnology, 2394–400. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_266.
Full textKnörzer, Dietrich. "Perspectives for the Future of Aeronautics Research." In Aerodynamic Drag Reduction Technologies, 3–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_1.
Full textMessing, Ralf, and Markus Kloker. "DNS Study of Suction through Arrays of Holes in a 3-D Boundary-Layer Flow." In Aerodynamic Drag Reduction Technologies, 79–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_10.
Full textHumphreys, Bryan E., and Ernst J. Totland. "Saab 2000 In-Service Test of Porous Surfaces for HLFC." In Aerodynamic Drag Reduction Technologies, 89–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_11.
Full textYoung, T. M., and J. P. Fielding. "Flight Operational Assessment of Hybrid Laminar Flow Control (HLFC) Aircraft." In Aerodynamic Drag Reduction Technologies, 99–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_12.
Full textConference papers on the topic "Drag reduction"
Wood, Richard. "Aerodynamic Drag and Drag Reduction." In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-209.
Full textBUSHNELL, D. "Supersonic aircraft drag reduction." In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1596.
Full textCarter, Dennis L. "Legacy Aircraft Drag Reduction." In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0535.
Full textFloryan, Jerzy M., S. Shadman, and M. Z. Hossain. "Drag Reduction And Heating." In 2018 Canadian Society for Mechanical Engineering (CSME) International Congress. York University Libraries, 2018. http://dx.doi.org/10.25071/10315/35222.
Full textHuang, Jin-Biao, and Chih-Ming Ho. "Microriblets for drag reduction." In Smart Structures & Materials '95, edited by Vijay K. Varadan. SPIE, 1995. http://dx.doi.org/10.1117/12.210467.
Full textLee, Inwon, Hyun Park, and Ho Hwan Chun. "DRAG REDUCTION PERFORMANCE OF FDR-SPC (FRICTIONAL DRAG REDUCTION SELF-POLISHING COPOLYMER)." In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.840.
Full textBarbier, Charlotte, Elliot Jenner, and Brian D’Urso. "Drag Reduction With Superhydrophobic Riblets." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86029.
Full textWong, Kent J., Tricia K. Ayers, and C. P. van Dam. "ACCURATE DRAG PREDICTION - A PREREQUISITE FOR DRAG REDUCTION RESEARCH." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/932571.
Full textBandyopadhyay, Promode R. "Stokes’ Mechanism of Drag Reduction." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45340.
Full textPAMADI, B., and B. H. GAUDA. "Drag reduction of noncircular cylinders." In 25th AIAA Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-360.
Full textReports on the topic "Drag reduction"
Taylor, Lafe, Robert Wilson, and Bruce Hilbert. Hydrodynamic Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada618198.
Full textLatz, Michael I. Polymer Drag Reduction and Bioluminescence Reduction. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada500755.
Full textLatz, Michael I. Polymer Drag Reduction and Bioluminescence Reduction. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada521979.
Full textLatz, Michael I. Polymer Drag Reduction and Bioluminescence Reduction. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada547640.
Full textBandyopadhyay, Promode R. Stokes' Mechanism of Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada398719.
Full textDimotakis, Paul, Patrick Diamond, Freeman Dyson, David Hammer, and Jonathan Katz. Turbulent Boundary-Layer Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada416331.
Full textDiamond, P., J. Harvey, J. Katz, D. Nelson, and P. Steinhardt. Drag Reduction by Polymer Additives. Fort Belvoir, VA: Defense Technical Information Center, October 1992. http://dx.doi.org/10.21236/ada258867.
Full textDecker, Robert K. Viscous Drag Measurement and Its Application to Base Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada403228.
Full textChoi, Kwing-So. Turbulent Drag Reduction Using Compliant Coatings. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada426554.
Full textSreenivasan, K. R. Turbulence, Turbulence Control, and Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada185643.
Full text