Journal articles on the topic 'Double Heterojunction Bipolar Transistor'

To see the other types of publications on this topic, follow the link: Double Heterojunction Bipolar Transistor.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Double Heterojunction Bipolar Transistor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Magno, R., J. B. Boos, P. M. Campbell, B. R. Bennett, E. R. Glaser, B. P. Tinkham, M. G. Ancona, K. D. Hobart, D. Park, and N. A. Papanicolaou. "InAlAsSb∕InGaSb double heterojunction bipolar transistor." Electronics Letters 41, no. 6 (2005): 370. http://dx.doi.org/10.1049/el:20058107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, B. P., C. C. Hsu, X. Q. Wang, and E. S. Yang. "InGaP∕GaAs0.94Sb0.06∕GaAs double heterojunction bipolar transistor." Electronics Letters 38, no. 6 (2002): 289. http://dx.doi.org/10.1049/el:20020201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LIU, QINGMIN, SURAJIT SUTAR, and ALAN SEABAUGH. "TUNNEL DIODE/TRANSISTOR DIFFERENTIAL COMPARATOR." International Journal of High Speed Electronics and Systems 14, no. 03 (September 2004): 640–45. http://dx.doi.org/10.1142/s0129156404002600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A new tunnel diode/transistor circuit topology is reported, which both increases speed and reduces power in differential comparators. This circuit topology is of special interest for use in direct digital synthesis applications. The circuit topology can be extended to provide performance improvements in high speed logic and signal processing applications. The circuits are designed based on InP/GaAsSb double heterojunction bipolar transistors and AlAs/InGaAs/AlAs resonant tunneling diodes. A self-aligned and scalable fabrication approach using nitride sidewalls and chemical mechanical polishing is outlined.
4

Chang, P. C., A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou, and E. Armour. "InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor." Applied Physics Letters 76, no. 16 (April 17, 2000): 2262–64. http://dx.doi.org/10.1063/1.126315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coquillat, D., V. Nodjiadjim, S. Blin, A. Konczykowska, N. Dyakonova, C. Consejo, P. Nouvel, et al. "High-Speed Room Temperature Terahertz Detectors Based on InP Double Heterojunction Bipolar Transistors." International Journal of High Speed Electronics and Systems 25, no. 03n04 (September 2016): 1640011. http://dx.doi.org/10.1142/s0129156416400115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Compact and fast detectors, for imaging and wireless communication applications, require efficient rectification of electromagnetic radiation with frequencies approaching 1 THz and modulation bandwidth up to a few tens of GHz. This can be obtained only by using a mature technology allowing monolithic integration of detectors with low-noise amplifiers. One of the best candidates is indium phosphide bipolar transistor (InP HBT) technology. In this work, we report on room temperature high sensitivity terahertz detection by InP double-heterojunction bipolar transistors (DHBTs) operating in a large frequency range (0.25–3.1 THz). The performances of the DHBTs as terahertz sensors for communications were evaluated showing the modulation bandwidth of investigated DHBTs close to 10 GHz.
6

Pelouard, J.-L., P. Hesto, and R. Castagné. "Monte-Carlo study of the double heterojunction bipolar transistor." Solid-State Electronics 31, no. 3-4 (March 1988): 333–36. http://dx.doi.org/10.1016/0038-1101(88)90289-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lew, K. L., and S. F. Yoon. "Model for InGaP/GaAs/InGaP double heterojunction bipolar transistor." Journal of Applied Physics 89, no. 6 (March 15, 2001): 3464–68. http://dx.doi.org/10.1063/1.1343888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prinz, E. J., X. Xiao, P. V. Schwartz, and J. C. Sturm. "A novel double-base heterojunction bipolar transistor for low-temperature bipolar logic." IEEE Transactions on Electron Devices 39, no. 11 (1992): 2636–37. http://dx.doi.org/10.1109/16.163484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yamina, Berrichi, and Ghaffour Kherreddine. "Modelling Electronic Characteristic of InP/InGaAs Double Heterojunction Bipolar Transistor." International Journal of Electrical and Computer Engineering (IJECE) 5, no. 3 (June 1, 2015): 525. http://dx.doi.org/10.11591/ijece.v5i3.pp525-530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this paper, we are interested in studying InP/InGaAs heterojunction bipolar transistor NPN type. First and for most we should describe the structure of our simulation, then, we ploted at room temperature: Energy band diagram, Gummel plot, I<sub>C-</sub>V<sub>C</sub> characteristic and conduction bands for different values of V<sub>BE</sub>. The simulation of this structure has demonstrated the validity of our model and the method of the simulation.
10

