Journal articles on the topic 'Double electron transfer (DET)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Double electron transfer (DET).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mukerjee, Sanjeev, Benjamin William Kaufold, Sijia Dong, Parisa Nematollahi, Bernardo Barbiellini, and Dirk Lamoen. "(Invited) Plasmonic Enhancement of Electrochemical Reactions Using LSPR Phenomenon." ECS Meeting Abstracts MA2023-01, no. 30 (August 28, 2023): 1798. http://dx.doi.org/10.1149/ma2023-01301798mtgabs.
Full textChen, Ling, Yue Lu, Manman Duanmu, Xin Zhao, Shenglu Song, Liyue Duan, Zhipeng Ma, Ailing Song, and Guangjie Shao. "Stably Improving the Catalytic Activity of Oxygen Evolution Reactions via Two-Dimensional Graphene Oxide-Incorporated NiFe-Layered Double Hydroxides." Catalysts 14, no. 4 (April 19, 2024): 278. http://dx.doi.org/10.3390/catal14040278.
Full textWu, Hsing-Ju, and Cheng-Chung Chang. "Fabrication of Double Emission Enhancement Fluorescent Nanoparticles with Combined PET and AIEE Effects." Molecules 25, no. 23 (December 4, 2020): 5732. http://dx.doi.org/10.3390/molecules25235732.
Full textWang, Ze, Qianyu Zhou, Yanni Zhu, Yangfan Du, Weichun Yang, Yuanfu Chen, Yong Li, and Shifeng Wang. "NiFeMn-Layered Double Hydroxides Linked by Graphene as High-Performance Electrocatalysts for Oxygen Evolution Reaction." Nanomaterials 12, no. 13 (June 27, 2022): 2200. http://dx.doi.org/10.3390/nano12132200.
Full textChen, Zhuo, Qiang Qu, Xinsheng Li, Katam Srinivas, Yuanfu Chen, and Mingqiang Zhu. "Room-Temperature Synthesis of Carbon-Nanotube-Interconnected Amorphous NiFe-Layered Double Hydroxides for Boosting Oxygen Evolution Reaction." Molecules 28, no. 21 (October 27, 2023): 7289. http://dx.doi.org/10.3390/molecules28217289.
Full textZhang, Zhichao, Jiahao Guo, Yuhan Sun, Qianwei Wang, Mengyang Li, Feng Cao, and Shuang Han. "Sulfur-Doped Nickel–Iron LDH@Cu Core–Shell Nanoarrays on Copper Mesh as High-Performance Electrocatalysts for Oxygen Evolution Reaction." Journal of Composites Science 7, no. 12 (November 23, 2023): 486. http://dx.doi.org/10.3390/jcs7120486.
Full textWiedemeier, Allison M. D., Jan E. Judy-March, Charles H. Hocart, Geoffrey O. Wasteneys, Richard E. Williamson, and Tobias I. Baskin. "Mutant alleles of Arabidopsis RADIALLY SWOLLEN 4 and 7 reduce growth anisotropy without altering the transverse orientation of cortical microtubules or cellulose microfibrils." Development 129, no. 20 (October 15, 2002): 4821–30. http://dx.doi.org/10.1242/dev.129.20.4821.
Full textSolangi, Muhammad Yameen, Abdul Hanan Samo, Abdul Jaleel Laghari, Umair Aftab, Muhammad Ishaque Abro, and Muhammad Imran Irfan. "MnO2@Co3O4 nanocomposite based electrocatalyst for effective oxygen evolution reaction." Sukkur IBA Journal of Emerging Technologies 5, no. 1 (June 30, 2022): 32–40. http://dx.doi.org/10.30537/sjet.v5i1.958.
Full textAdachi, Taiki, Yuki Kitazumi, Osamu Shirai, and Kenji Kano. "Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes." Catalysts 10, no. 2 (February 15, 2020): 236. http://dx.doi.org/10.3390/catal10020236.
Full textSchachinger, Franziska, Hucheng Chang, Stefan Scheiblbrandner, and Roland Ludwig. "Amperometric Biosensors Based on Direct Electron Transfer Enzymes." Molecules 26, no. 15 (July 27, 2021): 4525. http://dx.doi.org/10.3390/molecules26154525.
Full textRatautas, Dalius, and Marius Dagys. "Nanocatalysts Containing Direct Electron Transfer-Capable Oxidoreductases: Recent Advances and Applications." Catalysts 10, no. 1 (December 19, 2019): 9. http://dx.doi.org/10.3390/catal10010009.
Full textSitler, Collin, Michael Lustik, Gary Levy, and Bruce Pier. "Single Embryo Transfer Versus Double Embryo Transfer: A Cost-Effectiveness Analysis in a Non-IVF Insurance Mandated System." Military Medicine 185, no. 9-10 (July 7, 2020): e1700-e1705. http://dx.doi.org/10.1093/milmed/usaa119.
