Academic literature on the topic 'Double Heterojunction Bipolar Transistor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Double Heterojunction Bipolar Transistor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Double Heterojunction Bipolar Transistor":

1

Magno, R., J. B. Boos, P. M. Campbell, B. R. Bennett, E. R. Glaser, B. P. Tinkham, M. G. Ancona, K. D. Hobart, D. Park, and N. A. Papanicolaou. "InAlAsSb∕InGaSb double heterojunction bipolar transistor." Electronics Letters 41, no. 6 (2005): 370. http://dx.doi.org/10.1049/el:20058107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, B. P., C. C. Hsu, X. Q. Wang, and E. S. Yang. "InGaP∕GaAs0.94Sb0.06∕GaAs double heterojunction bipolar transistor." Electronics Letters 38, no. 6 (2002): 289. http://dx.doi.org/10.1049/el:20020201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LIU, QINGMIN, SURAJIT SUTAR, and ALAN SEABAUGH. "TUNNEL DIODE/TRANSISTOR DIFFERENTIAL COMPARATOR." International Journal of High Speed Electronics and Systems 14, no. 03 (September 2004): 640–45. http://dx.doi.org/10.1142/s0129156404002600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A new tunnel diode/transistor circuit topology is reported, which both increases speed and reduces power in differential comparators. This circuit topology is of special interest for use in direct digital synthesis applications. The circuit topology can be extended to provide performance improvements in high speed logic and signal processing applications. The circuits are designed based on InP/GaAsSb double heterojunction bipolar transistors and AlAs/InGaAs/AlAs resonant tunneling diodes. A self-aligned and scalable fabrication approach using nitride sidewalls and chemical mechanical polishing is outlined.
4

Chang, P. C., A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou, and E. Armour. "InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor." Applied Physics Letters 76, no. 16 (April 17, 2000): 2262–64. http://dx.doi.org/10.1063/1.126315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coquillat, D., V. Nodjiadjim, S. Blin, A. Konczykowska, N. Dyakonova, C. Consejo, P. Nouvel, et al. "High-Speed Room Temperature Terahertz Detectors Based on InP Double Heterojunction Bipolar Transistors." International Journal of High Speed Electronics and Systems 25, no. 03n04 (September 2016): 1640011. http://dx.doi.org/10.1142/s0129156416400115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Compact and fast detectors, for imaging and wireless communication applications, require efficient rectification of electromagnetic radiation with frequencies approaching 1 THz and modulation bandwidth up to a few tens of GHz. This can be obtained only by using a mature technology allowing monolithic integration of detectors with low-noise amplifiers. One of the best candidates is indium phosphide bipolar transistor (InP HBT) technology. In this work, we report on room temperature high sensitivity terahertz detection by InP double-heterojunction bipolar transistors (DHBTs) operating in a large frequency range (0.25–3.1 THz). The performances of the DHBTs as terahertz sensors for communications were evaluated showing the modulation bandwidth of investigated DHBTs close to 10 GHz.
6

Pelouard, J.-L., P. Hesto, and R. Castagné. "Monte-Carlo study of the double heterojunction bipolar transistor." Solid-State Electronics 31, no. 3-4 (March 1988): 333–36. http://dx.doi.org/10.1016/0038-1101(88)90289-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lew, K. L., and S. F. Yoon. "Model for InGaP/GaAs/InGaP double heterojunction bipolar transistor." Journal of Applied Physics 89, no. 6 (March 15, 2001): 3464–68. http://dx.doi.org/10.1063/1.1343888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prinz, E. J., X. Xiao, P. V. Schwartz, and J. C. Sturm. "A novel double-base heterojunction bipolar transistor for low-temperature bipolar logic." IEEE Transactions on Electron Devices 39, no. 11 (1992): 2636–37. http://dx.doi.org/10.1109/16.163484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yamina, Berrichi, and Ghaffour Kherreddine. "Modelling Electronic Characteristic of InP/InGaAs Double Heterojunction Bipolar Transistor." International Journal of Electrical and Computer Engineering (IJECE) 5, no. 3 (June 1, 2015): 525. http://dx.doi.org/10.11591/ijece.v5i3.pp525-530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this paper, we are interested in studying InP/InGaAs heterojunction bipolar transistor NPN type. First and for most we should describe the structure of our simulation, then, we ploted at room temperature: Energy band diagram, Gummel plot, I<sub>C-</sub>V<sub>C</sub> characteristic and conduction bands for different values of V<sub>BE</sub>. The simulation of this structure has demonstrated the validity of our model and the method of the simulation.
10

