Journal articles on the topic 'Downconversion; solar cell; silicon'

To see the other types of publications on this topic, follow the link: Downconversion; solar cell; silicon.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Downconversion; solar cell; silicon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lau, Mei Kwan, and Jianhua Hao. "Broadband Near-Infrared Quantum Cutting in Metal-Ion Codoped Y3Al5O12Thin Films Grown by Pulsed-Laser Deposition for Solar Cell Application." Journal of Nanomaterials 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/587036.

Full text
Abstract:
We have deposited thin films of yttrium aluminum garnet (YAG) doped with Ce3+and Yb3+on quartz and silicon substrates by pulsed laser deposition. Near-infrared (NIR) quantum cutting which involves the emission of NIR photons through the downconversion from Ce3+to Yb3+is realized. Upon the broadband excitation of Ce3+ions with a visible photon at the peak wavelength of 450 nm, NIR photons are generated by Yb3+ions, with an emission wavelength centered at 1030 nm. The luminescent decay curves of Ce3+were recorded as a supporting evidence corresponding to the energy transfer. This work offers a better and more convenient approach compatible with crystalline silicon solar cell compared to conventional bulk phosphors.
APA, Harvard, Vancouver, ISO, and other styles
2

Lau, M. K., and Jian-Hua Hao. "Near-infrared Quantum Cutting in Eu3+-Yb3+ co-doped YAG through Downconversion for Silicon Solar Cell." Energy Procedia 15 (2012): 129–34. http://dx.doi.org/10.1016/j.egypro.2012.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Jia Yue, Yi Ning Sun, Ji Cheng Zhu, Jun Hui Zeng, and Hai Yan Du. "Downconversion for Solar Cells in Sr3Gd(PO4)3:Tb, Yb Phosphors." Advanced Materials Research 502 (April 2012): 136–39. http://dx.doi.org/10.4028/www.scientific.net/amr.502.136.

Full text
Abstract:
An efficient near-infrared (NIR) quantum cutting (QC) Tb3+ and Yb3+ co-doped phosphor Sr3Gd(PO4)3 has been synthesized by conventional high temperature solid technique. Upon excitation of Tb3+ with a visible photon at 485 nm, two NIR photons could be emitted by Yb3+ through cooperative energy transfer (CTE) from Tb3+ to two Yb3+ ions. Excitation and emission spectra as well as fluorescence decay measurements have been carried out to examine the occurrence of cooperative energy transfer (CET ) from Tb3+ to Yb3+ ions. The result indicates Tb3+ and Yb3+ co-doped Sr3Gd(PO4)3 is potentially used as down-converter layer in silicon-based solar cell.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Jianming, Shaoan Zhang, Haoming Luo, Zhongfei Mu, Zhenzhang Li, Qingping Du, Junqin Feng, and Fugen Wu. "Efficient near ultraviolet to near infrared downconversion photoluminescence of La2GeO5: Bi3+, Nd3+ phosphor for silicon-based solar cells." Optical Materials 85 (November 2018): 523–30. http://dx.doi.org/10.1016/j.optmat.2018.09.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, Chin-Lung, and Jung-Yen Yang. "Hydrothermal Synthesis of $\hbox{Eu}^{3+}$-Doped $\hbox{Y}(\hbox{OH})_{3}$ Nanotubes as Downconversion Materials for Efficiency Enhancement of Screen-Printed Monocrystalline Silicon Solar Cells." IEEE Electron Device Letters 33, no. 5 (May 2012): 697–99. http://dx.doi.org/10.1109/led.2012.2187771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elleuch, R., R. Salhi, J. L. Deschanvres, and R. Maalej. "Antireflective downconversion ZnO:Er3+,Yb3+ thin film for Si solar cell applications." Journal of Applied Physics 117, no. 5 (February 7, 2015): 055301. http://dx.doi.org/10.1063/1.4906976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lakshminarayana, G., Hucheng Yang, Song Ye, Yin Liu, and Jianrong Qiu. "Cooperative downconversion luminescence in Pr3+/Yb3+:SiO2–Al2O3–BaF2–GdF3 glasses." Journal of Materials Research 23, no. 11 (November 2008): 3090–95. http://dx.doi.org/10.1557/jmr.2008.0372.

Full text
Abstract:
Oxyfluoride aluminosilicate glasses with compositions of 50SiO2–20Al2O3–20BaF2–10GdF3–0.5PrF3–xYbF3(x = 0, 1.0, 2.5, 5, 7.5, 10, 15, 20, 25, and 30 mol%) have been prepared to study their thermal and optical properties. From the differential thermal analysis (DTA) measurement, glass-transition temperatures and onset crystallization temperatures have been evaluated and from them, glass-stability factors against crystallization were calculated. Glass stabilities were decreased gradually with fluoride content increment in all the studied glasses. The photoluminescence and decay measurements have also been carried out for these glasses. In these glasses, an efficient near-infrared (NIR) quantum cutting with optimal quantum efficiency approaching 160% have been demonstrated, by exploring the cooperative downconversion mechanism from Pr3+ to Yb3+ with 481 nm (3P0 → 3H4) excitation wave length. These glasses are promising materials to achieve high-efficiency silicon-base solar cells by means of downconversion in the visible part of the solar spectrum.
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Yong Chao, Bai Tong Zhao, and Wen Xiu Gao. "Solar Grade Silicon Materials and Poly-Silicon Solar Cell." Materials Science Forum 685 (June 2011): 119–22. http://dx.doi.org/10.4028/www.scientific.net/msf.685.119.

Full text
Abstract:
In this paper, we should analyze the characteristic of the solar grade poly-silicon up-graded by physical process and make comparison with silicon made by Siemens process in wafer and solar cell, also we make a analysis for the degradation of the solar cell module. From the result we find that the silicon block have no obvious drawback such as crack detected by GT infrared and the average minority carrier lifetime is 3.86μs, the minority lifetime and resistivity of the wafer is better than the standard, solar cell prepared using the solar grade silicon wafer by physical process has an average conversion efficiency of 15.78% which is 0.12% higher than the Siemens wafer mainly due to high open circuit voltage. Efficiency degradation of the solar cell made by physical process is less than 3% after half an year which met the international standard. So we come to the conclusion that solar grade silicon prepared by physical process is a promising alternative material for PV industry and become main solar grade poly-silicon in the future.
APA, Harvard, Vancouver, ISO, and other styles
9

Ranjan, S., S. Balaji, Rocco A. Panella, and B. Erik Ydstie. "Silicon solar cell production." Computers & Chemical Engineering 35, no. 8 (August 2011): 1439–53. http://dx.doi.org/10.1016/j.compchemeng.2011.04.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blakers, Andrew W., Aihua Wang, Adele M. Milne, Jianhua Zhao, and Martin A. Green. "22.8% efficient silicon solar cell." Applied Physics Letters 55, no. 13 (September 25, 1989): 1363–65. http://dx.doi.org/10.1063/1.101596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Palmeri, D., G. Martinelli, G. C. Cecchi, M. C. Carotta, M. Merli, L. Passari, and R. van Steenwinkel. "A reverse silicon solar cell." Solar Cells 31, no. 3 (June 1991): 217–22. http://dx.doi.org/10.1016/0379-6787(91)90024-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hafezi, Razagh, Soroush Karimi, Sharie Jamalzae, and Masoud Jabbari. "Material and solar cell research in high efficiency micromorph tandem solar cell." Ciência e Natura 37 (December 19, 2015): 434. http://dx.doi.org/10.5902/2179460x20805.

Full text
Abstract:
“Micromorph” tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchâtel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (_c-Si:H) thin films (layers), both deposited at low temperatures (200_C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. Finally, present performances and future perspectives for a high efficiency ‘micromorph’ (mc-Si:Hya-Si:H) tandem solar cells are discussed.
APA, Harvard, Vancouver, ISO, and other styles
13

Ashour, E. S. M., M. Y. Sulaiman, N. Amin, and Z. Ibrahim. "Silicon Nitride Passivation of Silicon Nanowires Solar Cell." Journal of Physics: Conference Series 431 (April 15, 2013): 012021. http://dx.doi.org/10.1088/1742-6596/431/1/012021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kaneko, Kyojiro, Junya Masuda, and Kazuyoshi Tabata. "Silicon ingot casting for solar cell." Bulletin of the Japan Institute of Metals 28, no. 8 (1989): 664–71. http://dx.doi.org/10.2320/materia1962.28.664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

YAE, Shinji. "Porous Silicon for Solar Cell Application." Journal of the Surface Finishing Society of Japan 65, no. 1 (2014): 12–17. http://dx.doi.org/10.4139/sfj.65.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Han, Jianshu, Malcom David Abbott, Phillip G. Hamer, Bram Hoex, Lu Wang, Anthony Lochtefeld, and Allen M. Barnett. "Ultrathin Silicon Solar Cell Loss Analysis." IEEE Journal of Photovoltaics 6, no. 5 (September 2016): 1160–66. http://dx.doi.org/10.1109/jphotov.2016.2590949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Thiyagu, Subramani, Zingway Pei, and Ming-Sian Jhong. "Amorphous silicon nanocone array solar cell." Nanoscale Research Letters 7, no. 1 (2012): 172. http://dx.doi.org/10.1186/1556-276x-7-172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

OHNISHI, Michitoshi. "Ultralight Flexible Amorphous Silicon Solar Cell." Kobunshi 44, no. 2 (1995): 79. http://dx.doi.org/10.1295/kobunshi.44.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gourbilleau, F., C. Dufour, B. Rezgui, and G. Brémond. "Silicon nanostructures for solar cell applications." Materials Science and Engineering: B 159-160 (March 2009): 70–73. http://dx.doi.org/10.1016/j.mseb.2008.10.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhao, J., A. Wang, E. Abbaspour-Sani, F. Yun, and M. A. Green. "Improved efficiency silicon solar cell module." IEEE Electron Device Letters 18, no. 2 (February 1997): 48–50. http://dx.doi.org/10.1109/55.553040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fagotto, E. A. M., F. Decker, and M. Fracastoro-Decker. "Electroacoustics in a silicon solar cell." Applied Physics A: Materials Science & Processing 61, no. 4 (September 1, 1995): 447–52. http://dx.doi.org/10.1007/s003390050227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cheng, T. H., P. S. Kuo, C. Y. Ko, C. Y. Chen, and C. W. Liu. "Electroluminescence from monocrystalline silicon solar cell." Journal of Applied Physics 105, no. 10 (May 15, 2009): 106107. http://dx.doi.org/10.1063/1.3117523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Jianming. "Novel silicon solar cell research program." Solar Energy Materials and Solar Cells 33, no. 1 (May 1994): 107–11. http://dx.doi.org/10.1016/0927-0248(94)90294-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fagotto, E. A. M., F. Decker, and M. Fracastoro-Decker. "Electroacoustics in a silicon solar cell." Applied Physics A Materials Science & Processing 61, no. 4 (October 1995): 447–52. http://dx.doi.org/10.1007/bf01540122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Green, M. A., A. W. Blakers, S. Narayanan, and M. Taouk. "Improvements in silicon solar cell efficiency." Solar Cells 17, no. 1 (March 1986): 75–83. http://dx.doi.org/10.1016/0379-6787(86)90060-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shah, A. V., H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat. "Thin-film silicon solar cell technology." Progress in Photovoltaics: Research and Applications 12, no. 23 (March 2004): 113–42. http://dx.doi.org/10.1002/pip.533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, A., J. Zhao, S. R. Wenham, and M. A. Green. "21.5% Efficient thin silicon solar cell." Progress in Photovoltaics: Research and Applications 4, no. 1 (January 1996): 55–58. http://dx.doi.org/10.1002/(sici)1099-159x(199601/02)4:1<55::aid-pip111>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lindmayer, J., and J. F. Allison. "The violet cell: An improved silicon solar cell." Solar Cells 29, no. 2-3 (August 1990): 151–66. http://dx.doi.org/10.1016/0379-6787(90)90023-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kim, Hyunsung, Sangho Kim, Youngseok Lee, Jun-Hui Jeong, Yongjun Kim, Vinh Ai Dao, and Junsin Yi. "Enhancing Solar Cell Properties of Heterojunction Solar Cell in Amorphous Silicon Carbide." Journal of the Korean Institute of Electrical and Electronic Material Engineers 29, no. 6 (June 1, 2016): 376–79. http://dx.doi.org/10.4313/jkem.2016.29.6.376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kim, Ka-Hyun. "Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell." Journal of the Korean Solar Energy Society 39, no. 1 (February 1, 2019): 1–9. http://dx.doi.org/10.7836/kses.2019.39.1.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Jeong, Sang Wook Park, In Sik Moon, Moon Jae Lee, and Dae Won Kim. "Porous Silicon Layer by Electrochemical Etching for Silicon Solar Cell." Solid State Phenomena 124-126 (June 2007): 987–90. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.987.

Full text
Abstract:
An Electrochemical etching was used to form the porous silicon (PS) layer on the surface of the crystalline silicon wafer. The PS layer, in this study, will act as an antireflection coating to reduce the reflection of the incident light into the solar cell. The etching solution (electrolyte) was prepared by mixing HF (50%) and ethanol which was introduced for efficient bubble elimination on the silicon surface during etching process. The anodization of the silicon surface was performed under a constant current (galvanostat mode of the power supply), and process parameters, such as current density and etching time, were carefully tuned to minimize the surface reflectance of the heavily-doped wafer with sheet resistance between 20-30 / .
APA, Harvard, Vancouver, ISO, and other styles
32

Do, Kyeom Seon, Min Gu Kang, Je Jun Park, Gi Hwan Kang, Jae-Min Myoung, and Hee-eun Song. "Surface Texturing of Crystalline Silicon Solar Cell Using Silicon Nanowires." Japanese Journal of Applied Physics 52, no. 9R (September 1, 2013): 092301. http://dx.doi.org/10.7567/jjap.52.092301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dzhafarov, T. D., S. S. Aslanov, S. H. Ragimov, M. S. Sadigov, and S. Aydin Yuksel. "Effect of nanoporous silicon coating on silicon solar cell performance." Vacuum 86, no. 12 (July 2012): 1875–79. http://dx.doi.org/10.1016/j.vacuum.2012.04.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Xinyu, Andres Cuevas, Bénédicte Demaurex, and Stefaan De Wolf. "Sputtered Hydrogenated Amorphous Silicon for Silicon Heterojunction Solar Cell Fabrication." Energy Procedia 55 (2014): 865–72. http://dx.doi.org/10.1016/j.egypro.2014.08.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Huang, Yuan Ming, Qing Lan Ma, Ming Meng, and Bao Gai Zhai. "Porous Silicon Based Solar Cells." Materials Science Forum 663-665 (November 2010): 836–39. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.836.

Full text
Abstract:
The primary aim of this communication is to introduce a novel approach of preparation of solar cell, viz. PS based solar cell, which is on the basis of the basic principle of the well established photovoltaic effect. We carefully investigate the current-voltage characteristics of the PS-based solar cell by virtue of performing the measurement of both current and voltage of PS-based solar cell under the condition of the sunlight irradiation and priori to sunlight irradiation in the purpose of observing clearly the photovoltaic effect possessed by the PS based solar cell. Judging by the results obtained in this paper, we can safely draw the conclusion that porous silicon is a good candidate material for the preparation of solar cell, that is to say that our study is giving high hope for the industrial production of high efficient PS-based thin film solar cells.
APA, Harvard, Vancouver, ISO, and other styles
36

Singh, O. P., S. K. Singh, and A. Gaur. "Performance of amorphous silicon solar cell module and solar lantern." Renewable Energy 11, no. 4 (August 1997): 421–26. http://dx.doi.org/10.1016/s0960-1481(97)00010-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jiang, Chuan, Tian Ze Li, Xia Zhang, and Luan Hou. "Simulation of Silicon Solar Cell Using PC1D." Advanced Materials Research 383-390 (November 2011): 7032–36. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.7032.

Full text
Abstract:
PC1D software, which was developed by the University of New South Wales, has been used to simulate photovoltaic properties of crystalline semiconductor devices. The paper focuses on the simulation of silicon solar cell by PC1D. The simulation of silicon solar cell is carried out by setting up key parameters, which include device area, thickness, band gap, etc. Several important characteristics of silicon solar cells are obtained by simulation.
APA, Harvard, Vancouver, ISO, and other styles
38

Asmontas, S., J. Gradauskas, A. Griguceviciene, K. Leinartas, A. Lucun, M. Mujahid, K. Petrauskas, et al. "Triple-cation perovskite/silicon tandem solar cell." Ukrainian Journal of Physical Optics 23, no. 4 (2022): 193–200. http://dx.doi.org/10.3116/16091833/23/4/193/2022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Azim, Osama A., I. S. Yahia, and G. B. Sakr. "Characterization of mono-crystalline silicon solar cell." Applied Solar Energy 50, no. 3 (July 2014): 146–55. http://dx.doi.org/10.3103/s0003701x14030037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

ZHANG, Wu-jie, Di LI, and Feng YE. "Texture defect inspection for silicon solar cell." Journal of Computer Applications 30, no. 10 (December 28, 2010): 2702–4. http://dx.doi.org/10.3724/sp.j.1087.2010.02702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kim, Joondong, Ju-Hyung Yun, Chang-Soo Han, Yong Jae Cho, Jeunghee Park, and Yun Chang Park. "Multiple silicon nanowires-embedded Schottky solar cell." Applied Physics Letters 95, no. 14 (October 5, 2009): 143112. http://dx.doi.org/10.1063/1.3245310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Jianming, Ming Chong, Jiancheng Zhu, Yuanjing Li, Jiadong Xu, Peida Wang, Zuoqi Shang, Zhankun Yang, Ronghua Zhu, and Xiolan Cao. "35% efficient nonconcentrating novel silicon solar cell." Applied Physics Letters 60, no. 18 (May 4, 1992): 2240–42. http://dx.doi.org/10.1063/1.107042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kroon, M. A., R. A. C. M. M. van Swaaij, M. Zeman, V. I. Kuznetsov, and J. W. Metselaar. "Hydrogenated amorphous silicon transverse junction solar cell." Applied Physics Letters 72, no. 2 (January 12, 1998): 209–10. http://dx.doi.org/10.1063/1.120687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pacebutas, V., K. Grigoras, and A. Krotkus. "Porous silicon applications in solar cell technology." Physica Scripta T69 (January 1, 1997): 255–58. http://dx.doi.org/10.1088/0031-8949/1997/t69/053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gleichmann, R., B. Cunningham, and D. G. Ast. "Process‐induced defects in solar cell silicon." Journal of Applied Physics 58, no. 1 (July 1985): 223–29. http://dx.doi.org/10.1063/1.335716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shokeen, Poonam, Amit Jain, and Avinashi Kapoor. "Plasmonic ZnO/p-silicon heterojunction solar cell." Optical Materials 67 (May 2017): 32–37. http://dx.doi.org/10.1016/j.optmat.2017.03.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Choi, Youngmoon, Deok-kee Kim, Eun Cheol Do, Dongkyun Kim, Jinsoo Mun, Jin Wook Lee, Yeonil Lee, and Yun Gi Kim. "Interdigitated front contact crystalline silicon solar cell." Solar Energy 100 (February 2014): 94–101. http://dx.doi.org/10.1016/j.solener.2013.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ghannam, M., S. Sivoththaman, J. Poortmans, J. Szlufcik, J. Nijs, R. Mertens, and R. Van Overstraeten. "Trends in industrial silicon solar cell processes." Solar Energy 59, no. 1-3 (January 1997): 101–10. http://dx.doi.org/10.1016/s0038-092x(96)00095-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kamp, Mathias, Jonas Bartsch, Gisela Cimiotti, Roman Keding, Ardiana Zogaj, Christian Reichel, Andre Kalio, Markus Glatthaar, and Stefan Glunz. "Zincate processes for silicon solar cell metallization." Solar Energy Materials and Solar Cells 120 (January 2014): 332–38. http://dx.doi.org/10.1016/j.solmat.2013.05.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ganiany, M. M., M. M. Ibrahim, M. Abd Hameed, and S. M. El-Kream. "Solar photometry: Application of new silicon cell." Lighting Research and Technology 29, no. 3 (September 1, 1997): 179–82. http://dx.doi.org/10.1177/14771535970290031001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography