Dissertations / Theses on the topic 'Dopaminergic neurons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Dopaminergic neurons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
DE, SANCTIS Claudia. "MicroRNAs profiling in Dopaminergic neurons." Doctoral thesis, Università degli studi del Molise, 2018. http://hdl.handle.net/11695/83499.
Full textMidbrain dopaminergic neurons (mDA) development is a complex and still not fully understood phenomenon. Many studies till now concentrated their attention on the roles played by several, specific and well-known transcription factors. The aim of my PhD thesis is focus on a relatively new class of post-transcriptional regulators named microRNAs (miRNAs) able to regulate gene expression by targeting partially complementary sequences in the 3’untranslated regions (UTRs) of the target mRNAs. To investigate the role played by miRNAs during mDA differentiation, we choose to analyze miRNAs expression profile by using miRNA Array platforms. To this purpose we used an optimized protocol from mouse Epiblast stem cells (epiSC) differentiated into DA neurons (Jeager et al. 2011). By bioinformatics analysis of the array data, obtained from epiSC differentiated into mDA neurons, we identified few candidates most likely implicated in the DA neurons differentiation and function. The candidate miRNAs were screened for their ability to induce DA phenotype. To this purpose, I generated inducible lentiviral vectors for each miRNA and I have infected mesencephalic primary cultures from mice at stage E12.5. Among all candidate miRNAs, miR-218 and miR-34b/c increase the number of TH+ positive cells, showing their possible contribution in the mDA neurons. Moreover, miR-218 and miR-34b/c, were enriched both in midbrain of mice (E13.5) and in FACS sorted GFP+ cells isolated from E13.5 Pitx3-GFP mice embryos when compared with control. Data obtained from Luciferase Assay and Dual Fluorescence Reporter Assay suggest that miR-34b/c target and suppress Wnt1 3’UTR and it is expressed during DA neurons differentiation. By performing In situ hybridization analysis and immunohistochemistry, I was able to detect miR-218 in particular in the mouse midbrain at stage E14, where co-localize rostrally with Isl-1 (motor neuron marker) and caudally with TH, Pitx3, Lmx1a (dopaminergic marker). This data suggests that miR-218 is expressed also in cranial motor neurons, as described in others recent studies (Thiebes, K.P. et al. 2014; Amin, N.D et al. 2015). To further understand the role of miR-218 in development and function of dopaminergic neurons I have generated the conditional knock-out (cKO) mice for miR-218-2. By mating miR-218-2 flox/flox with En1Cre/+ mice expressing the Cre under Engrailed 1 promoter (En1 is a pro-dopaminergic marker) I will be able to investigate the contribution of miR-218 in dopaminergic system. Preliminary observations on miR-218-2 flox/flox En1Cre/+ mice shown motor impairment phenotype, but to confirm this data I’m currently performing behavior tests and in vivo analysis. Through miRNA expression profiling we be able understand mechanism and function of dopaminergic system, because miRNAs are as key regulators in gene expression networks, can influence many biological processes and have also shown promise as biomarkers for neuro-disorders.
Dommett, Eleanor Jane. "Sensory regulation of midbrain dopaminergic neurons." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425614.
Full textDecker, Amanda R. "TRPM7 function in zebrafish dopaminergic neurons." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/5927.
Full textLove, Rebecca Margaret. "Improving the survival of embryonic dopaminergic neurons." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343277.
Full textAdams, Van L. "Seasonal plasticity of A15 dopaminergic neurons in the ewe." Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=2096.
Full textTitle from document title page. Document formatted into pages; contains vii, 79 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 70-78).
Lak, Armin. "Encoding of economic value by midbrain dopamine neurons." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648342.
Full textZietlow, Rike. "Factors affecting the survival of embryonic dopaminergic neurones after transplantation." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624313.
Full textPöltl, Dominik [Verfasser]. "Degeneration mechanisms in human dopaminergic neurons / Dominik Pöltl." Konstanz : Bibliothek der Universität Konstanz, 2012. http://d-nb.info/1025226135/34.
Full textMoubarak, Estelle. "Constraints imposed by morphological and biophysical properties of axon and dendrites on the electrical behaviour of rat substantia nigra pars compacta dopaminergic neurons." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0746.
Full textNeuronal output is defined by the complex interplay between the biophysical and morphological properties of neurons. Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) are spontaneously active and generate a regular pacemaking activity. While most mammalian neurons have an axon emerging from the soma, the axon of DA neurons often arises from a dendrite at highly variable distances from the soma. Despite this large cell-to-cell variation in axon location, few studies have tried to unravel the potential link between neuronal morphology and electrical behaviour in this cell type. In a first article, we explored the high degree of cell-to-cell variability found in DA neurons by characterising several morphological and biophysical parameters. While AIS geometry did not seem to significantly affect action potential shape or pacemaking activity, we found that the electrical behaviour of DA neurons was particularly sensitive to somatodendritic morphology and conductances. In a second study, we characterised the morphological development of DA neurons during the first three post-natal weeks. We observed an asymmetric development of the dendritic tree, favouring the elongation and complexity of the axon-bearing dendrite. This asymmetry is associated with different contributions of the axon-bearing and non-axon bearing dendrites to action potential shape. Overall, the two studies suggest that DA neurons of the SNc are highly robust to cell-to-cell variations in axonal morphology. The peculiar morphological and biophysical profile of the dendritic arborization attenuates the role of the AIS in shaping electrical behaviour in this neuronal type
Sousa, Kyle Matthew. "Nuclear receptor and Wnt function in developing dopaminergic neurons /." Stockholm : Karolinska institutet, 2007. http://diss.kib.ki.se/2007/978-91-7357-105-0/.
Full textZambon, Federico. "Studying α-Synuclein pathology using iPSC-derived dopaminergic neurons." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:2856dcf3-0f38-4a37-9242-8c685d1c2c3a.
Full textGavinio, Roberto. "PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates." Kyoto University, 2013. http://hdl.handle.net/2433/180338.
Full textHayashi, Hideki. "Meningeal cells induce dopaminergic neurons from embryonic stem cells." Kyoto University, 2008. http://hdl.handle.net/2433/124217.
Full textVazin, Tandis. "Generation of Dopaminergic Neurons from Human Embryonic Stem Cells." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9591.
Full textYamazoe, Hironori. "Encapsulation of dopaminergic neurons derived from embryonic stem cells." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/143987.
Full text0048
新制・課程博士
博士(工学)
甲第12290号
工博第2619号
新制||工||1369(附属図書館)
24126
UT51-2006-J283
京都大学大学院工学研究科高分子化学専攻
(主査)教授 岩田 博夫, 教授 田畑 泰彦, 教授 木村 俊作
学位規則第4条第1項該当
Contrafatto, Donatella. "Asymmetry of nigral dopaminergic neurons' depletion in parkinson's disease." Thesis, Universita' degli Studi di Catania, 2011. http://hdl.handle.net/10761/92.
Full textGrison, Alice. "Unexpected expression of Olfactory Receptors in mesencephalic dopaminergic neurons." Doctoral thesis, SISSA, 2012. http://hdl.handle.net/20.500.11767/4716.
Full textBrothwell, Shona Lindsay Crawford. "Properties of NMDA receptors in Substantia nigra pars compacta dopaminergic neurones." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612352.
Full textCastelo-Branco, Gonçalo de Sá e. Sousa de. "Wnt signalling in the development of ventral midbrain dopaminergic neurons /." Stockholm, 2004. http://diss.kib.ki.se/2005/91-7140-176-8/.
Full textDavies, Nicholas Oliver. "Function, regeneration and neuroprotection of dopaminergic neurons in the zebrafish." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25858.
Full textGonzalez, Robert Tomas. "Neurotrophic Effects of VEGF-B on Dopaminergic Neurons In-Vitro." Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/156914.
Full textSimone, Roberto. "New approaches to unveil the Transcriptional landscape of dopaminergic neurons." Doctoral thesis, SISSA, 2008. http://hdl.handle.net/20.500.11767/4676.
Full textTripanichkul, Wanida 1962. "Associations between glia and sprouting of dopaminergic axons." Monash University, Dept. of Medicine, 2002. http://arrow.monash.edu.au/hdl/1959.1/7630.
Full textDaniel, James St Vincent Clinical School UNSW. "Studies of neurotransmitter release mechanisms in dopamine neurons." Awarded by:University of New South Wales. St. Vincent Clinical School, 2007. http://handle.unsw.edu.au/1959.4/31934.
Full textKaruppagounder, Senthilkumar S. Dhanasekaran Muralikrishnan Suppiramaniam Vishnu. "Environmental toxins and dopaminergic neurotoxicity novel neuroprotective strategies /." Auburn, Ala, 2009. http://hdl.handle.net/10415/1883.
Full textSchwartz, Catherine. "Derivation, enrichment and characterization of dopaminergic neurons from pluripotent stem cells /." Stockholm, 2010. http://diss.kib.ki.se/2010/978-91-7409-867-9/.
Full textThuret, Sandrine. "Identification and characterization of genes expressed by the midbrain dopaminergic neurons." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964263033.
Full textEdman, Linda C. "Chemokines and their role in dopaminergic development." Stockholm : Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 2009. http://diss.kib.ki.se/2009/978-91-7409-688-0/.
Full textBogusz, Adrienne L. "Afferent regulation of A15 dopamine neurons in the ewe." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4928.
Full textTitle from document title page. Document formatted into pages; contains vi, 86 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 75-85).
GAMBARDELLA, Cristina. "Caratterizzazione della corrente h in neuroni dopaminergici della substantia nigra pars compacta." Doctoral thesis, Università degli studi di Ferrara, 2011. http://hdl.handle.net/11392/2388763.
Full textDugan, James P. "Midbrain dopaminergic axons are guided longitudinally by slit/robo signaling." abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1456486.
Full textDoherty, Michael 1964. "Effects of repeated stress on mesocorticolimbic dopaminergic neurons : in vivo voltammetric studies." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=57013.
Full textTaken together, the results of the present study indicate that with repeated exposure the meso-NAcc DA response to subsequent exposure to stress is enhanced. The data indicate that this pathway, which is thought to mediate the positive reinforcing effects of rewards, is also activated during behaviors motivated by aversive stimuli.
Brown, Sarah. "Adult generation of dopaminergic neurons in a genetic model of Parkinson's disease." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21269/.
Full textSenior, Steven L. "Functional analysis of alpha-synuclein." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670161.
Full textBergstrom, Brian P. Garris Paul A. "Compensatory adaptation in preclinical Parkinson's disease." Normal, Ill. Illinois State University, 2001. http://wwwlib.umi.com/cr/ilstu/fullcit?p3064477.
Full textTitle from title page screen, viewed April 13, 2006. Dissertation Committee: Paul A. Garris (chair), John E. Baur, Hou T. Cheung, Maarten E.A. Reith, David L. Williams. Includes bibliographical references (leaves 170-186) and abstract. Also available in print.
Godoy, Rafael Soares. "Chemogenetic Ablation of Dopaminergic Neurons in the Brain of Larval and Adult Zebrafish (Danio Rerio): Phenotypes and Regenerative Ability." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32541.
Full textVinciati, Federica. "Electrophysiological properties of striatal neurons in the dopamine-intact and Parkinsonian brain." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:e4e84e31-bc00-43b2-a930-dc7fa4143b1a.
Full textTripathi, Prem Prakash. "Developmental basis of seizure susceptibility: a focus on dopaminergic and serotonergic systems." Doctoral thesis, Scuola Normale Superiore, 2010. http://hdl.handle.net/11384/85977.
Full textBrown, Matthew Thomas Clifford. "Electrophysiological Neurochemical and morphological characterisation of the dopaminergic neurons in the substantia Nigra." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504319.
Full textChabrat, Audrey, and Audrey Chabrat. "Role of Lmx1a and Lmx1b transcription factors in post-mitotic midbrain dopaminergic neurons." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/28203.
Full textLmx1a et Lmx1b sont des facteurs de transcription connus pour leur rôle au cours du développement des neurones dopaminergiques du mésencéphale (mDA). Ils ont été montrés comme essentiels à chacune des étapes de différentiation des progéniteurs en neurones dopaminergiques matures. Des études récentes ont également mis en évidence l'importance de ces deux facteurs de transcription dans les neurones dopaminergiques chez l'adulte. Lmx1a/b sont impliqués dans la régulation de gènes mitochondriaux ainsi que dans l'autophagie. Cependant, jusqu'à présent, rien n'est connu sur le rôle de Lmx1a/b dans les neurones dopaminergiques post-mitotiques. Le but de cette thèse est d'élucider le rôle de Lmx1a/b dans les neurones dopaminergiques matures. L'analyse des projections axonales dopaminergiques de souris doubles conditionnelles mutantes (cKO) pour Lmx1a/b a mis en évidence un défaut de guidage axonal confirmant le rôle essentiel de ces deux facteurs de transcription dans la formation des circuits dopaminergiques. Afin d’identifier précisément les molécules impliquées dans la régulation du système dopaminergique des techniques adaptées doivent être développées pour déterminer les principaux acteurs régulés par Lmx1a/b. À cette fin, nous avons mis au point une technique de marquage immunohistochimique rapide de la tyrosine hydroxylase (TH, enzyme nécessaire à la synthèse de la dopamine) sur des sections de mésencéphale de souris afin de délimiter la région d’intérêt. Par la suite, nous utilisons une technique de microdissection au laser afin de spécifiquement récolter les cellules dopaminergiques du mésencéphale pour réaliser un profil d'expression génique. Un premier article de méthodologie a été publié concernant cette technique. Cette procédure menée sur des souris cKO pour Lmx1a et Lmx1b et leurs contrôles associés a permis de mettre en évidence des gènes régulés par Lmx1a et Lmx1b tels que Plxnc1. Plxnc1 est une protéine de guidage axonal ayant pour ligand la sémaphorine 7a (Sema7a). Afin d'observer si la régulation de Plxnc1 par Lmx1a/b est à l'origine du défaut de guidage axonal observé chez les souris cKO pour Lmx1a/b, nous avons réalisé une analyse in vitro de l’effet de la Sema7a sur les axones d'explants mDA. Notre étude a montré un effet chimiorépulsif de la Sema7a pour les axones des neurones mDA exprimant Plxnc1. De plus, l’étude de souris Sema7a KO montre une augmentation de l’innervation DA dans la partie dorsale du striatum, partie exprimant Sema7a chez des souris contrôles. Ce phénotype met en évidence une chimiorépulsion induite par l’interaction Sema7a/Plxnc1. L’étude de souris surexprimant Plxnc1 a, quant à elle, montré une perte d’innervation DA dans la partie dorsale du striatum. En effet, la majorité des cellules du mésencéphale se mettent à exprimer Plxnc1, les rendant ainsi sensibles à la chimiorépulsion induite par Sema7a. L’ensemble de ces résultats met en évidence l’importance de la régulation de la protéine de guidage axonal Plxnc1 par Lmx1a/b pour l'innervation des cibles du mésencéphale. La répression de Plxnc1 dans les neurones dopaminergiques de la substance noire pars compacta (SNpc) semble nécessaire à l’innervation du striatum dorsal riche en Sema7a. Cette étude est la première à identifier les bases moléculaires du guidage axonal expliquant la ségrégation des voies mDA nigrostriée et mésolimbique, et devrait contribuer à améliorer l'efficacité des thérapies cellulaires pour la maladie de Parkinson. Un second article sera soumis prochainement sur le rôle des facteurs de transcription Lmx1a/b dans les neurones dopaminergiques post-mitotiques du mésencéphale. La principale caractéristique histopathologique de la maladie de Parkinson est la dégénérescence des neurones mDA de la SNpc. La thérapie de remplacement cellulaire utilisant des neurones dopaminergiques nouvellement générés à partir de cellules souches représente une thérapie prometteuse. Cependant, la mauvaise innervation des neurones nouvellement greffés limite le succès des études de transplantation. L’identification de facteurs régulant la connectivité des neurones mDA devient primordiale pour élucider les mécanismes impliqués dans la mise en place du système dopaminergique. C'est pourquoi, dans une derniere partie, afin d'illustrer cette possibilité d'amélioration d'une thérapie de remplacement cellulaire, j’ai réalisé l’implantation de cellules souches différenciées en neurones dopaminergiques dans un modèle de souris lésées à la 6-hydroxydopamine (6OHDA). Les cellules nouvellement réimplantées sont de type SNpc, en raison de l'infection par un vecteur viral induisant l'inhibition de l'expression de Plxnc1.
Lmx1a and Lmx1b are transcription factors known for their role in the development of midbrain dopamine neurons (mDA). They were shown as essential for each stage of differentiation from progenitors to mature dopaminergic neurons. Recent studies have also highlighted the importance of these two transcription factors in dopaminergic neurons in adult mice. Lmx1a/b are involved in the regulation of mitochondrial genes and in autophagy. Although some evidence suggest that they could be involved in the formation of mDa circuit formation, their role in post-mitotic mDA neurons remains unknown. The aim of this thesis is to elucidate the role of Lmx1a/b in post-mitotic dopaminergic neurons. Analysis of dopaminergic axonal projections of double conditional mutant (cKO) mice for Lmx1a/b showed an axon guidance defect confirming the essential role of these transcription factors in the formation of dopaminergic circuits. In order to precisely identify the molecules involved in the regulation of the dopamine system, suitable techniques must be developed to identify the main genes that are regulated by Lmx1a/b. To this end we developed a new technique allowing gene profiling of brain sub-population. By combining rapid immunolabeling of mDA neurons with laser capture microdissection we manage to extract RNA from two sub-regions of mDA neurons such as ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc). The advantage of this technique is to compare quickly the regulation of genes expression by studying controls and mutant mice. A first methodological article has been published regarding this procedure. We then applied this technique on cKO mice for Lmx1a/b and their associated controls to identify genes regulated by Lmx1a and Lmx1b. Among these genes, we identified Plxnc1, an axon guidance receptor for the semaphorin 7a (Sema7a). In order to verify whether the regulation of Plxnc1 by Lmx1a/b is at the origin of the axon guidance defect observed in double conditional mutant for Lmx1a/b, we have made an in vitro analysis of the effect of Sema7a on mDA explants. Our study showed a chemorepulsive effect of Sema7a on Plxnc1 positives axons. In addition, the study of knockout mice for Sema7a shows an increase of DA innervation in the dorsal part of the striatum which is the region expressing Sema7a in control mice. This phenotype reveals a chemorepulsion induced by Sema7a/Plxnc1 interaction. The study of mice overexpressing Plxnc1 shows a loss of DA innervation in the dorsal striatum. Indeed, by overexpressing Plxnc1, the majority of midbrain cells begin to express this axon guidance protein instead of only mDA neurons from the VTA. Thus, all mDA neurons including neurons from the SNpc express Plxnc1 making them sensitive to Sema7a. This interaction Sema7a/Plxnc1 leads to a chemorepulsion of axons guided away from the dorsal striatum. Overall these results highlight the importance of the regulation of the axon guidance protein Plxnc1 by Lmx1a/b for the innervation of midbrain targets. The repression of Plxnc1 expression in dopaminergic neurons of the SNpc appears necessary for the innervation of dopaminergic axons in the dorsal striatum, rich in Sema7a. This study is the first to identify the molecular basis of the development of the dopaminergic system explaining the segregation of the nigrostriatal and mesolimbic pathways. These results should help to improve the effectiveness of cell therapies for Parkinson's disease. A second article will be submitted soon about the role of Lmx1a/b transciption factors in post-mitotic midbrain dopaminergic neurons. The main histopathological feature of Parkinson's disease (PD) is the degeneration of SNpc neurons. The cell replacement therapy using newly generated dopaminergic neurons from stem cells represents a promising therapy. However, a poor innervation of the newly grafted neurons limits the success of transplantation studies. The identification of factors regulating neuronal connectivity of mDA neurons becomes essential to elucidate the mechanisms involved in the establishment of the dopaminergic system. Therefore, in a final section of this thesis, I report preliminary study about cell replacement therapy in PD mouse model. I differentiated DA neurons from stem cells, knock-down Plxnc1 expression and performed grafting in 6-hydroxydopamine (6OHDA) mouse model to illustrate the possibility of improving a cell replacement therapy.
Lmx1a and Lmx1b are transcription factors known for their role in the development of midbrain dopamine neurons (mDA). They were shown as essential for each stage of differentiation from progenitors to mature dopaminergic neurons. Recent studies have also highlighted the importance of these two transcription factors in dopaminergic neurons in adult mice. Lmx1a/b are involved in the regulation of mitochondrial genes and in autophagy. Although some evidence suggest that they could be involved in the formation of mDa circuit formation, their role in post-mitotic mDA neurons remains unknown. The aim of this thesis is to elucidate the role of Lmx1a/b in post-mitotic dopaminergic neurons. Analysis of dopaminergic axonal projections of double conditional mutant (cKO) mice for Lmx1a/b showed an axon guidance defect confirming the essential role of these transcription factors in the formation of dopaminergic circuits. In order to precisely identify the molecules involved in the regulation of the dopamine system, suitable techniques must be developed to identify the main genes that are regulated by Lmx1a/b. To this end we developed a new technique allowing gene profiling of brain sub-population. By combining rapid immunolabeling of mDA neurons with laser capture microdissection we manage to extract RNA from two sub-regions of mDA neurons such as ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc). The advantage of this technique is to compare quickly the regulation of genes expression by studying controls and mutant mice. A first methodological article has been published regarding this procedure. We then applied this technique on cKO mice for Lmx1a/b and their associated controls to identify genes regulated by Lmx1a and Lmx1b. Among these genes, we identified Plxnc1, an axon guidance receptor for the semaphorin 7a (Sema7a). In order to verify whether the regulation of Plxnc1 by Lmx1a/b is at the origin of the axon guidance defect observed in double conditional mutant for Lmx1a/b, we have made an in vitro analysis of the effect of Sema7a on mDA explants. Our study showed a chemorepulsive effect of Sema7a on Plxnc1 positives axons. In addition, the study of knockout mice for Sema7a shows an increase of DA innervation in the dorsal part of the striatum which is the region expressing Sema7a in control mice. This phenotype reveals a chemorepulsion induced by Sema7a/Plxnc1 interaction. The study of mice overexpressing Plxnc1 shows a loss of DA innervation in the dorsal striatum. Indeed, by overexpressing Plxnc1, the majority of midbrain cells begin to express this axon guidance protein instead of only mDA neurons from the VTA. Thus, all mDA neurons including neurons from the SNpc express Plxnc1 making them sensitive to Sema7a. This interaction Sema7a/Plxnc1 leads to a chemorepulsion of axons guided away from the dorsal striatum. Overall these results highlight the importance of the regulation of the axon guidance protein Plxnc1 by Lmx1a/b for the innervation of midbrain targets. The repression of Plxnc1 expression in dopaminergic neurons of the SNpc appears necessary for the innervation of dopaminergic axons in the dorsal striatum, rich in Sema7a. This study is the first to identify the molecular basis of the development of the dopaminergic system explaining the segregation of the nigrostriatal and mesolimbic pathways. These results should help to improve the effectiveness of cell therapies for Parkinson's disease. A second article will be submitted soon about the role of Lmx1a/b transciption factors in post-mitotic midbrain dopaminergic neurons. The main histopathological feature of Parkinson's disease (PD) is the degeneration of SNpc neurons. The cell replacement therapy using newly generated dopaminergic neurons from stem cells represents a promising therapy. However, a poor innervation of the newly grafted neurons limits the success of transplantation studies. The identification of factors regulating neuronal connectivity of mDA neurons becomes essential to elucidate the mechanisms involved in the establishment of the dopaminergic system. Therefore, in a final section of this thesis, I report preliminary study about cell replacement therapy in PD mouse model. I differentiated DA neurons from stem cells, knock-down Plxnc1 expression and performed grafting in 6-hydroxydopamine (6OHDA) mouse model to illustrate the possibility of improving a cell replacement therapy.
Wiemerslage, Lyle N. "Neuroprotection of Dopaminergic Neurons and their Subcellular Structures from Parkinson's Disease-like Treatment." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1395669814.
Full textTakeuchi, Hiroki. "Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson's disease models." Kyoto University, 2009. http://hdl.handle.net/2433/124255.
Full textBertram, Craig. "Cortical and subcortical somatosensory regulation of dopaminergic neurons : role of the superior colliculus." Thesis, University of Sheffield, 2011. http://etheses.whiterose.ac.uk/2262/.
Full textTang, Sze-Man Clara. "The effects of cholinergic and dopaminergic neurons on hippocampal learning and memory processes." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/270864.
Full textBooth, Heather D. E. "Modelling and analysis of LRRK2 mutations in iPSC-derived dopaminergic neurons and astrocytes." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:d85d164e-e9d4-4911-8aa0-831d4519a5a2.
Full textMarcuzzi, Federica. "Erythropoietin Receptor and Hemoglobin, two commonly blood – associated proteins, in mesencephalic dopaminergic neurons." Doctoral thesis, SISSA, 2012. http://hdl.handle.net/20.500.11767/4720.
Full textSánchez, Danés Adriana 1984. "Generation of human dopaminergic neurons from induced pluripotent stem cells to model Parkinson's disease." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/96912.
Full textLa malaltia de Parkinson (MP) és una malaltia neurodegenerativa incurable que causa invalidesa i mort prematura. Els pacients de la malaltia de Parkinson presenten alteracions motores degudes a una degeneració gradual de les neurones dopaminèrgiques que projecten des de la substància nigra fins a l’estriat. A nivell microscòpic s’observa la presència d’agregats proteics insolubles en el citosol de les neurones coneguts com cossos o neurites de Lewy. Els mecanismes patològics responsables de la MP no es coneixen bé, possiblement a causa de la manca de models animals i cel•lulars adequats. Per tant, existeix una gran necessitat de desenvolupar models experimentals fiables que recapitulin les característiques bàsiques de la MP. El recent desenvolupament de les cèl•lules mare pluripotents induïdes (iPSC) ha permès la generació de iPSC específiques de pacient i el seu ús per modelar malalties humanes, ara bé, no és clar si aquesta estratègia es pot utilitzar per modelar exitosament malalties d’origen tardà, com ara la MP. És important destacar que el modelatge de malalties utilitzant iPSC, es basa, en gran mesura en l'existència de protocols eficients per a la diferenciació de les iPSC cap al tipus cel•lular rellevant per a la malaltia. Durant aquest període, per primera vegada, s’ha desenvolupat un protocol per a l’eficient diferenciació de les iPSC cap a neurones dopaminèrgiques amb les propietats característiques de neurones dopaminèrgiques nigrostriatals, mitjançant l’expressió forçada de LMX1A utilitzant vectors lentivirals. A continuació, s’ha generat un model cel•lular usant iPSC derivades de pacients de MP que recapitula les principals característiques fenotípiques de la malaltia, com ara la pèrdua de neurones dopaminèrgiques i l'acumulació de α-sinucleïna en les neurones dopaminèrgiques. En general, els nostres resultats demostren que hem desenvolupat una eina valuosa per a l’estudi dels mecanismes patològics que condueixen a la MP, així com una nova plataforma pel descobriment de nous fàrmacs encaminats a prevenir o evitar la neurodegeneració.
Alberi, Lavinia. "Engrailed genes are cell autonomously required for the survival of the mesencephalic dopaminergic neurons." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970524617.
Full textVenables, Maddie Jolyane. "Characterization of Nestin Proteins in the Goldfish: Implications for Regeneration of Adult Dopaminergic Neurons." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34191.
Full textAlireza, Tamara. "Investigating the effects of the microglial inflammatory response on iron metabolism in dopaminergic neurons." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/60641.
Full text