Lee, Geonyeop, Stephen J. Pearton, Fan Ren, and Jihyun Kim. "Heterojunction Bipolar Transistor: 2D Material-Based Vertical Double Heterojunction Bipolar Transistors with High Current Amplification (Adv. Electron. Mater. 3/2019)." Advanced Electronic Materials 5, no. 3 (March 2019): 1970015. http://dx.doi.org/10.1002/aelm.201970015.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Double Heterojunction Bipolar Transistor":

1

Ang, Oon Sim. "Modeling of double heterojunction bipolar transistors." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A one-dimensional analytical model in the Ebers-Moll formulation of a graded base double heterojunction bipolar transistor (DHBT) is developed and used to examine the effects of base grading, the emitter-base barrier and the base-collector barrier on the d.c. current gain, offset voltage and the high frequency performance of a N — Al[formula omitted]Ga₁[formula omitted]As/p — Al[formula omitted]Ga₁[formula omitted]As/N — Al[formula omitted]Ga₁[formula omitted]As DHBTs. Recombination processes considered in the space charge regions and the neutral regions are: Shockley-Read-Hall, radiative and Auger. The trade-off between base-grading, which reduces the base current, and the neutral base recombination, which is brought about by varying the aluminium the junctions, results in an optimum aluminium mole fraction profile regarding the d.c. current gain. For high frequency performance, a similar trade-off to that of the d.c. situation exists. In this case, the important manifestation of the increased collector-base barrier height is an increase in the base transit time. The aluminium mole fraction profile which optimises the unity gain cut-off frequency, f[formula omitted], and the unity power gain cut-off frequency, f[formula omitted], is established. DHBTs which are symmetrical, both in aluminium mole fraction and doping concentration profiles, are shown to have low common-emitter offset voltages, V[formula omitted],[formula omitted]. Base-grading reduces V[formula omitted],[formula omitted] in devices in which the difference between the emitter and collector aluminium mole fraction is < 0.1; otherwise, V[formula omitted],[formula omitted] increases as base-grading increases. The model is also used to examine the performance of a N-Al[formula omitted]Ga₁[formula omitted]As/p-In[formula omitted]Ga₁[formula omitted]As/N-Al[formula omitted]Ga₁[formula omitted]As DHBT. It is shown that radiative and Auger recombination limit the d.c. current gain in this device.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
2

BALARAMAN, PRADEEP ARUGUNAM. "DESIGN, SIMULATION AND MODELING OF InP/GaAsSb/InP DOUBLE HETEROJUNCTION BIPOLAR TRANSISTORS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069275786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Flitcroft, Richard M. "Wide bandgap collector III-V double heterojunction bipolar transistors." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schnyder, Iwan. "An indium-phosphide double-heterojunction bipolar transistor technology for 80 Gb/s integrated circuits /." Konstanz : Hartung-Gorre, 2005. http://www.loc.gov/catdir/toc/fy0610/2006356171.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Yun. "Development of III-nitride bipolar devices: avalanche photodiodes, laser diodes, and double-heterojunction bipolar transistors." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This dissertation describes the development of III-nitride (III-N) bipolar devices for optoelectronic and electronic applications. Research mainly involves device design, fabrication process development, and device characterization for Geiger-mode gallium nitride (GaN) deep-UV (DUV) p-i-n avalanche photodiodes (APDs), indium gallium nitride (InGaN)/GaN-based violet/blue laser diodes (LDs), and GaN/InGaN-based npn radio-frequency (RF) double-heterojunction bipolar transistors (DHBTs). All the epitaxial materials of these devices were grown in the Advanced Materials and Devices Group (AMDG) led by Prof. Russell D. Dupuis at the Georgia Institute of Technology using the metalorganic chemical vapor deposition (MOCVD) technique. Geiger-mode GaN p-i-n APDs have important applications in DUV and UV single-photon detections. In the fabrication of GaN p-i-n APDs, the major technical challenge is the sidewall leakage current. To address this issue, two surface leakage reduction schemes have been developed: a wet-etching surface treatment technique to recover the dry-etching-induced surface damage, and a ledged structure to form a surface depletion layer to partially passivate the sidewall. The first Geiger-mode DUV GaN p-i-n APD on a free-standing (FS) c-plane GaN substrate has been demonstrated. InGaN/GaN-based violet/blue/green LDs are the coherent light sources for high-density optical storage systems and the next-generation full-color LD display systems. The design of InGaN/GaN LDs has several challenges, such as the quantum-confined stark effect (QCSE), the efficiency droop issue, and the optical confinement design optimization. In this dissertation, a step-graded electron-blocking layer (EBL) is studied to address the efficiency droop issue. Enhanced internal quantum efficiency (ɳi) has been observed on 420-nm InGaN/GaN-based LDs. Moreover, an InGaN waveguide design is implemented, and the continuous-wave (CW)-mode operation on 460-nm InGaN/GaN-based LDs is achieved at room temperature (RT). III-N HBTs are promising devices for the next-generation RF and power electronics because of their advantages of high breakdown voltages, high power handling capability, and high-temperature and harsh-environment operation stability. One of the major technical challenges to fabricate high-performance RF III-N HBTs is to suppress the base surface recombination current on the extrinsic base region. The wet-etching surface treatment has also been employed to lower the surface recombination current. As a result, a record small-signal current gain (hfe) > 100 is achieved on GaN/InGaN-based npn DHBTs on sapphire substrates. A cut-off frequency (fT) > 5.3 GHz and a maximum oscillation frequency (fmax) > 1.3 GHz are also demonstrated for the first time. Furthermore, A FS c-plane GaN substrate with low epitaxial defect density and good thermal dissipation ability is used for reduced base bulk recombination current. The hfe > 115, collector current density (JC) > 141 kA/cm², and power density > 3.05 MW/cm² are achieved at RT, which are all the highest values reported ever on III-N HBTs.
6

Lee, Tae-Woo. "An experimental and theoretical study of InGaP-GaAs double heterojunction bipolar transistors." Thesis, University of Sheffield, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Balaraman, Pradeep A. "Design, simulation and modelling of InP/GaAsSb/InP double heterojunction bipolar transistors." Cincinnati, Ohio : University of Cincinnati, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1069275786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bauknecht, Raimond. "InP double heterojunction bipolar transistors for driver circuits in fiber optical communication systems /." [S.l.] : [s.n.], 1998. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=12455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mohiuddin, Muhammad. "InGaAs/InA1As Double Heterojunction Bipolar transistors for high-speed, low-power digital applications." Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schneider, Karl. "Broadband amplifiers for high data rates using InP, InGaAs double heterojunction bipolar transistors." Karlsruhe : Univ.-Verl. Karlsruhe, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?idn=979772826.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Double Heterojunction Bipolar Transistor":

1

Schnyder, Iwan. An indium-phosphide double-heterojunction bipolar transistor technology for 80 Gb/s integrated circuits. Konstanz: Hartung-Gorre Verlag, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lam, Pui Leng. InGaAs-InAIAs N-P-N double heterojunction bipolar transistors grown by molecular beam epitaxy. Manchester: UMIST, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hammer, Urs. Sub-micron InP/GaAsSb/InP double heterojunction bipolar transistors for ultra high-speed digital integrated circuits. Konstanz: Hartung-Gorre, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chink, Hope Wuming. Emitter-up heterojunction bipolar transistor compatible laser. Ottawa: National Library of Canada, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Young, Stephen M. A superlattice emitter structure for a heterojunction bipolar transistor. Manchester: UMIST, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xavier, Bernard Anthony. Analysis & modelling of gallium arsenide heterojunction bipolar transistor mixers. Uxbridge: Brunel University, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lebby, Michael Stephen. Fabrication and characterisation of the heterojunction field effect transistor (HFET) and the bipolar inversion channel field effect transistor (BICFET): Characterisations of HFETs.... Bradford, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Double Heterojunction Bipolar Transistor":

1

Ramberg, L. P., P. M. Enquist, Y. K. Chen, F. E. Najjar, L. F. Eastman, E. A. Fitzgerald, and K. L. Kavanagh. "Lattice-Strained Double Heterojunction InGaAs/GaAs Bipolar Transistors." In High-Speed Electronics, 168–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82979-6_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wei, C. J., H. C. Chung, Y. A. Tkachenko, and J. C. M. Hwang. "Capacitance Model of Microwave InP-Based Double Heterojunction Bipolar Transistors." In Simulation of Semiconductor Devices and Processes, 298–301. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-6619-2_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pelouard, J. L., P. Hesto, J. P. Praseuth, and L. Goldstein. "InGaAlAs/InGaAs/InGaAlAs NnpnN Double Heterojunction Bipolar Transistors: Experimental Characteristics and Monte-Carlo Interpretation." In High-Speed Electronics, 164–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82979-6_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmad, Md Mufassal, Md Faiaad Rahman, and Tahmid Aziz Chowdhury. "Performance Analysis of MgF2-Si3N4 and MgF2-Ta2O5 Double-Layer Anti-reflection Coating on Heterojunction Bipolar Transistor Solar Cell." In Lecture Notes in Electrical Engineering, 285–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1978-6_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dubon-Chevallier, C., P. Desrousseaux, A. M. Duchenois, C. Besombes, J. Dangla, C. Bacot, and D. Ankri. "Emitter-Coupled Logic Ring Oscillators Implemented with GaAs/GaAlAs Single and Double Heterojunction Bipolar Transistors: A Comparison." In High-Speed Electronics, 151–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82979-6_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cressler, John D. "Silicon-Germanium Heterojunction Bipolar Transistor." In Device and Circuit Cryogenic Operation for Low Temperature Electronics, 69–84. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3318-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Su, L. M., N. Grote, P. Schumacher, and D. Franke. "Implanted-collector InGaAsP/InP Heterojunction Bipolar Transistor." In ESSDERC ’89, 275–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Das, Arnima, Maitreyi Ray Kanjilal, and Payel Biswas. "Frequency Response of Si/SiGe Heterojunction Bipolar Transistor." In Computational Advancement in Communication Circuits and Systems, 339–44. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2274-3_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Asbeck, P. M. "Heterojunction Bipolar Transistor Technology for High-Speed Integrated Circuits." In Picosecond Electronics and Optoelectronics, 32–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70780-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Teeter, Douglas A., Jack R. East, Richard K. Mains, and George I. Haddad. "A Numerical Large Signal Model for the Heterojunction Bipolar Transistor." In Computational Electronics, 43–46. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Double Heterojunction Bipolar Transistor":

1

Yu-Qiu Chen and Shiou-Ying Cheng. "An InP/InGaAs double heterojunction bipolar transistor." In 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2014. http://dx.doi.org/10.1109/edssc.2014.7061115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diouf, I., P. Nouvel, L. Varani, A. Penarier, N. Diakonova, D. Coquillat, V. Nodjiadjim, et al. "Double-Heterojunction Bipolar Transistor as THz Detector for Communications." In 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2021. http://dx.doi.org/10.1109/irmmw-thz50926.2021.9566983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Coquillat, D., V. Nodjiadjim, A. Konczykowska, M. Riet, N. Dyakonova, C. Consejo, F. Teppe, J. Godin, and W. Knap. "InP double heterojunction bipolar transistor as sub-terahertz detector." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Min, Yuming Zhang, Hongliang Lu, Yimen Zhang, Jincan Zhang, Chenghuan Li, Wei Zhou, and Lifan Wu. "Geometrical scaling effects in InP/InGaAs double heterojunction bipolar transistor." In 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT). IEEE, 2014. http://dx.doi.org/10.1109/icsict.2014.7021230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coquillat, D., V. Nodjiadjim, A. Konczykowska, N. Dyakonova, C. Consejo, S. Ruffenach, F. Teppe, et al. "InP double heterojunction bipolar transistor for detection above 1 THz." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arabhavi, Akshay Mahadev, Sara Hamzeloui, Filippo Ciabattini, Olivier Ostinelli, and Colombo R. Bolognesi. "Terahertz InP/GaAsSb Double Heterojunction Bipolar Transistors." In 2022 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2022. http://dx.doi.org/10.7567/ssdm.2022.j-3-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bolognesi, C. R., A. M. Arabhavi, W. Quan, O. Ostinelli, X. Wen, and M. Luisier. "Advances in InP Double Heterojunction Bipolar Transistors." In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.d-5-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Okada, Y., K. Tada, R. J. Simes, L. A. Coldren, and J. L. Merz. "GaAs/AlGaAs Double-Heterojunction Bipolar Transistor Carrier-Injected Optical Intensity Modulator." In 1989 Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1989. http://dx.doi.org/10.7567/ssdm.1989.s-c-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

HIDAKA, Osamu, Kouhei MORIZUKA, and Hiroshi MOCHIZUKI. "Thermal Runaway Tolerance in Double Heterojunction Bipolar Transistors." In 1994 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1994. http://dx.doi.org/10.7567/ssdm.1994.d-2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Xingbao, Shouli Zhou, Hao Wen, Hongliang Ren, Guiyong Huang, Jun Xu, and Yuhua Wang. "Simulation of electrical characteristics of InP/In0.24Ga0.76As0.73Sb0.27/In0.53Ga0.47As double heterojunction bipolar transistor." In 2014 IEEE 9th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2014. http://dx.doi.org/10.1109/iciea.2014.6931447.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Double Heterojunction Bipolar Transistor":

1

Rodwell, Mark, M. Urtega, D. Scott, M. Dahlstrom, and Y. Betser. Ultra High Speed Heterojunction Bipolar Transistor Technology. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada413790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, D. L., and P. M. Asbeck. Fundamental Aspects of Heterojunction Bipolar Transistor Technology. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada171225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gillespie, James K. AFRL/GaAsTek Heterojunction Bipolar Transistor (HBT) Process Development. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada415646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patrizi, G. A., M. L. Lovejoy, R. P. Jr Schneider, H. Q. Hou, and P. M. Enquist. Multi-level interconnects for heterojunction bipolar transistor integrated circuit technologies. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/212553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Long, Stephen I., Herbert Kroemer, and M. A. Rao. Development of a Planar Heterojunction Bipolar Transistor for Very High Speed Logic. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada174580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mitchell, Gregory A. The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada552934.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography