Academic literature on the topic 'Dosage-sensitive genes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dosage-sensitive genes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dosage-sensitive genes"
Reiter, Lawrence T., Tatsufumi Murakami, Laura E. Warner, and James R. Lupski. "DNA rearrangements affecting dosage sensitive genes." Mental Retardation and Developmental Disabilities Research Reviews 2, no. 3 (1996): 139–46. http://dx.doi.org/10.1002/(sici)1098-2779(1996)2:3<139::aid-mrdd4>3.0.co;2-n.
Full textSapienza, Carmen. "Sex-linked dosage-sensitive modifiers as imprinting genes." Development 108, Supplement (April 1, 1990): 107–13. http://dx.doi.org/10.1242/dev.108.supplement.107.
Full textZimmer, Fabian, Peter W. Harrison, Christophe Dessimoz, and Judith E. Mank. "Compensation of Dosage-Sensitive Genes on the Chicken Z Chromosome." Genome Biology and Evolution 8, no. 4 (April 2016): 1233–42. http://dx.doi.org/10.1093/gbe/evw075.
Full textChang, Andrew Ying-Fei, and Ben-Yang Liao. "Reduced Translational Efficiency of Eukaryotic Genes after Duplication Events." Molecular Biology and Evolution 37, no. 5 (January 6, 2020): 1452–61. http://dx.doi.org/10.1093/molbev/msz309.
Full textPlenefisch, J. D., L. DeLong, and B. J. Meyer. "Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans." Genetics 121, no. 1 (January 1, 1989): 57–76. http://dx.doi.org/10.1093/genetics/121.1.57.
Full textThompson, Ammon, Harold H. Zakon, and Mark Kirkpatrick. "Compensatory Drift and the Evolutionary Dynamics of Dosage-Sensitive Duplicate Genes." Genetics 202, no. 2 (December 12, 2015): 765–74. http://dx.doi.org/10.1534/genetics.115.178137.
Full textJaved, Sehrish, Tharushan Selliah, Yu-Ju Lee, and Wei-Hsiang Huang. "Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy." Neuroscience & Biobehavioral Reviews 118 (November 2020): 538–67. http://dx.doi.org/10.1016/j.neubiorev.2020.08.009.
Full textRaznahan, Armin, Neelroop N. Parikshak, Vijay Chandran, Jonathan D. Blumenthal, Liv S. Clasen, Aaron F. Alexander-Bloch, Andrew R. Zinn, et al. "Sex-chromosome dosage effects on gene expression in humans." Proceedings of the National Academy of Sciences 115, no. 28 (June 26, 2018): 7398–403. http://dx.doi.org/10.1073/pnas.1802889115.
Full textSmulders-Srinivasan, Tora K., and Haifan Lin. "Screens for piwi Suppressors in Drosophila Identify Dosage-Dependent Regulators of Germline Stem Cell Division." Genetics 165, no. 4 (December 1, 2003): 1971–91. http://dx.doi.org/10.1093/genetics/165.4.1971.
Full textDuffy, Joseph B., James Wells, and J. Peter Gergen. "Dosage-Sensitive Maternal Modifiers of the Drosophila Segmentation Gene runt." Genetics 142, no. 3 (March 1, 1996): 839–52. http://dx.doi.org/10.1093/genetics/142.3.839.
Full textDissertations / Theses on the topic "Dosage-sensitive genes"
Bonney, Megan Ellis. "The role of dosage sensitive genes in aneuploid phenotypes." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103226.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Aneuploidy-the gain or loss of one or more whole chromosomes-typically has an adverse impact on organismal fitness, manifest in conditions such as Down syndrome. A central question is whether aneuploid phenotypes are the consequence of copy number changes of a few especially harmful genes that may be present on the extra chromosome, or are caused by copy number alterations of many genes that confer no observable phenotype when varied individually. We used the proliferation defect exhibited by budding yeast strains carrying single additional chromosomes (disomes) to distinguish between the "few critical genes hypothesis" and the "mass action of genes hypothesis". Our results indicate that subtle changes in gene dosage across a chromosome can have significant phenotypic consequences. We conclude that phenotypic thresholds can be crossed by mass action of copy number changes that on their own are benign.
by Megan Ellis Bonney.
Ph. D.
Champion, Mia Daniele. "Identification of genes that are dosage-sensitive modifiers of nod phenotype and act to properly segregate achiasmate chromosomes /." Connect to Digital dissertations. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Full textAhumada, Saavedra José Tomás. "Craniofacial analysis of Down syndrome rodent models." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ041.
Full textThe most frequent and distinctive alterations found in Down syndrome (DS) are learning disability and craniofacial (CF) dysmorphism. The CF phenotype includes reduced head dimensions, brachycephaly, reduced mediolateral orbital region, reduced bizygomatic breadth, small maxilla, small mandible, and increased individual variability. Until now, the cellular and molecular mechanisms underlying this CF phenotype remain unknown. This thesis, using a new panel of rats and mice models proposed new candidate genes for the DS-CF phenotype. We confirmed the role of Dyrk1a in neurocranium brachycephaly and identified the overdosage of the transcription factor Ripply3 for midface shortening through the downregulation of Tbx1, another transcription factor involved in similar phenotypes was found in Di George Syndrome. We defined new dosage-sensitive genes responsible for DS-CF malformations, and new models were proposed to rescue the DS-CF phenotype. This new knowledge may also lead to insights for specific brain and cardiovascular phenotypes observed in Tbx1 mutants and DS models
Book chapters on the topic "Dosage-sensitive genes"
Stankiewicz, Paweł, and James R. Lupski. "The genomic basis of medicine." In Oxford Textbook of Medicine, edited by John D. Firth, Christopher P. Conlon, and Timothy M. Cox, 218–35. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0030.
Full textTekin, Şaban, and Birsen Cevher Keskin. "Moleküler Genetik Tanı Yöntemleri." In Moleküler Biyoloji ve Genetik, 135–60. Türkiye Bilimler Akademisi, 2023. http://dx.doi.org/10.53478/tuba.978-625-8352-48-1.ch05.
Full textVilain, Eric, and Edward R. B. Mccabe. "NR0B1 (DAX1) and X-linked Adrenal Hypoplasia Congenita and XY Sex Reversal." In Inborn Errors Of Development, 1513–23. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195306910.003.0177.
Full textConference papers on the topic "Dosage-sensitive genes"
Menelaos, Pipis, Won Seongsik, Poh Roy, Polke James, Skorupinska Mariola, Blake Julian, Rossor Alexander, Laura Matilde, Svaren John, and Reilly Mary. "Post-transcriptional microRNA repression of the dosage-sensitive PMP22 gene in severe demyelinating Charcot-Marie-Tooth disease." In Association of British Neurologists: Annual Meeting Abstracts 2023. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jnnp-2023-abn.246.
Full text