Full textKwek, Lee Koon, Seyed Ehsan Saffari, Heng Hao Tan, Jerry KY Chan, and Sadhana Nadarajah. "Comparison between Single and Double Cleavage-Stage Embryo Transfers, Single and Double Blastocyst Transfers in a South East Asian In Vitro Fertilisation Centre." Annals of the Academy of Medicine, Singapore 47, no. 11 (November 15, 2018): 451–54. http://dx.doi.org/10.47102/annals-acadmedsg.v47n11p451.
Full textPoimenidis, Ioannis, Nikandra Papakosta, Panagiotis A. Loukakos, George E. Marnellos, and Michalis Konsolakis. "Highly Efficient Cobalt Sulfide Heterostructures Fabricated on Nickel Foam Electrodes for Oxygen Evolution Reaction in Alkaline Water Electrolysis Cells." Surfaces 6, no. 4 (November 23, 2023): 493–508. http://dx.doi.org/10.3390/surfaces6040033.
Full textYanase, Takumi, Junko Okuda-Shimazaki, Ryutaro Asano, Kazunori Ikebukuro, Koji Sode, and Wakako Tsugawa. "Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System." International Journal of Molecular Sciences 24, no. 3 (January 17, 2023): 1837. http://dx.doi.org/10.3390/ijms24031837.
Full textThanh, Tran Ha Lan, Pham Hoang Huy, Do Thi Linh, Nguyen Minh Tai Loc, Nguyen Huu Duy, Dang Quang Vinh, and Nguyen Thi Thuong Huyen. "Effectiveness of elective single versus double frozen embryo transfer in good prognosis IVF patients." Biomedical Research and Therapy 8, no. 1 (January 30, 2021): 4203–13. http://dx.doi.org/10.15419/bmrat.v8i1.658.
Full textXia, Hongqi, and Jiwu Zeng. "Rational Surface Modification of Carbon Nanomaterials for Improved Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes." Catalysts 10, no. 12 (December 10, 2020): 1447. http://dx.doi.org/10.3390/catal10121447.
Full textRao, Jinpeng, Feng Qiu, Shen Tian, Ya Yu, Ying Zhang, Zheng Gu, Yiting Cai, Fan Jin, and Min Jin. "Clinical outcomes for Day 3 double cleavage-stage embryo transfers versus Day 5 or 6 single blastocyst transfer in frozen–thawed cycles: a retrospective comparative analysis." Journal of International Medical Research 49, no. 12 (December 2021): 030006052110624. http://dx.doi.org/10.1177/03000605211062461.
Full textMohanty, J., H. Pal, S. K. Nayak, S. Chattopadhyay, and A. V. Sapre. "Photoinduced dissociative electron transfer (DET) interactions in methoxycalixarene–chloroalkane systems." Chemical Physics Letters 370, no. 5-6 (March 2003): 641–46. http://dx.doi.org/10.1016/s0009-2614(03)00179-9.
Full textAldemir, Oya, Runa Ozelci, Emre Baser, Iskender Kaplanoglu, Serdar Dilbaz, Berna Dilbaz, and Ozlem Moraloglu Tekin. "Impact of Transferring a Poor Quality Embryo Along with a Good Quality Embryo on Pregnancy Outcomes in IVF/ICSI Cycles: a Retrospective Study." Geburtshilfe und Frauenheilkunde 80, no. 08 (August 2020): 844–50. http://dx.doi.org/10.1055/a-1213-9164.
Full textYan, Xiaomei, Jing Tang, David Tanner, Jens Ulstrup, and Xinxin Xiao. "Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers." Catalysts 10, no. 12 (December 14, 2020): 1458. http://dx.doi.org/10.3390/catal10121458.
Full textSuzuki, Nanami, Jinhee Lee, Noya Loew, Yuka Takahashi-Inose, Junko Okuda-Shimazaki, Katsuhiro Kojima, Kazushige Mori, Wakako Tsugawa, and Koji Sode. "Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator." International Journal of Molecular Sciences 21, no. 3 (February 8, 2020): 1137. http://dx.doi.org/10.3390/ijms21031137.
Full textHenao-Pabon, Gilberto, Ning Gao, K. Sudhakara Prasad, and XiuJun Li. "Direct Electron Transfer of Glucose Oxidase on Pre-Anodized Paper/Carbon Electrodes Modified through Zero-Length Cross-Linkers for Glucose Biosensors." Biosensors 13, no. 5 (May 22, 2023): 566. http://dx.doi.org/10.3390/bios13050566.
Full textMancuso, A. C., A. E. Sparks, H. E. Duran, B. J. Van Voorhis, and J. Kapfhamer. "Elective single embryo transfer (ESET) versus double embryo transfer (DET) following failed mandatory single embryo transfer (MSET)." Fertility and Sterility 110, no. 4 (September 2018): e192. http://dx.doi.org/10.1016/j.fertnstert.2018.07.562.
Full textWang, Ruijie, Xiaoshuai Wu, Chang Liu, Jing Yang, Xian Luo, Long Zou, Zhisong Lu, and Yan Qiao. "Hierarchical Porous Carbon Fibers for Enhanced Interfacial Electron Transfer of Electroactive Biofilm Electrode." Catalysts 12, no. 10 (October 7, 2022): 1187. http://dx.doi.org/10.3390/catal12101187.
Full textJacquet, Margot, Małgorzata Kiliszek, Silvio Osella, Miriam Izzo, Jarosław Sar, Ersan Harputlu, C. Gokhan Unlu, Bartosz Trzaskowski, Kasim Ocakoglu, and Joanna Kargul. "Molecular mechanism of direct electron transfer in the robust cytochrome-functionalised graphene nanosystem." RSC Advances 11, no. 31 (2021): 18860–69. http://dx.doi.org/10.1039/d1ra02419a.
Full textKelly, Amelia G., Andria G. Besser, Emily Michelle Weidenbaum, Jamie A. Grifo, and Jennifer K. Blakemore. "DOUBLE EMBRYO TRANSFER (DET) WITH MOSAIC EMBRYOS HAVE EQUIVALENT LIVE BIRTH AND MULTIPLE PREGNANCY RATES AS EUPLOID DET." Fertility and Sterility 120, no. 4 (October 2023): e185. http://dx.doi.org/10.1016/j.fertnstert.2023.08.541.
Full textBräuning, H., H. Helm, J. S. Briggs,, and E. Salzborn. "Double electron transfer in H-+ H+collisions." Journal of Physics: Conference Series 88 (November 1, 2007): 012033. http://dx.doi.org/10.1088/1742-6596/88/1/012033.
Full textBollella, Paolo, and Evgeny Katz. "Enzyme-Based Biosensors: Tackling Electron Transfer Issues." Sensors 20, no. 12 (June 21, 2020): 3517. http://dx.doi.org/10.3390/s20123517.
Full textYamashita, Yuki, Inyoung Lee, Noya Loew, and Koji Sode. "Direct electron transfer (DET) mechanism of FAD dependent dehydrogenase complexes ∼from the elucidation of intra- and inter-molecular electron transfer pathway to the construction of engineered DET enzyme complexes∼." Current Opinion in Electrochemistry 12 (December 2018): 92–100. http://dx.doi.org/10.1016/j.coelec.2018.07.013.
Full textRamanavicius, Simonas, and Arunas Ramanavicius. "Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells." Nanomaterials 11, no. 2 (February 2, 2021): 371. http://dx.doi.org/10.3390/nano11020371.
Full textMartinez, A. E., R. Gayet, J. Hanssen, and R. D. Rivarola. "Thomas two-step mechanisms for double electron transfer." Journal of Physics B: Atomic, Molecular and Optical Physics 27, no. 14 (July 28, 1994): L375—L382. http://dx.doi.org/10.1088/0953-4075/27/14/012.
Full textKelley, S. O. "Electron Transfer Between Bases in Double Helical DNA." Science 283, no. 5400 (January 15, 1999): 375–81. http://dx.doi.org/10.1126/science.283.5400.375.
Full textDorenbos, P., A. J. J. Bos, and N. R. J. Poolton. "Electron transfer processes in double lanthanide activated YPO4." Optical Materials 33, no. 7 (May 2011): 1019–23. http://dx.doi.org/10.1016/j.optmat.2010.08.016.
Full textMaie, Kenji, Kazuyuki Miyagi, Tadao Takada, Mitsunobu Nakamura, and Kazushige Yamana. "RNA-Mediated Electron Transfer: Double Exponential Distance Dependence." Journal of the American Chemical Society 131, no. 37 (September 23, 2009): 13188–89. http://dx.doi.org/10.1021/ja902647j.
Full textTergiman, Y. S., and M. C. Bacchus-Montabonel. "Double-electron capture processes in charge transfer reactions." International Journal of Quantum Chemistry 99, no. 5 (2004): 628–33. http://dx.doi.org/10.1002/qua.10843.
Full textPriyadarshy, Satyam, David N. Beratan, and Steven M. Risser. "DNA double-helix-mediated long-range electron transfer." International Journal of Quantum Chemistry 60, no. 8 (1996): 1789–95. http://dx.doi.org/10.1002/(sici)1097-461x(1996)60:8<1789::aid-qua6>3.0.co;2-u.
Full textPyun, Su-Il. "Thermodynamic and electro-kinetic analyses of direct electron transfer (DET) and mediator-involved electron transfer (MET) with the help of a redox electron mediator." Journal of Solid State Electrochemistry 24, no. 11-12 (September 26, 2020): 2685–93. http://dx.doi.org/10.1007/s10008-020-04780-2.
Full textSHLEEV, Sergey, Andreas CHRISTENSON, Vladimir SEREZHENKOV, Dosymzhan BURBAEV, Alexander YAROPOLOV, Lo GORTON, and Tautgirdas RUZGAS. "Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode." Biochemical Journal 385, no. 3 (January 24, 2005): 745–54. http://dx.doi.org/10.1042/bj20041015.
Full textWang, Shixin, Xiaoming Zhang, and Enrico Marsili. "Electrochemical Characteristics of Shewanella loihica PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied." Molecules 27, no. 16 (August 21, 2022): 5330. http://dx.doi.org/10.3390/molecules27165330.
Full textPoulsen, PB, HJ Ingerslev, U. Kesmodel, A. Højgaard, A. Pinborg, TB Henriksen, and LD Ottosen. "PIH7 COST-EFFECTIVENESS OF SINGLE-EMBRYO-TRANSFER (SET) VERSUS DOUBLE-EMBRYO-TRANSFER (DET) STRATEGIES IN IN-VITRO FERTILIZATION." Value in Health 9, no. 6 (November 2006): A254. http://dx.doi.org/10.1016/s1098-3015(10)63365-7.
Full textSaunders, P. A., A. Ison, L. Irwin, M. Cruz, and S. Hamilton. "Single embryo transfer (SET) at blastocyst stage is as successful as double embryo transfer (DET) at cleavage stage." Fertility and Sterility 100, no. 3 (September 2013): S251. http://dx.doi.org/10.1016/j.fertnstert.2013.07.1187.
Full textQuintero-Saumeth, Jorge, David A. Rincón, Markus Doerr, and Martha C. Daza. "Concerted double proton-transfer electron-transfer between catechol and superoxide radical anion." Physical Chemistry Chemical Physics 19, no. 38 (2017): 26179–90. http://dx.doi.org/10.1039/c7cp03930a.
Full textLee, K. H., A. D. Greentree, J. P. Dinale, C. C. Escott, A. S. Dzurak, and R. G. Clark. "Modelling single electron transfer in Si:P double quantum dots." Nanotechnology 16, no. 1 (December 3, 2004): 74–81. http://dx.doi.org/10.1088/0957-4484/16/1/016.
Full textIsosomppi, Marja, Nikolai V. Tkachenko, Alexander Efimov, and Helge Lemmetyinen. "Photoinduced Electron Transfer in Double-Bridged Porphyrin−Fullerene Triads." Journal of Physical Chemistry A 109, no. 22 (June 2005): 4881–90. http://dx.doi.org/10.1021/jp051011n.
Full textIsosomppi, Marja, Nikolai V. Tkachenko, Alexander Efimov, Heidi Vahasalo, Johanna Jukola, Pirjo Vainiotalo, and Helge Lemmetyinen. "Photoinduced electron transfer of double-bridged phthalocyanine–fullerene dyads." Chemical Physics Letters 430, no. 1-3 (October 2006): 36–40. http://dx.doi.org/10.1016/j.cplett.2006.08.107.
Full textFournier, P. G., G. Comtet, J. Fournier, S. Svensson, L. Karlsson, M. P. Keane, and A. Naves de Brito. "Double-ionization energies ofCCl4by double-charge-transfer and x-ray Auger-electron spectroscopies." Physical Review A 40, no. 1 (July 1, 1989): 163–70. http://dx.doi.org/10.1103/physreva.40.163.
Full textRen, Guanghua, Qingchi Meng, Jinfeng Zhao, and Tianshu Chu. "Molecular Design for Electron-Driven Double-Proton Transfer: A New Scenario for Excited-State Proton-Coupled Electron Transfer." Journal of Physical Chemistry A 122, no. 47 (November 8, 2018): 9191–98. http://dx.doi.org/10.1021/acs.jpca.8b09264.
Full textBangle, Rachel E., Jenny Schneider, Eric J. Piechota, Ludovic Troian-Gautier, and Gerald J. Meyer. "Electron Transfer Reorganization Energies in the Electrode–Electrolyte Double Layer." Journal of the American Chemical Society 142, no. 2 (December 20, 2019): 674–79. http://dx.doi.org/10.1021/jacs.9b11815.
Full textKrok, F., H. Tawara, I. Yu Tolstikhina, H. A. Sakaue, I. Yamada, K. Hosaka, M. Kimura, et al. "Double electron transfer in slow, highly charged ion-molecule collisions." Physica Scripta T73 (January 1, 1997): 264–66. http://dx.doi.org/10.1088/0031-8949/1997/t73/085.
Full text