Lee, Geonyeop, Stephen J. Pearton, Fan Ren, and Jihyun Kim. "Heterojunction Bipolar Transistor: 2D Material-Based Vertical Double Heterojunction Bipolar Transistors with High Current Amplification (Adv. Electron. Mater. 3/2019)." Advanced Electronic Materials 5, no. 3 (March 2019): 1970015. http://dx.doi.org/10.1002/aelm.201970015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ikossi-Anastasiou, K., A. Ezis, K. R. Evans, and C. E. Stutz. "Double heterojunction bipolar transistor in AlxGa1−xAs/GaAs1−ySby system." Electronics Letters 27, no. 2 (1991): 142. http://dx.doi.org/10.1049/el:19910093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cheng, Shiou-Ying, Hsi-Jen Pan, Shun-Ching Feng, Kuo-Hui Yu, Jung-Hui Tsai, and Wen-Chau Liu. "A new wide voltage operation regime double heterojunction bipolar transistor." Solid-State Electronics 44, no. 4 (April 2000): 581–85. http://dx.doi.org/10.1016/s0038-1101(99)00301-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, W.-C., S.-Y. Cheng, W.-L. Chang, H.-J. Pan, Y.-H. Shie, and W.-C. Liu. "Investigation of InGaP/GaAs double-delta-doped heterojunction bipolar transistor." Semiconductor Science and Technology 13, no. 6 (June 1, 1998): 630–33. http://dx.doi.org/10.1088/0268-1242/13/6/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pelouard, J. L., P. Hesto, J. P. Praseuth, and L. Goldstein. "Double-heterojunction GaAlInAs/GaInAs bipolar transistor grown by molecular beam epitaxy." IEEE Electron Device Letters 7, no. 9 (September 1986): 516–18. http://dx.doi.org/10.1109/edl.1986.26457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Y. S. "Breakdown characteristics of InP/InGaAs composite-collector double heterojunction bipolar transistor." Applied Physics Letters 83, no. 26 (December 29, 2003): 5545–47. http://dx.doi.org/10.1063/1.1637147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Berger, Paul R., Naresh Chand, and Niloy K. Dutta. "An AlGaAs double‐heterojunction bipolar transistor grown by molecular‐beam epitaxy." Applied Physics Letters 59, no. 9 (August 26, 1991): 1099–101. http://dx.doi.org/10.1063/1.106356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Taira, K., H. Kawai, and K. Kaneko. "Nonequilibrium electron transport in an AlGaAs/GaAs double‐heterojunction bipolar transistor." Journal of Applied Physics 64, no. 5 (September 1988): 2767–69. http://dx.doi.org/10.1063/1.341625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sugiyama, Hiroki, Yasuhiro Oda, Takashi Kobayashi, Masahiro Uchida, and Noriyuki Watanabe. "Photoreflectance characterization of InP∕GaAsSb double-heterojunction bipolar transistor epitaxial wafers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23, no. 3 (2005): 1004. http://dx.doi.org/10.1116/1.1924423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kurishima, K., H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi. "InP/InGaAs double-heterojunction bipolar transistor with step-graded InGaAsP collector." Electronics Letters 29, no. 3 (1993): 258. http://dx.doi.org/10.1049/el:19930177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yuxiong, Cao, Jin Zhi, Ge Ji, Su Yongbo, and Liu Xinyu. "A symbolically defined InP double heterojunction bipolar transistor large-signal model." Journal of Semiconductors 30, no. 12 (December 2009): 124006. http://dx.doi.org/10.1088/1674-4926/30/12/124006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pekarik, John J. "An AlSb–InAs–AlSb double-heterojunction P-n-P bipolar transistor." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 2 (March 1992): 1032. http://dx.doi.org/10.1116/1.586407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Q. M., K. Lee, G. L. Tan, and J. M. Xu. "Analysis of the emitter-down configuration of double-heterojunction bipolar transistor." IEEE Transactions on Electron Devices 39, no. 10 (1992): 2220–28. http://dx.doi.org/10.1109/16.158791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gao, G. B., M. S. Ünlü, J. Chen, B. Mazhari, K. Adomi, G. X. Liu, Z. F. Fan, and H. Morkoç. "Double-layer collector for heterojunction bipolar transistors." Solid-State Electronics 35, no. 1 (January 1992): 57–60. http://dx.doi.org/10.1016/0038-1101(92)90304-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jahan, M. M., and A. F. M. Anwar. "Early voltage in double heterojunction bipolar transistors." IEEE Transactions on Electron Devices 42, no. 11 (1995): 2028–29. http://dx.doi.org/10.1109/16.469414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lin, Y. S., J. H. Huang, and C. H. Ho. "Improved InP-based double heterojunction bipolar transistors." physica status solidi (c) 4, no. 5 (April 2007): 1680–84. http://dx.doi.org/10.1002/pssc.200674254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

McKinnon, W. R., S. P. McAlister, Z. Abid, E. E. Guzzo, and S. Laframboise. "A comparison of the dc and rf characteristics of single and double InP/InGaAs heterojunction bipolar transistors." Canadian Journal of Physics 74, S1 (December 1, 1996): 239–42. http://dx.doi.org/10.1139/p96-866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The dc and rf characteristics for InP/InGaAs heterojunction bipolar transistors having a single heterojunction design were measured and compared with those for double heterojunction devices that employ a composite collector. Although the composite-collector design improves the breakdown characteristics of our devices the rf performance was not as good. This we partially attribute to the collector heterojunction, which causes "current blocking".
27

Levi, A. F. J., J. R. Hayes, A. C. Gossard, and J. H. English. "Electroluminescence from the base of a GaAs/AlGaAs double heterojunction bipolar transistor." Applied Physics Letters 50, no. 2 (January 12, 1987): 98–100. http://dx.doi.org/10.1063/1.97831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Liu, W., E. Beam, and A. Khatibzadeh. "1.5-W CW S-band GaInP/GaAs/GaInP double heterojunction bipolar transistor." IEEE Electron Device Letters 15, no. 6 (June 1994): 215–17. http://dx.doi.org/10.1109/55.286696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Coquillat, D., V. Nodjiadjim, A. Konczykowska, N. Dyakonova, C. Consejo, S. Ruffenach, F. Teppe, et al. "InP Double Heterojunction Bipolar Transistor for broadband terahertz detection and imaging systems." Journal of Physics: Conference Series 647 (October 13, 2015): 012036. http://dx.doi.org/10.1088/1742-6596/647/1/012036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Liu, W. C., S. Y. Cheng, H. J. Pan, J. Y. Chen, W. C. Wang, S. C. Feng, and K. H. Yu. "A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistor (DHBT) prepared by MOCVD." Le Journal de Physique IV 09, PR8 (September 1999): Pr8–1155—Pr8–1161. http://dx.doi.org/10.1051/jp4:19998144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Poh, Z. S., H. K. Yow, P. A. Houston, A. B. Krysa, and D. S. Ong. "GaInP∕GaAs double heterojunction bipolar transistor with GaAs∕Al0.11Ga0.89As∕GaInP composite collector." Journal of Applied Physics 100, no. 2 (July 15, 2006): 026105. http://dx.doi.org/10.1063/1.2218027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Squartecchia, Michele, Tom K. Johansen, Jean-Yves Dupuy, Virginio Midili, Virginie Nodjiadjim, Muriel Riet, and Agnieszka Konczykowska. "Optimization of InP DHBT stacked-transistors for millimeter-wave power amplifiers." International Journal of Microwave and Wireless Technologies 10, no. 9 (August 7, 2018): 999–1010. http://dx.doi.org/10.1017/s1759078718001137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractIn this paper, we report the analysis, design, and implementation of stacked transistors for power amplifiers realized on InP Double Heterojunction Bipolar Transistors (DHBTs) technology. A theoretical analysis based on the interstage matching between all the single transistors has been developed starting from the small-signal equivalent circuit. The analysis has been extended by including large-signal effects and layout-related limitations. An evaluation of the maximum number of transistors for positive incremental power and gain is also carried out. To validate the analysis, E-band three- and four-stacked InP DHBT matched power cells have been realized for the first time as monolithic microwave integrated circuits (MMICs). For the three-stacked transistor, a small-signal gain of 8.3 dB, a saturated output power of 15 dBm, and a peak power added efficiency (PAE) of 5.2% have been obtained at 81 GHz. At the same frequency, the four-stacked transistor achieves a small-signal gain of 11.5 dB, a saturated output power of 14.9 dBm and a peak PAE of 3.8%. A four-way combined three-stacked MMIC power amplifier has been implemented as well. It exhibits a linear gain of 8.1 dB, a saturated output power higher than 18 dBm, and a PAE higher than 3% at 84 GHz.
33

Chen, Chung‐Zen, Si‐Chen Lee, and Hao‐Hsiung Lin. "Design ofn‐p‐nAlGaAs double‐heterojunction bipolar transistors." Journal of Applied Physics 62, no. 9 (November 1987): 3976–79. http://dx.doi.org/10.1063/1.339196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yee, Marcus, and Peter A. Houston. "High current effects in double heterojunction bipolar transistors." Semiconductor Science and Technology 20, no. 5 (March 15, 2005): 412–17. http://dx.doi.org/10.1088/0268-1242/20/5/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wai Lee and C. G. Fonstad. "In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As abrupt double-heterojunction bipolar transistors." IEEE Electron Device Letters 7, no. 12 (December 1986): 683–85. http://dx.doi.org/10.1109/edl.1986.26519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yow, H. K., T. W. Lee, C. C. Button, P. A. Houston, J. S. Roberts, and H. Y. Lee. "Double heterojunction bipolar transistors Using AlGaInP/GaAs/GaInP." Electronics Letters 30, no. 2 (January 20, 1994): 167–69. http://dx.doi.org/10.1049/el:19940092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hidaka, Osamu, Kouhei Morizuka, and Hiroshi Mochizuki. "Thermal Runaway Tolerance in Double-Heterojunction Bipolar Transistors." Japanese Journal of Applied Physics 34, Part 1, No. 2B (February 28, 1995): 886–88. http://dx.doi.org/10.1143/jjap.34.886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

J. García-Loureiro, Antonio, and Juan M. López-González. "A model for abrupt double heterojunction bipolar transistors." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 17, no. 1 (January 2004): 29–42. http://dx.doi.org/10.1002/jnm.522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Laurent, S., J. C. Nallatamby, M. Prigent, M. Riet, and V. Nodjiadjim. "Characterization and Modeling of DHBT in InP/GaAsSb Technology for the Design and Fabrication of a Ka Band MMIC Oscillator." Active and Passive Electronic Components 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/796973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper presents the design of an MMIC oscillator operating at a 38 GHz frequency. This circuit was fabricated by the III–V Lab with the new InP/GaAsSb Double Heterojunction Bipolar Transistor (DHBT) submicronic technology (We=700 nm). The transistor used in the circuit has a 15 μm long two-finger emitter. This paper describes the complete nonlinear modeling of this DHBT, including the cyclostationary modeling of its low frequency (LF) noise sources. The specific interest of the methodology used to design this oscillator resides in being able to choose a nonlinear operating condition of the transistor from an analysis in amplifier mode. The oscillator simulation and measurement results are compared. A 38 GHz oscillation frequency with 8.6 dBm output power and a phase noise of −80 dBc/Hz at 100 KHz offset from carrier have been measured.
40

Yee, M., P. A. Houston, and J. P. R. David. "Measurement of electron saturation velocity in Ga0.52In0.48P in a double heterojunction bipolar transistor." Journal of Applied Physics 91, no. 3 (February 2002): 1601–5. http://dx.doi.org/10.1063/1.1428100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Cheng, Shiou-Ying, Wei-Chou Wang, Wen-Lung Chang, Jing-Yuh Chen, His-Jen Pan, and Wen-Chau Liu. "A new InGaP/GaAs double delta-doped heterojunction bipolar transistor (D 3 HBT)." Thin Solid Films 345, no. 2 (May 1999): 270–72. http://dx.doi.org/10.1016/s0040-6090(98)01422-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lee, Si‐Chen, and Hao‐Hsiung Lin. "Transport theory of the double heterojunction bipolar transistor based on current balancing concept." Journal of Applied Physics 59, no. 5 (March 1986): 1688–95. http://dx.doi.org/10.1063/1.336432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Welty, R. J., H. P. Xin, K. Mochizuki, C. W. Tu, and P. M. Asbeck. "GaAs/Ga0.89In0.11N0.02As0.98/GaAs NpN double heterojunction bipolar transistor with low turn-on voltage." Solid-State Electronics 46, no. 1 (January 2002): 1–5. http://dx.doi.org/10.1016/s0038-1101(01)00315-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Schreiber, H. U. "High-speed double mesa Si/SiGe heterojunction bipolar transistor fabricated by selfalignment technology." Electronics Letters 28, no. 5 (1992): 485. http://dx.doi.org/10.1049/el:19920306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Wei-Chou, Jing-Yuh Chen, Hsi-Jen Pan, Shun-Ching Feng, Kuo-Hui Yu, and Wen-Chau Liu. "Study of In0.49Ga0.51P/GaAs/In0.49Ga0.51P doubleδ-doped heterojunction bipolar transistor." Superlattices and Microstructures 26, no. 1 (July 1999): 23–33. http://dx.doi.org/10.1006/spmi.1999.0701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shivan, T., E. Kaule, M. Hossain, R. Doerner, T. Johansen, D. Stoppel, S. Boppel, W. Heinrich, V. Krozer, and M. Rudolph. "Design and modeling of an ultra-wideband low-noise distributed amplifier in InP DHBT technology." International Journal of Microwave and Wireless Technologies 11, no. 7 (May 3, 2019): 635–44. http://dx.doi.org/10.1017/s1759078719000515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThis paper reports on an ultra-wideband low-noise distributed amplifier (LNDA) in a transferred-substrate InP double heterojunction bipolar transistor (DHBT) technology which exhibits a uniform low-noise characteristic over a large frequency range. To obtain very high bandwidth, a distributed architecture has been chosen with cascode unit gain cells. Each unit cell consists of two cascode-connected transistors with 500 nm emitter length and ft/fmax of ~360/492 GHz, respectively. Due to optimum line-impedance matching, low common-base transistor capacitance, and low collector-current operation, the circuit exhibits a low-noise figure (NF) over a broad frequency range. A 3-dB bandwidth from 40 to 185 GHz is measured, with an NF of 8 dB within the frequency range between 75 and 105 GHz. Moreover, this circuit demonstrates the widest 3-dB bandwidth operation among all reported single-stage amplifiers with a cascode configuration. Additionally, this work has proposed that the noise sources of the InP DHBTs are largely uncorrelated. As a result, a reliable prediction can be done for the NF of ultra-wideband circuits beyond the frequency range of the measurement equipment.
47

Makimoto, Toshiki, Kenji Kurishima, Takashi Kobayashi, and Tadao Ishibashi. "InP/InGaAs Double Heterojunction Bipolar Transistors Grown on Si." Japanese Journal of Applied Physics 30, Part 1, No. 12B (December 30, 1991): 3815–17. http://dx.doi.org/10.1143/jjap.30.3815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Coquillat, Dominique, Alexandre Duhant, Meriam Triki, Virginie Nodjiadjim, Agnieszka Konczykowska, Muriel Riet, Nina Dyakonova, Olivier Strauss, and Wojciech Knap. "InP double heterojunction bipolar transistors for terahertz computed tomography." AIP Advances 8, no. 8 (August 2018): 085320. http://dx.doi.org/10.1063/1.5039331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Shyh-Chiang Shen, Yi-Che Lee, Hee-Jin Kim, Yun Zhang, Suk Choi, R. D. Dupuis, and Jae-Hyun Ryou. "Surface Leakage in GaN/InGaN Double Heterojunction Bipolar Transistors." IEEE Electron Device Letters 30, no. 11 (November 2009): 1119–21. http://dx.doi.org/10.1109/led.2009.2030373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lo, C. F., F. Ren, C. Y. Chang, S. J. Pearton, S. H. Chen, C. M. Chang, S. Y. Wang, J. I. Chyi, and I. I. Kravchenko. "Fabrication of InAlAs/InGaAsSb/InGaAs double heterojunction bipolar transistors." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, no. 3 (May 2011): 031205. http://dx.doi.org/10.1116/1.3589808.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography