Academic literature on the topic 'Drag reduction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drag reduction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Drag reduction"

1

García-Mayoral, Ricardo, and Javier Jiménez. "Drag reduction by riblets." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1940 (April 13, 2011): 1412–27. http://dx.doi.org/10.1098/rsta.2010.0359.

Full text
Abstract:
The interaction of the overlying turbulent flow with riblets, and its impact on their drag reduction properties are analysed. In the so-called viscous regime of vanishing riblet spacing, the drag reduction is proportional to the riblet size, but for larger riblets the proportionality breaks down, and the drag reduction eventually becomes an increase. It is found that the groove cross section A + g is a better characterization of this breakdown than the riblet spacing, with an optimum . It is also found that the breakdown is not associated with the lodging of quasi-streamwise vortices inside the riblet grooves, or with the inapplicability of the Stokes hypothesis to the flow along the grooves, but with the appearance of quasi-two-dimensional spanwise vortices below y + ≈30, with typical streamwise wavelengths . They are connected with a Kelvin–Helmholtz-like instability of the mean velocity profile, also found in flows over plant canopies and other surfaces with transpiration. A simplified stability model for the ribbed surface approximately accounts for the scaling of the viscous breakdown with A + g .
APA, Harvard, Vancouver, ISO, and other styles
2

Watanabe, Osamu. "Drag Reduction by Microbubbles." Proceedings of the Fluids engineering conference 2000 (2000): 176. http://dx.doi.org/10.1299/jsmefed.2000.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GILLISSEN, J. J. J., B. J. BOERSMA, P. H. MORTENSEN, and H. I. ANDERSSON. "Fibre-induced drag reduction." Journal of Fluid Mechanics 602 (April 25, 2008): 209–18. http://dx.doi.org/10.1017/s0022112008000967.

Full text
Abstract:
We use direct numerical simulation to study turbulent drag reduction by rigid polymer additives, referred to as fibres. The simulations agree with experimental data from the literature in terms of friction factor dependence on Reynolds number and fibre concentration. An expression for drag reduction is derived by adopting the concept of the elastic layer.
APA, Harvard, Vancouver, ISO, and other styles
4

HŒPFFNER, JÉRÔME, and KOJI FUKAGATA. "Pumping or drag reduction?" Journal of Fluid Mechanics 635 (September 10, 2009): 171–87. http://dx.doi.org/10.1017/s0022112009007629.

Full text
Abstract:
Two types of wall actuation in channel flow are considered: travelling waves of wall deformation (peristalsis) and travelling waves of blowing and suction. The flow response and its mechanisms are analysed using nonlinear and weakly nonlinear computations. We show that both actuations induce a flux in the channel in the absence of an imposed pressure gradient and can thus be characterized as pumping. In the context of flow control, pumping and drag reduction are strongly connected, and we seek to define them properly based on these two actuation examples. Movies showing the flow motion for the two types of actuation are available with the online version of this paper (journals.cambridge.org/FLM).
APA, Harvard, Vancouver, ISO, and other styles
5

Bushnell, D. M., and K. J. Moore. "Drag Reduction in Nature." Annual Review of Fluid Mechanics 23, no. 1 (January 1991): 65–79. http://dx.doi.org/10.1146/annurev.fl.23.010191.000433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bushnell, Dennis M. "SHOCK WAVE DRAG REDUCTION*." Annual Review of Fluid Mechanics 36, no. 1 (January 2004): 81–96. http://dx.doi.org/10.1146/annurev.fluid.36.050802.122110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hewitt, Geoffrey F., A. Bismarck, J. M. Griffen, L. Chen, and John Christos Vassilicos. "2.14.1 DRAG REDUCTION: INTRODUCTION." Heat Exchanger Design Updates 11, no. 3 (2004): 5. http://dx.doi.org/10.1615/heatexchdesignupd.v11.i3.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hewitt, Geoffrey F., A. Bismarck, J. M. Griffen, L. Chen, and John Christos Vassilicos. "2.14.2 POLYMER DRAG REDUCTION." Heat Exchanger Design Updates 11, no. 3 (2004): 25. http://dx.doi.org/10.1615/heatexchdesignupd.v11.i3.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bismarck, A., L. Chen, J. M. Griffen, John Christos Vassilicos, and Geoffrey F. Hewitt. "2.14.3 SURFACTANT DRAG REDUCTION." Heat Exchanger Design Updates 11, no. 3 (2004): 5. http://dx.doi.org/10.1615/heatexchdesignupd.v11.i3.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abdul Bari, Hayder A., Siti Nuraffini Kamaruliza, and Rohaida Che Man. "Investigating Drag Reduction Characteristic using Okra Mucilage as New Drag Reduction Agent." Journal of Applied Sciences 11, no. 14 (July 1, 2011): 2554–61. http://dx.doi.org/10.3923/jas.2011.2554.2561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Drag reduction"

1

Futrzynski, Romain. "Drag reduction using plasma actuators." Licentiate thesis, KTH, Farkost och flyg, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161409.

Full text
Abstract:
This thesis is motivated by the application of active flow control on the cabin of trucks, thereby providing a new means of drag reduction. Particularly, the work presented strives to identify how plasma actuators can be used to reduce the drag caused by the detachment of the flow around the A-pillars. This is achieved by conducting numerical simulations, and is part of a larger project that also includes experimental. The effect of plasma actuators is modeled through a body force, which adds very little computational cost and is suitable for implementation in most CFD solvers. The spatial distribution of this force is described by coefficients which have been optimized against experimental data, and the model was shown to be able to accurately reproduce the wall jet created by a single plasma actuator in a no-flow condition. A half cylinder geometry - a simplified geometry for the A-pillar of a truck - was used in a preliminary Large Eddy Simulation (LES) study that showed that the actuator alone, operated continuously, was not sufficient to achieve a significant reduction of the drag. Nevertheless, a significant drag reduction was obtained by simply increasing the strength of the body force to a higher value, showing that this type of actuation remains relevant for the reduction of drag. In the course of finding ways to improve the efficiency of the actuator, dynamic mode decomposition was investigated as a post-processing tool to extract structures in the flow. Such structures are identified by their spatial location and frequency, and might help to understand how the actuator should be used to maximize drag reduction. Thus a parallel code for dynamic mode decomposition was developed in order to facilitate the treatment of the large amounts of data obtained by LES. This code and LES itself were thereafter evaluated in the case of a pulsating channel flow. By using the dynamic mode decomposition it was possible to accurately extract oscillating profiles at the forcing frequency, although harmonics with lower amplitude compared to the turbulence intensity could not be obtained.
Denna avhandling behandlar tillämpningen av aktiv strömningskontroll för lastbilshytter, vilket är en ny metod för minskning av luftmotståndet. Mer i detalj är det övergripande målet att visa på hur plasmaaktuatorer kan användas för att minska luftmotståndet orsakat av avlösningen runt A-stolparna. In denna avhandling studeras detta genom numeriska simuleringar. Arbetet är en del av ett projekt där även experimentella försök görs. Effekten av plasmaaktuatorer modelleras genom en masskraft, vilket inte ger nämnvärd ökning av beräkningstiden och är lämplig för implementering i de flesta CFD-lösare. Den rumsliga fördelningen av kraften bestäms av koefficienter vilka i detta arbete beräknades utifrån experimentella data. Modellen har visat sig kunna återskapa en stråle nära väggen med god noggrannhet av en enskild plasmaaktuator för en halvcylinder utan strömning. Samma geometri - en halvcylinder som här används som förenklad geometri av A-stolpen på en lastbil - användes i en preliminär LES studie som visade att enbart aktuatorn vid kontinuerlig drift inte var tillräckligt för att uppnå en signifikant minskning av luftmotståndet. En signifikant minskning av luftmotståndet erhölls genom att helt enkelt öka styrkan på kraften, vilket visats att denna typ av strömningskontroll är relevant för minskning av luftmotståndet. I syfte att förbättra effektiviteten hos aktuatorn, studerades dynamic mode decomposition, som ett verktyg för efterbehandling för att få fram flödesstrukturer. Dessa strukturer identifieras genom deras rumsupplösning och frekvens och kan hjälpa till att förstå hur aktuatorerna bör användas för att minska luftmotståndet. En parallelliserad kod för dynamic mode decomposition utvecklades för att underlätta efterbehandlingen av de stora datamängder som fås från LES-beräkningarna. Slutligen, utvärderades denna kod och LES-beräkningar på ett strömningsfall med pulserande kanalflöde. Metoden, dynamic mode decomposition, visade sig kunna extrahera de oscillerande flödesprofilerna med hög noggrannhet för den påtvingade frekvensen. Övertoner med lägre amplitud jämfört med turbulensintensiteten kunde dock inte erhållas.

QC 20150312

APA, Harvard, Vancouver, ISO, and other styles
2

Kulmatova, Dilafruz. "Turbulent drag reduction by additives." Paris 6, 2013. http://www.theses.fr/2013PA066480.

Full text
Abstract:
The addition of a minute amount of polymer or surfactant additive to a turbulent fluid flow can result in a large reduction in the frictional drag in pipes and channels. Over the past decades, numerous studies have been carried out on drag reducing additives (DRA). DRA have been successfully applied for potential benefits in various industrial processes, including oil well operations, heating and cooling water circuits, marine and biomedical systems. The use of additives to enhance flow in petroleum pipelines has received the greatest attention due to its great commercial success in reducting cost and energy consumption. Although this effect has been known for almost half a century, the detailed mechanism of drag reduction have still not been clearly identified and is still a subject of ongoing controversy. The aim of this thesis is to develop an understanding of the role of drag reducing agents and to explain the nature of drag reduction mechanism. This could have an impact on the design of efficient pumping systems, the design of drag-reducing agent that are more stable over time, and the modeling of mixing processes that could be an important consideration in designing practical systems
L'ajout d'une quantité infime d'un polymère ou d'un additif tensioactif à un flux turbulent de fluide peut causer une forte diminution de la friction dans les tuyaux et les canalisations. Ces dix dernières années, de nombreuses études ont été réalisées sur les agents réducteurs de friction (ARF). Les ARF sont utilisés pour leurs effets bénéfiques dans de nombreux procédés industriels, tels que l'extraction de pétrole, le chauffage et le refroidissement de circuits de circulation d'eau ainsi que dans des systèmes marins et biomédicaux. L'utilisation d'additifs pour améliorer l'écoulement dans les canalisations de pétrole a été particulièrement étudiée, en raison de son succès commercial en terme de réductions de couts et de consommation d'énergie. Bien que l'action de ces additifs est connue depuis presque cinquante ans, le mécanisme détaillé de la réduction des frictions n'a pas été clairement identifié et est encore sujet à controverses. Le but de cette étude est d'apporter une explication au rôle de ces agents en matière de réduction des frictions, et d'expliquer la nature ce mécanisme. Les résultats présentés ici peuvent influencer significativement la conception des systèmes de pompes, le développement d'agent réducteurs de friction plus stables ainsi que la modélisation de procédés mixtes qui pourraient devenir une considération majeure dans le design de systèmes réels
APA, Harvard, Vancouver, ISO, and other styles
3

Snelling, Diana. "Surfactant drag reduction using mixed counterions." Connect to resource, 2006. http://hdl.handle.net/1811/6447.

Full text
Abstract:
Thesis (Honors)--Ohio State University, 2006.
Title from first page of PDF file. Document formatted into pages: contains 36 p.; also includes graphics. Includes bibliographical references (p. 31-32). Available online via Ohio State University's Knowledge Bank.
APA, Harvard, Vancouver, ISO, and other styles
4

Jukes, Timothy N. "Turbulent drag reduction using surface plasma." Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/12160/.

Full text
Abstract:
An experimental investigation has been undertaken in a wind tunnel to study the induced airflow and drag reduction capability of AC glow discharge plasma actuators. Plasma is the fourth state of matter whereby a medium, such as air, is ionized creating a system of electrons, ions and neutral particles. Surface glow discharge plasma actuators have recently become a topic for flow control due to their ability to exert a body force near the wall of an aerodynamic object which can create or alter a flow. The exact nature of this force is not well understood, although the current state of knowledge is that the phenomenon results from the presence of charged plasma particles in a highly non-uniform electric field. Such actuators are lightweight, fully electronic (needing no moving parts or complicated ducting), have high bandwidth and high energy density. The manufacture of plasma actuators is relatively cheap and they can be easily retrofitted to existing surfaces. The first part of this study aims at characterising the airflow induced by surface plasma actuators in initially static air. Ambient air temperature and velocity profiles are presented around a variety of actuators in order to understand the nature of the induced flow for various parameters such as applied voltage, frequency, actuator geometry and material. It is found that the plasma actuator creates a laminar wall jet along the surface of the material on which it is placed. The second part of the study aims at using plasma actuators to reduce skin-friction drag in a fully developed turbulent boundary layer. Actuators are designed to induce spanwise forcing near the wall, oscillating in time. Thermal anemometry measurements within the boundary layer are presented. These show that the surface plasma can cause a skin-friction drag reduction of up to 45% due to the creation of streamwise vortices which interact with, and disrupt the near-wall turbulence production cycle.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Cheng. "Aerodynamics drag reduction of commercial trucks." Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/5456.

Full text
Abstract:
Bibliography: leaves 71-74
This thesis deals with the airflow over a double trailer Gull Wing truck, with a view to reducing the drag of the truck. To investigate the flow over the truck, a 1:20 scale double trailer truck model was designed and constructed from chipboard for wind tunnel experiments. The overall size of the model is 1100 mm long, 130 mm wide and 215 mm high. A same scale numerical model was also built for computational simulations.
APA, Harvard, Vancouver, ISO, and other styles
6

Wise, D. J. "Disc actuators for turbulent drag reduction." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/9216/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rowan, Scott A. "Viscous drag reduction in a scramjet combustor /." St. Lucia, Qld, 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17438.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shi, Haifeng. "Surfactant Drag Reduction and Heat Transfer Enhancement." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343664380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khosh, Aghdam Sohrab. "Turbulent drag reduction through wall-forcing methods." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12589/.

Full text
Abstract:
The constraints brought about by environmental and economical issues have been key elements for devising new techniques for skin-friction drag reduction in turbulent flows. Several methodologies have been applied during the last thirty years. These methods can be categorised as active, passive, closed or open-loop. In general, these techniques are mathematically modelled, then tested in experimental settings and numerical simulations. The numerical model for this study was based on the resolution of the full spatio-temporal scales through Direct Numerical Simulation (DNS). With the advent of powerful high-end computing systems endowed with several thousands of processors and relying on distributed memory programming, the performance deadlock due to highly resolved DNS is progressively being overcome. To study in a first principal basis a flow, DNS based on an efficient flow solver called Incompact3d has been relied on more particularly focusing on the development of a large array of flow control techniques. Motivated by extensive discussion in the literature, by experimental evidence and byrecent direct numerical simulations, we study flows over hydrophobic surfaces with shear-dependent slip lengths and we report their drag-reduction properties. The laminar channel-flow and pipe-flow solutions are derived and the effects of hydrophobicity are quantified by the decrease of the streamwise pressure gradient for constant mass flow rate and by the increase of the mass flow rate for constant streamwise pressure gradient. The nonlinear Lyapunov stability analysis is employed on the three-dimensional channel flow with walls featuring shear-dependent slip lengths. The feedback law extracted through the stability analysis is recognized for the first time to coincide with the slip-length model used to represent the hydrophobic surfaces, thereby providing a precise physical interpretation for the feedback law advanced by Balogh et al. (2001). The theoretical framework by K. Fukagata, N. Kasagi, and P. Koumoutsakos is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces and the theoretical drag-reduction values are in very good agreement with our direct numerical simulation data. The turbulent drag reduction is measured as a function of the hydrophobic-surface parameters and is found to be a function of the time- and space-averaged slip length, irrespectively of the local and instantaneous slip behaviour at the wall. For slip parameters and flow conditions that could be realized in the laboratory, the maximum computed turbulent drag reduction is 50% and the drag reduction effect degrades when slip along the spanwise direction is considered. The power spent by the turbulent flow on the hydrophobic walls is computed for the first time and is found to be a non-negligible portion of the power saved through drag reduction, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method. The turbulent flow is further investigated through flow visualizations and statistics of the relevant quantities, such as vorticity and strain rates. When rescaled in drag-reduction viscous units, the streamwise vortices over the hydrophobic surface are strongly altered, while the low-speed streaks maintain their characteristic spanwise spacing. We finally show that the reduction of vortex stretching and enstrophy production is primarily caused by the eigenvectors of the strain rate tensor orienting perpendicularly to the vorticity vector. In a second phase, several drag-reduction techniques were implemented and benchmarked. This step was motivated by the drag-reducing potential benefits of combined active-active and active-passive techniques compared to those taken separately. With this objective in mind, three control techniques were selected and categorized as primary and secondary. The primary control method consisted in an array of steady rotating discs or rings embedded at the walls of the channel flow. The secondary methods consisting of opposition control or constant-slip hydrophobic surfaces were used to complement the primary one. It was found that the combination of the the combination of these techniques did not result in the sum of the contributions of each technique taken separately. In addition to these studies and developments within the code, various techniques for analysing the results have been implemented and used which are presenting a novel aspect for the within the flow control area: probabilistic and eigenvalue methods. All these methods are now part of a full-fledge revised version of the code and can be used in parallel. An extensive guide has also been written for future users of the code for flow control problems.
APA, Harvard, Vancouver, ISO, and other styles
10

Haffner, Yann. "Manipulation of Three-Dimensional Turbulent Wakes for Aerodynamic Drag Reduction Mechanics of bluff body drag reduction during trnasient near wake reversals Unsteady Coanda Effect and Drag Reduction of a Turbulent Wake Manipulation of Three-Dimensional Asymmetries of a Turbulent Wake for Drag Reduction Large-Scale Asymmetries of a Turbulent Wake: Insights and Closed-Loop Control for Drag Reduction." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2020. http://www.theses.fr/2020ESMA0006.

Full text
Abstract:
Une combinaison de moyens passifs et actifs de contrôle d'écoulement est utilisée pour réduire la traînée aérodynamique produite par le sillage turbulent d'une géométrie simplifiée de véhicule à culot droit. Ces sillages sont caractérisés par deux aspects principaux : une traînée de pression importante liée à la séparation massive de l'écoulement, et des asymétries à grande échelle. Ces dernières, se manifestant sous forme de dynamique bimodale ou de brisure de symétrie permanente, contribuent pour environ 10% de la traînée de pression. L'étude des basculements de sillage transitoires en dynamique bimodale s'opérant au travers d'états symétriques du sillage permet d'isoler le mécanisme responsable de l'augmentation de traînée des états à brisure de symétrie. Une interaction et un couplage entre l'écoulement de recirculation issu d'un côté et la couche cisaillée opposée propre aux états à brisure de symétrie déclenche et amplifie les instabilités de couche cisaillée, ce qui conduit à une augmentation de l'écoulement d'entraînement et de la traînée. Il est montré que ce mécanisme est caractéristique des sillages de corps à culot droit.Une stratégie de contrôle actif de l'écoulement combinant des jets pulsés émis tangentiellement aux bords de fuite et de surfaces courbées miniatures affleurantes est utilisée pour réduire la traînée de pression de la géométrie. Le recollement de l'écoulement sur les surfaces courbées résulte en un rétreint fluidique du sillage se traduisant par une réduction de trainée jusqu'à 12%, indépendamment de l'asymétrie initiale du sillage, et est notablement influencé par l'échelle de temps caractéristique de l'instationnarité du forçage. Une combinaison minutieuse entre l'échelle de temps du forçage et la taille caractéristique des surfaces courbées permet d'exploiter tout le potentiel de réduction de traînée de cet effet Coanda instationnaire comme le montre un modèle simple d'écoulement permettant la mise en évidence de lois d'échelles caractérisant le phénomène. De plus, un forçage localisé selon certaines arêtes seulement permet d'interagir avec les asymétries à grande échelle du sillage et impacte de manière très différente la traînée selon l'équilibre su sillage non-forcé. La symétrisation du sillage résultant d'un forçage asymétrique permet une réduction de traînée d'environ 7% à coup énergétique réduit. Des éléments clefs sont donnés concernant l'adaptation de la localisation du contrôle pour une réduction de traînée en présence de différentes asymétries du sillage. Comme le changement d'équilibre global du sillage résulte de changements géométriques et d'écoulement mineurs, des stratégies de contrôle adaptives et robustes sont essentielles pour les applications dans l'industrie automobile
Combination of passive and active flow control are used to experimentally reduce the aerodynamic drag produced by the turbulent wake past a simplified vehicle geometry with a blunt base. Such wakes are characterized by two main features: important pressure drag linked to the massive flow separation, and large-scale asymmetries. The latter,manifesting as bi-modal dynamics or permanent symmetry-breaking, are shown to contribute for around 10% of the pressure drag. The study of the transient wake reversais occurring in bi-modal dynamics though symmetric states enables to isolate the flow mechanism responsible for increased drag in symmetry-breaking states. An interaction and coupling between the recirculating flow from one side and the shear-layer from opposite side peculiar to symmetry-breaking states triggers shear-layer instabilities and their amplification leading to increased flow entrainment and drag.This mechanism is shown to be characteristic of the wakes of blunt bodies.An active flow control strategy combining tangential pulsed jets along the trailing-edges and small flush-mounted curved surfaces is used to reduce the pressure drag of the geometry. The flow reattachment and separation on thecurved surfaces results in a fluidic boat-tailing of the wake leading to drag reductions up to 12%, independently of the unforced large-scale asymmetry of the wake, and is noticeably influenced by the time-scale of unsteadiness of the forcing. Careful combination between forcing time-scale and size of the curved surfaces is needed to achieve ail thepotential of this unsteady Coanda effect in drag reduction as shown from a simple flow model providing scaling laws of the phenomenon. The model provided allows for an extension of the flow control mechanism to separated flows moregenerally. Furthermore, forcing along only selected edges enables to interact with the large-scale wake asymmetries and has very different impact on the drag depending on the unforced wake equilibrium. Symmetrisation of the wake through asymmetric forcing leads to 7% drag reduction at a reduced energetic cost. Key ingredients are provided to adapt forcing strategies for drag reduction in presence of various wake asymmetries. As global wake equilibrium changes result from minor geometric and flow conditions changes, adaptive and robust flow control strategies are essential for industrial automotive applications
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Drag reduction"

1

Thiede, Peter, ed. Aerodynamic Drag Reduction Technologies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schaus, Ph. Viscous drag reduction of horizontal plates. Rhode Saint Genese, Belgium: von Karman Institute for Fluid Dynamics, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Feng-Chen, Bo Yu, Jin-Jia Wei, and Yasuo Kawaguchi. Turbulent Drag Reduction by Surfactant Additives. Singapore: John Wiley & Sons Singapore Pte. Ltd., 2011. http://dx.doi.org/10.1002/9781118181096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gyr, Albert, ed. Structure of Turbulence and Drag Reduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-50971-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Feng-Chen. Turbulent drag reduction by surfactant additives. Hoboken, N.J: Wiley, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

M, Bushnell Dennis, and Hefner Jerry M, eds. Viscous drag reduction in boundary layers. Washington, DC: American Institute of Aeronautics and Astronautics, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dam, R. F. van den. SAMID, an interactive system for aircraft drag minimization studies (mathematical models and methods). Amsterdam, Netherlands: National Aerospace Laboratory, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gyr, A., and H. W. Bewersdorff. Drag Reduction of Turbulent Flows by Additives. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1295-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stanewsky, Egon, Jean Délery, John Fulker, and Wolfgang Geißler, eds. EUROSHOCK - Drag Reduction by Passive Shock Control. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-322-90711-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gyr, A. Drag Reduction of Turbulent Flows by Additives. Dordrecht: Springer Netherlands, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Drag reduction"

1

Merkle, C. L., and S. Deutsch. "Microbubble Drag Reduction." In Lecture Notes in Engineering, 291–335. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83831-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jiao, Li-Fang, Tomoaki Kunugi, and Feng-Chen Li. "Comparison Between Microbubble Drag Reduction and Viscoelastic Drag Reduction." In Zero-Carbon Energy Kyoto 2010, 223–32. Tokyo: Springer Japan, 2011. http://dx.doi.org/10.1007/978-4-431-53910-0_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lang, Amy, Maria Laura Habegger, and Philip Motta. "Shark Skin Drag Reduction." In Encyclopedia of Nanotechnology, 1–8. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_266-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gyr, A., and H. W. Bewersdorff. "Drag Reduction and Turbulence." In Drag Reduction of Turbulent Flows by Additives, 69–99. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1295-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lang, Amy, Maria Laura Habegger, and Philip Motta. "Shark Skin Drag Reduction." In Encyclopedia of Nanotechnology, 3632–39. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga, et al. "Shark Skin Drag Reduction." In Encyclopedia of Nanotechnology, 2394–400. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Knörzer, Dietrich. "Perspectives for the Future of Aeronautics Research." In Aerodynamic Drag Reduction Technologies, 3–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Messing, Ralf, and Markus Kloker. "DNS Study of Suction through Arrays of Holes in a 3-D Boundary-Layer Flow." In Aerodynamic Drag Reduction Technologies, 79–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Humphreys, Bryan E., and Ernst J. Totland. "Saab 2000 In-Service Test of Porous Surfaces for HLFC." In Aerodynamic Drag Reduction Technologies, 89–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Young, T. M., and J. P. Fielding. "Flight Operational Assessment of Hybrid Laminar Flow Control (HLFC) Aircraft." In Aerodynamic Drag Reduction Technologies, 99–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45359-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Drag reduction"

1

Wood, Richard. "Aerodynamic Drag and Drag Reduction." In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BUSHNELL, D. "Supersonic aircraft drag reduction." In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carter, Dennis L. "Legacy Aircraft Drag Reduction." In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Floryan, Jerzy M., S. Shadman, and M. Z. Hossain. "Drag Reduction And Heating." In 2018 Canadian Society for Mechanical Engineering (CSME) International Congress. York University Libraries, 2018. http://dx.doi.org/10.25071/10315/35222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Jin-Biao, and Chih-Ming Ho. "Microriblets for drag reduction." In Smart Structures & Materials '95, edited by Vijay K. Varadan. SPIE, 1995. http://dx.doi.org/10.1117/12.210467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Inwon, Hyun Park, and Ho Hwan Chun. "DRAG REDUCTION PERFORMANCE OF FDR-SPC (FRICTIONAL DRAG REDUCTION SELF-POLISHING COPOLYMER)." In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barbier, Charlotte, Elliot Jenner, and Brian D’Urso. "Drag Reduction With Superhydrophobic Riblets." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86029.

Full text
Abstract:
Samples combining riblets and superhydrophobic surfaces are fabricated at University of Pittsburgh and their drag reduction properties are studied at the Center for Nanophase Materials Sciences (CNMS) in Oak Ridge National Laboratory with a commercial cone-and-plate rheometer. In parallel to the experiments, numerical simulations are performed in order to estimate the slip length at high rotational speed. For each sample, a drag reduction of at least 5% is observed in both laminar and turbulent regime. At low rotational speed, drag reduction up to 30% is observed with a 1 mm deep grooved sample. As the rotational speed increases, a secondary flow develops causing a slight decrease in drag reductions. However, drag reduction above 15% is still observed for the large grooved samples. In the turbulent regime, the 100 μm grooved sample becomes more efficient than the other samples in drag reduction and manages to sustain a drag reduction above 15%. Using the simulations, the slip length of the 100 μm grooved sample is estimated to be slightly above 100 μm in the turbulent regime.
APA, Harvard, Vancouver, ISO, and other styles
8

Wong, Kent J., Tricia K. Ayers, and C. P. van Dam. "ACCURATE DRAG PREDICTION - A PREREQUISITE FOR DRAG REDUCTION RESEARCH." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/932571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bandyopadhyay, Promode R. "Stokes’ Mechanism of Drag Reduction." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45340.

Full text
Abstract:
The mechanism of drag reduction due to spanwise wall oscillation in a turbulent boundary layer is considered. Published measurements and simulation data are analyzed in light of Stokes’ second problem. A kinematic vorticity reorientation hypothesis of drag reduction is first developed. It is shown that spanwise oscillation seeds the near-wall region with oblique and skewed Stokes vorticity waves. They are attached to the wall and gradually align to the freestream direction away from it. The resulting Stokes’ layer has an attenuated nature compared to its laminar counterpart. The attenuation factor increases in the buffer and viscous sublayer as the wall is approached. The mean velocity profile at the condition of maximum drag reduction is similar to that due to polymer. The final mean state of maximum drag reduction due to turbulence suppression appears to be universal in nature. Finally, it is shown that the proposed kinematic drag reduction hypothesis describes the measurements significantly better than what current Direct Numerical Simulation does.
APA, Harvard, Vancouver, ISO, and other styles
10

PAMADI, B., and B. H. GAUDA. "Drag reduction of noncircular cylinders." In 25th AIAA Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-360.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Drag reduction"

1

Taylor, Lafe, Robert Wilson, and Bruce Hilbert. Hydrodynamic Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada618198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Latz, Michael I. Polymer Drag Reduction and Bioluminescence Reduction. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada500755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Latz, Michael I. Polymer Drag Reduction and Bioluminescence Reduction. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada521979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Latz, Michael I. Polymer Drag Reduction and Bioluminescence Reduction. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada547640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bandyopadhyay, Promode R. Stokes' Mechanism of Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada398719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dimotakis, Paul, Patrick Diamond, Freeman Dyson, David Hammer, and Jonathan Katz. Turbulent Boundary-Layer Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada416331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Diamond, P., J. Harvey, J. Katz, D. Nelson, and P. Steinhardt. Drag Reduction by Polymer Additives. Fort Belvoir, VA: Defense Technical Information Center, October 1992. http://dx.doi.org/10.21236/ada258867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Decker, Robert K. Viscous Drag Measurement and Its Application to Base Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada403228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choi, Kwing-So. Turbulent Drag Reduction Using Compliant Coatings. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada426554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sreenivasan, K. R. Turbulence, Turbulence Control, and Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada185643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography