Academic literature on the topic 'Dose prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dose prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dose prediction"
Marek, Elizabeth, Jeremiah D. Momper, Ronald N. Hines, Cheryl M. Takao, Joan C. Gill, Vera Pravica, Andrea Gaedigk, Gilbert J. Burckart, and Kathleen A. Neville. "Prediction of Warfarin Dose in Pediatric Patients: An Evaluation of the Predictive Performance of Several Models." Journal of Pediatric Pharmacology and Therapeutics 21, no. 3 (May 1, 2016): 224–32. http://dx.doi.org/10.5863/1551-6776-21.3.224.
Full textSwartz, Conrad M. "Drug Dose Prediction With Flexible Test Doses." Journal of Clinical Pharmacology 31, no. 7 (July 1991): 662–67. http://dx.doi.org/10.1002/j.1552-4604.1991.tb03753.x.
Full text&NA;. "IV aminoglycoside dose prediction." Inpharma Weekly &NA;, no. 995 (July 1995): 18. http://dx.doi.org/10.2165/00128413-199509950-00043.
Full textQasim, Husam, Sophie Sominsky, Aharon Lubetsky, Noa Markovits, Chun Li, C. Stein, Hillel Halkin, Eva Gak, Ronen Loebstein, and Daniel Kurnik. "Effect of the VKORC1 D36Y variant on warfarin dose requirement and pharmacogenetic dose prediction." Thrombosis and Haemostasis 108, no. 10 (2012): 781–88. http://dx.doi.org/10.1160/th12-03-0151.
Full textLaidlaw, J., P. Bentham, G. Khan, V. Staples, A. Dhariwal, B. Coope, E. Day, C. Fear, C. Marley, and J. Stemman. "A comparison of stimulus dosing methods for electroconvulsive therapy." Psychiatric Bulletin 24, no. 5 (May 2000): 184–87. http://dx.doi.org/10.1192/pb.24.5.184.
Full textGizynska, M., D. Blatkiewicz, B. Czyzew, M. Galecki, M. Gil-Ulkowska, P. Kukolowicz, and M. Ziemek. "EP-1510: Cumulated dose prediction." Radiotherapy and Oncology 115 (April 2015): S822—S823. http://dx.doi.org/10.1016/s0167-8140(15)41502-6.
Full textMatsumoto, Hiroshi, Yoshikuni Yakabe, Fumiyo Saito, Koichi Saito, Kayo Sumida, Masaru Sekijima, Koji Nakayama, Hideki Miyaura, Masanori Otsuka, and Tomoyuki Shirai. "New Short Term Prediction Method for Chemical Carcinogenicity by Hepatic Transcript Profiling following 28-Day Toxicity Tests in Rats." Cancer Informatics 10 (January 2011): CIN.S7789. http://dx.doi.org/10.4137/cin.s7789.
Full textXie, Cheng, Ling Xue, Yuzhen Zhang, Jianguo Zhu, Ling Zhou, Yongfu Hang, Xiaoliang Ding, Bin Jiang, and Liyan Miao. "Comparison of the prediction performance of different warfarin dosing algorithms based on Chinese patients." Pharmacogenomics 21, no. 1 (January 2020): 23–32. http://dx.doi.org/10.2217/pgs-2019-0124.
Full textHolford, Nick H. G., Shu C. Ma, and Brian J. Anderson. "Prediction of morphine dose in humans." Pediatric Anesthesia 22, no. 3 (December 28, 2011): 209–22. http://dx.doi.org/10.1111/j.1460-9592.2011.03782.x.
Full textOMORI, Toshiaki, Shinsuke KATO, Minsik KIM, and Shigehiro NUKATSUKA. "RADIATION DOSE PREDICTION FOR DETACHED HOUSES." Journal of Environmental Engineering (Transactions of AIJ) 82, no. 735 (2017): 481–89. http://dx.doi.org/10.3130/aije.82.481.
Full textDissertations / Theses on the topic "Dose prediction"
Eriksson, Niclas. "On the Prediction of Warfarin Dose." Doctoral thesis, Uppsala universitet, Klinisk farmakologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-172864.
Full textSKARPMAN, MUNTER JOHANNA. "Dose-Volume Histogram Prediction using KernelDensity Estimation." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155893.
Full textNilsson, Viktor. "Prediction of Dose Probability Distributions Using Mixture Density Networks." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273610.
Full textUnder de senaste åren har maskininlärning börjat nyttjas i extern strålbehandlingsplanering. Detta involverar automatisk generering av behandlingsplaner baserade på datortomografibilder och annan rumslig information, såsom placering av tumörer och organ. Nyttan ligger i att avlasta klinisk personal från arbetet med manuellt eller halvmanuellt skapa sådana planer. I stället för att predicera en deterministisk plan finns det stort värde att modellera den stokastiskt, det vill säga predicera en sannolikhetsfördelning av dos utifrån datortomografibilder och konturerade biologiska strukturer. Stokasticiteten som förekommer i strålterapibehandlingsproblemet beror på att en rad olika planer kan vara adekvata för en patient. Den särskilda fördelningen kan betraktas som förekomsten av preferenser bland klinisk personal. Att ha mer information om utbudet av möjliga planer representerat i en modell innebär att det finns mer flexibilitet i utformningen av en slutlig plan. Dessutom kommer modellen att kunna återspegla de potentiellt motstridiga kliniska avvägningarna; dessa kommer påträffas som multimodala fördelningar av dosen i områden där det finns en hög varians. På RaySearch används en probabilistisk random forest för att skapa dessa fördelningar, denna metod är en utökning av den klassiska random forest-algoritmen. En aktuell forskningsriktning är att generera in sannolikhetsfördelningen med hjälp av djupinlärning. Ett oprövat parametriskt tillvägagångssätt för detta är att låta ett lämpligt djupt neuralt nätverk approximera parametrarna för en Gaussisk mixturmodell i varje volymelement. Ett sådant neuralt nätverk är känt som ett mixturdensitetsnätverk. Den här uppsatsen fastställer teoretiska resultat för artificiella neurala nätverk, främst det universella approximationsteoremet, tillämpat på de aktiveringsfunktioner som används i uppsatsen. Den fortsätter sedan att utforska styrkan av djupinlärning i att predicera dosfördelningar, både deterministiskt och stokastiskt. Det primära målet är att undersöka lämpligheten av mixturdensitetsnätverk för stokastisk prediktion. Forskningsfrågan är följande. U-nets och mixturdensitetsnätverk kommer att kombineras för att predicera stokastiska doser. Finns det ett sådant nätverk som är tillräckligt kraftfullt för att upptäcka och modellera bimodalitet? Experimenten och undersökningarna som utförts i denna uppsats visar att det faktiskt finns ett sådant nätverk.
Harris, Shelley A. "The development and validation of a pesticide dose prediction model." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0002/NQ41170.pdf.
Full textIrving, Benjamin. "Radiation dose measurement and prediction for linear slit scanning radiography." Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/3251.
Full textIncludes bibliographical references (leaves 112-117).
This study describes dose measurements made for linear slit scanning radiography (LSSR) and a dose prediction model that was developed for LSSR. The measurement and calculation methods used for determining entrance dose and effective dose (E) in conventional X-ray imaging systems were verified for use with LSSR. Entrance dose and E were obtained for LSSR and compared to dose measurements on conventional radiography units. Entrance dose measurements were made using an ionisation chamber and dosemeter; E was calculated from these entrance dose measurements using a Monte Carlo simulator. Comparisons with data from around the world showed that for most examinations the doses obtained for LSSR were considerably lower than those of conventional radiography units for the same image quality. Reasons for the low dose obtained with LSSR include scatter reduction and the beam geometry of LSSR. These results have been published as two papers in international peer reviewed journals. A new method to calculate entrance dose and effective dose for LSSR is described in the second part of this report. This method generates the energy spectrum for a particular set of technique factors, simulates a filter through which the beam is attenuated and then calculates entrance dose directly from this energy spectrum. The energy spectrum is then combined with previously generated organ energy absorption data for a standard sized patient to calculate effective dose to a standard sized patient.Energy imparted for different patient thicknesses can then be used to adjust the effective dose to a patient of any size. This method is performed for a large number of slit beams moving across the body in order to more effectively simulate LSSR. This also allows examinations with technique factors that vary for different parts of the anatomy to be simulated. This method was tested against measured data and Monte Carlo simulations. This model was shown to be accurate, while being specifically suited to LSSR and being considerably faster than Monte Carlo simulations.
Eriksson, Ivar. "Image Distance Learning for Probabilistic Dose–Volume Histogram and Spatial Dose Prediction in Radiation Therapy Treatment Planning." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273608.
Full textSkapandet av strålbehandlingsplaner för cancer är en tidskrävande uppgift. Samtidigt kan en onkolog snabbt fatta beslut om en given plan är acceptabel eller ej. Detta innebär att uppgiften att skapa strålplaner är väl lämpad för automatisering. Denna uppsats undersöker en ny metod för att automatiskt generera strålbehandlingsplaner. Planeringssystemet denna metod utvecklats för innehåller funktionalitet för dosrekonstruktion som accepterar sannolikhetsfördelningar för dos–volymhistogram (DVH) och dos som input. Därför kommer detta att vara utdatan för den konstruerade metoden. Metoden är uppbyggd av tre beståndsdelar som är individuellt utbytbara med liten eller ingen påverkan på de övriga delarna. Delarna är: ett sätt att konstruera en vektor av kännetecken av en patients segmentering, en distansoptimering för att skapa en distans i den tidigare konstruerade känneteckensrymden, och slutligen en skattning av sannolikhetsfördelningar med Gaussiska processer tränade på voxelkännetecken. Trots att utvärdering av prestandan i termer av klinisk plankvalitet var bortom räckvidden för detta projekt uppnåddes positiva resultat. De estimerade sannolikhetsfördelningarna uppvisar goda karaktärer för både DVHer och doser. Den löst sammankopplade strukturen av metoden gör det dessutom möjligt att delar av projektet kan användas i framtida arbeten.
Patel, Raj B., and Raj B. Patel. "Prediction of Human Intestinal Absorption." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/624487.
Full textSchuler, Paul Joseph. "Polymer dose prediction for sludge dewatering with a belt filter press." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42227.
Full textMaster of Science
Eriksson, Oskar. "Scenario dose prediction for robust automated treatment planning in radiation therapy." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302568.
Full textCancer är ett samlingsnamn för sjukdomar som karaktäriseras av onormal celltillväxt och betraktas som en ledande dödsorsak globalt. Det finns olika typer av cancerbehandling, varav en är strålterapi. Inom strålterapiplanering är det viktigt att säkerställa att tillräckligt med strålning ges till tumören, att friska organ skonas, och att osäkerheter som felplacering av patienten under behandlingen räknas med. För att minska arbetsbelastningen på kliniker används data-driven automatisk strålterapiplanering för att generera behandlingsplaner till nya patienter baserat på tidigare levererade behandlingar. I denna uppsats föreslår vi en ny metod för robust automatisk strålterapiplanering där en djupinlärningsmodell tränas till att deformera en dos i enlighet med en mängd potentiella scenarion som motsvarar de olika osäkerheterna medan vissa statistiska egenskaper bibehålls från originaldosen. De predicerade scenariodoserna används sedan i ett robust optimeringsproblem där målet är att hitta en behandlingsplan som är robust mot dessa osäkerheter. Resultaten visar att den föreslagna metoden för dosdeformation ger realistiska doser av hög kvalitet, vilket i sin tur kan leda till robusta doser med högre doskonformitet än tidigare metoder men på bekostnad av doshomogenitet.
McCurdy, Boyd Matthew Clark. "Development of a portal dose image prediction algorithm for arbitrary detector systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ62655.pdf.
Full textBooks on the topic "Dose prediction"
Reid, J. A. Keith. The effects of age-dependent dose conversion factors from ICRP-72 on biosphere model dose predictions. Pinawa, Man: AECL, Whiteshell Laboratories, Environmental Science Branch, 1997.
Find full textSeltzer, Stephen M. Technical progress report on predictions of dose from electrons in space ... [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textSparrow, Paul R. Does national culture really matter?: Predicting HRM preferences of Taiwanese employers. Sheffield: Sheffield University Management School, 1997.
Find full textKay, Helen. Does the validity of the selection system depend more on the criteria than the predictor? Manchester: UMIST, 1995.
Find full textWard, Peter L. The Loma Prieta earthquake of October 17, 1989: A brief geologic view of what caused the Loma Prieta earthquake and implications for future California earthquakes: what happened ... what is expected ... what can be done. [Reston, Va.]: U.S. Geological Survey, 1990.
Find full textBarnoski, Robert P. Sex offender sentencing in Washington State: Does the prison treatment program reduce recidivism? Olympia, WA: Washington State Institute for Public Policy, 2006.
Find full textHarris, Shelley Anne. The development and validation of a pesticide dose prediction model. 1999.
Find full textAndrzej, Wojcik, and Colin J. Martin. Biological effects of ionizing radiation. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199655212.003.0003.
Full textTrainor, Laurel J., and Robert J. Zatorre. The neurobiological basis of musical expectations. Edited by Susan Hallam, Ian Cross, and Michael Thaut. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199298457.013.0016.
Full textAnjum, Rani Lill, and Stephen Mumford. Does Science Need Laws of Nature? Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198733669.003.0018.
Full textBook chapters on the topic "Dose prediction"
Ma, Jianhui, Ti Bai, Dan Nguyen, Michael Folkerts, Xun Jia, Weiguo Lu, Linghong Zhou, and Steve Jiang. "Individualized 3D Dose Distribution Prediction Using Deep Learning." In Artificial Intelligence in Radiation Therapy, 110–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32486-5_14.
Full textJove, Esteban, Jose M. Gonzalez-Cava, José-Luis Casteleiro-Roca, Héctor Quintián, Juan Albino Méndez-Pérez, José Luis Calvo-Rolle, Francisco Javier de Cos Juez, Ana León, María Martín, and José Reboso. "Remifentanil Dose Prediction for Patients During General Anesthesia." In Lecture Notes in Computer Science, 537–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92639-1_45.
Full textKang, Jiayin, Yaozong Gao, Yao Wu, Guangkai Ma, Feng Shi, Weili Lin, and Dinggang Shen. "Prediction of Standard-Dose PET Image by Low-Dose PET and MRI Images." In Machine Learning in Medical Imaging, 280–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10581-9_35.
Full textBerndt, J., M. Misslbeck, and P. Kneschaurek. "Dose QA Using EPID and a Dose Prediction Algorithm Independent of the Planning System." In IFMBE Proceedings, 460–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03474-9_128.
Full textSunag, Bhagya, and Shrinivas Desai. "Low-Dose Imaging: Prediction of Projections in Sinogram Space." In Computational Vision and Bio-Inspired Computing, 541–51. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6862-0_43.
Full textGeburtig, Anja, Volker Wachtendorf, Peter Trubiroha, Matthias Zäh, Artur Schönlein, Axel Müller, Teodora Vatahska, Gerhard Manier, and Thomas Reichert. "Polypropylene Numerical Photoageing Simulation by Dose–Response Functions with Respect to Irradiation and Temperature: ViPQuali Project." In Service Life Prediction of Exterior Plastics, 215–29. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06034-7_14.
Full textZhang, Jingjing, Shuolin Liu, Teng Li, Ronghu Mao, Chi Du, and Jianfei Liu. "Voxel-Level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions." In Artificial Intelligence in Radiation Therapy, 70–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32486-5_9.
Full textLiu, Jianfei, Q. Jackie Wu, Fang-Fang Yin, John P. Kirkpatrick, Alvin Cabrera, and Yaorong Ge. "An Active Optical Flow Model for Dose Prediction in Spinal SBRT Plans." In Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, 27–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14148-0_3.
Full textTao, Yanyun, Dan Xiang, Yuzhen Zhang, and Bin Jiang. "Swarm ANN/SVR-Based Modeling Method for Warfarin Dose Prediction in Chinese." In Lecture Notes in Computer Science, 351–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61833-3_37.
Full textWang, Jing, Ronghu Mao, Jiwei Liu, and Jianfei Liu. "Study on Dose Distribution Prediction of Esophageal Cancer Patients Using U-Net Model." In Lecture Notes in Electrical Engineering, 632–40. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9686-2_70.
Full textConference papers on the topic "Dose prediction"
McCormack, Percival D. "Radiation Dose Prediction for Space Station." In Intersociety Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/860924.
Full textSquires, Steven, Georgia Ionescu, Elaine F. Harkness, Alistair Mackenzie, Gareth Evans, Anthony Maxwell, Sacha Howell, and Susan M. Astley. "Automatic density prediction in low dose mammography." In Fifteenth International Workshop on Breast Imaging, edited by Chantal Van Ongeval, Nicholas Marshall, and Hilde Bosmans. SPIE, 2020. http://dx.doi.org/10.1117/12.2564714.
Full textTownsend, Lawrence W., J. Wesley Hines, Alexander Usynin, and Garrett M. Pitcher. "Solar particle event dose prediction using kernel regression." In 2009 IEEE Aerospace conference. IEEE, 2009. http://dx.doi.org/10.1109/aero.2009.4839330.
Full textCrow, M. J., A. B. Latif, A. I. Critchley, C. Stainton, P. Nealon, and S. M. Rajah. "COMPUTER PREDICTION OF ANTICOAGULATION STATUS AND WARFARIN DOSE FOLLOWING CARDIAC SURGERY." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643275.
Full textMichez, A., J. Boch, J. Dardie, F. Wrobel, A. D. Touboul, T. Maraine, F. Saigne, E. Lorfevre, and F. Bezerra. "TCAD prediction of dose effects on MOSFETs with ECORCE." In 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2017. http://dx.doi.org/10.1109/radecs.2017.8696230.
Full textRahman, Raziur, and Ranadip Pal. "Analyzing drug sensitivity prediction based on dose response curve characteristics." In 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2016. http://dx.doi.org/10.1109/bhi.2016.7455854.
Full textDing, Alice K., Jon S. Heiselman, and Michael I. Miga. "Image data-driven thermal dose prediction for microwave ablation therapy." In Image-Guided Procedures, Robotic Interventions, and Modeling, edited by Baowei Fei and Cristian A. Linte. SPIE, 2020. http://dx.doi.org/10.1117/12.2550550.
Full textTao, Yanyun, Yuzhen Zhang, and Bin Jiang. "Evolutionary learning-based modeling for warfarin dose prediction in Chinese." In GECCO '17: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3067695.3082492.
Full textAldemir, T., A. Yilmaz, and B. Zha. "O?-Site Dose Prediction for Decision Making Using Recurrent Neural Networks." In Tranactions - 2019 Winter Meeting. AMNS, 2019. http://dx.doi.org/10.13182/t31320.
Full textLei, Yang, Yabo Fu, Tonghe Wang, Walter J. Curran, Tian Liu, Pretesh Patel, and Xiaofeng Yang. "Prostate dose prediction in HDR Brachytherapy using unsupervised multi-atlas fusion." In Image Processing, edited by Bennett A. Landman and Ivana Išgum. SPIE, 2021. http://dx.doi.org/10.1117/12.2580979.
Full textReports on the topic "Dose prediction"
Ahmed, Kareem. Multitude Characterization and Prediction of DOE Advanced Biofuels Properties. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1807468.
Full textKohnert, Aaron Anthony, G. van Couvering, G. S. Was, and Brian D. Wirth. Models Predicting Void Swelling Incubation Dose as a function of Irradiation Conditions. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1524349.
Full textHaves, Philip, baptiste Ravache, and mehry Yazdanian. Accuracy of HVAC Load Predictions: Validation of EnergyPlus and DOE-2 using FLEXLAB Measurements. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1619175.
Full textKunkel, Lynn. The Health Belief Model as a Predictor of Gynecological Exams: Does Sexual Orientation Matter? Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6819.
Full textAsay-Davis, Xylar Storm. Final Report: Modeling coupled ice sheet-ocean interactions in the Model for Prediction Across Scales (MPAS) and in DOE Earth System Models. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1490084.
Full textCarter, Troy. Final report for DOE DE-SC0016073: Towards a comprehensive, self-consistent, and predictive theory of the L-H transition. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1659671.
Full textMarzouk, Youssef. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1312896.
Full textPayer, Joe H., and John R. Scully. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on “Corrosion Issues of Relevance to the Yucca Mountain Waste Repository”. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/1278488.
Full textFarhi, Edward, and Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, December 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Full textAuthor, Not Given. CRADA No. BNL-C-97-10 between BNL and Cotton, Inc. Final abstract and final report [Final Report of Research carried out under DOE CRADA No. BNL-C-97-10 - "Prediction of Yield in Cotton"]. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/770448.
Full text