Journal articles on the topic 'Dopamine neurons, parkinson's disease, neuroscience'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dopamine neurons, parkinson's disease, neuroscience.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Granado, Noelia, Sara Ares-Santos, and Rosario Moratalla. "Methamphetamine and Parkinson's Disease." Parkinson's Disease 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/308052.
Full textBishop, Matthew W., Subhojit Chakraborty, Gillian A. C. Matthews, Antonios Dougalis, Nicholas W. Wood, Richard Festenstein, and Mark A. Ungless. "Hyperexcitable Substantia Nigra Dopamine Neurons in PINK1- and HtrA2/Omi-Deficient Mice." Journal of Neurophysiology 104, no. 6 (December 2010): 3009–20. http://dx.doi.org/10.1152/jn.00466.2010.
Full textKesslak, J. Patrick. "Transplantation of embryonic dopamine neurons for severe Parkinson's disease." Neuroreport 12, no. 7 (May 2001): A47. http://dx.doi.org/10.1097/00001756-200105250-00002.
Full textTaylor, Tonya N., W. Michael Caudle, and Gary W. Miller. "VMAT2-Deficient Mice Display Nigral and Extranigral Pathology and Motor and Nonmotor Symptoms of Parkinson's Disease." Parkinson's Disease 2011 (2011): 1–9. http://dx.doi.org/10.4061/2011/124165.
Full textDenyer, Rachel, and Michael R. Douglas. "Gene Therapy for Parkinson's Disease." Parkinson's Disease 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/757305.
Full textMurase, S. "A Specific Survival Response in Dopamine Neurons at Most Risk in Parkinson's Disease." Journal of Neuroscience 26, no. 38 (September 20, 2006): 9750–60. http://dx.doi.org/10.1523/jneurosci.2745-06.2006.
Full textBogetofte, Helle, Arezo Alamyar, Morten Blaabjerg, and Morten Meyer. "Levodopa Therapy for Parkinson's Disease: History, Current Status and Perspectives." CNS & Neurological Disorders - Drug Targets 19, no. 8 (December 24, 2020): 572–83. http://dx.doi.org/10.2174/1871527319666200722153156.
Full textBarker, Roger A., Anders Björklund, Steven J. Frucht, and Clive N. Svendsen. "Stem Cell-Derived Dopamine Neurons: Will They Replace DBS as the Leading Neurosurgical Treatment for Parkinson’s Disease?" Journal of Parkinson's Disease 11, no. 3 (July 30, 2021): 909–17. http://dx.doi.org/10.3233/jpd-219008.
Full textFEDOROW, H., F. TRIBL, G. HALLIDAY, M. GERLACH, P. RIEDERER, and K. DOUBLE. "Neuromelanin in human dopamine neurons: Comparison with peripheral melanins and relevance to Parkinson's disease." Progress in Neurobiology 75, no. 2 (February 2005): 109–24. http://dx.doi.org/10.1016/j.pneurobio.2005.02.001.
Full textParker, Krystal L., Kuan-Hua Chen, Johnathan R. Kingyon, James F. Cavanagh, and Nandakumar S. Narayanan. "Medial frontal ∼4-Hz activity in humans and rodents is attenuated in PD patients and in rodents with cortical dopamine depletion." Journal of Neurophysiology 114, no. 2 (August 2015): 1310–20. http://dx.doi.org/10.1152/jn.00412.2015.
Full textLevy, R., J. O. Dostrovsky, A. E. Lang, E. Sime, W. D. Hutchison, and A. M. Lozano. "Effects of Apomorphine on Subthalamic Nucleus and Globus Pallidus Internus Neurons in Patients With Parkinson's Disease." Journal of Neurophysiology 86, no. 1 (July 1, 2001): 249–60. http://dx.doi.org/10.1152/jn.2001.86.1.249.
Full textPrieto, G. Aleph, Azucena Perez-Burgos, Marcela Palomero-Rivero, Elvira Galarraga, Rene Drucker-Colin, and Jose Bargas. "Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on CaV2.1 channels via PIP2 depletion." Journal of Neurophysiology 105, no. 5 (May 2011): 2260–74. http://dx.doi.org/10.1152/jn.00516.2010.
Full textMigliore, Michele, Claudio Cannia, and Carmen C. Canavier. "A Modeling Study Suggesting a Possible Pharmacological Target to Mitigate the Effects of Ethanol on Reward-Related Dopaminergic Signaling." Journal of Neurophysiology 99, no. 5 (May 2008): 2703–7. http://dx.doi.org/10.1152/jn.00024.2008.
Full textCáceres-Chávez, Verónica Alejandra, Ricardo Hernández-Martínez, Jesús Pérez-Ortega, Marco Arieli Herrera-Valdez, Jose J. Aceves, Elvira Galarraga, and José Bargas. "Acute dopamine receptor blockade in substantia nigra pars reticulata: a possible model for drug-induced Parkinsonism." Journal of Neurophysiology 120, no. 6 (December 1, 2018): 2922–38. http://dx.doi.org/10.1152/jn.00579.2018.
Full textCentonze, Diego, Paolo Gubellini, Barbara Picconi, Paolo Calabresi, Patrizia Giacomini, and Giorgio Bernardi. "Unilateral Dopamine Denervation Blocks Corticostriatal LTP." Journal of Neurophysiology 82, no. 6 (December 1, 1999): 3575–79. http://dx.doi.org/10.1152/jn.1999.82.6.3575.
Full textKamath, Tushar, Abdulraouf Abdulraouf, S. J. Burris, Jonah Langlieb, Vahid Gazestani, Naeem M. Nadaf, Karol Balderrama, Charles Vanderburg, and Evan Z. Macosko. "Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease." Nature Neuroscience 25, no. 5 (May 2022): 588–95. http://dx.doi.org/10.1038/s41593-022-01061-1.
Full textYamada, T., P. L. McGeer, K. G. Baimbridge, and E. G. McGeer. "Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K." Brain Research 526, no. 2 (September 1990): 303–7. http://dx.doi.org/10.1016/0006-8993(90)91236-a.
Full textSchlaudraff, Falk, Jan Gründemann, Michael Fauler, Elena Dragicevic, John Hardy, and Birgit Liss. "Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease." Neurobiology of Aging 35, no. 10 (October 2014): 2302–15. http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.016.
Full textLeranth, Csaba, Robert H. Roth, John D. Elsworth, Frederick Naftolin, Tamas L. Horvath, and D. Eugene Redmond. "Estrogen Is Essential for Maintaining Nigrostriatal Dopamine Neurons in Primates: Implications for Parkinson's Disease and Memory." Journal of Neuroscience 20, no. 23 (December 1, 2000): 8604–9. http://dx.doi.org/10.1523/jneurosci.20-23-08604.2000.
Full textMena, Maria, Maria Casarejos, and Santiago Canals. "Nitric Oxide and Dopamine Neurons. Implications for Parkinsons Disease." Current Medicinal Chemistry-Central Nervous System Agents 5, no. 3 (September 1, 2005): 193–205. http://dx.doi.org/10.2174/1568015054863846.
Full textMasato, Anna, Luigi Bubacco, and Elisa Greggio. "Too much for your own good: Excessive dopamine damages neurons and contributes to Parkinson's disease." Journal of Neurochemistry 158, no. 4 (June 28, 2021): 833–36. http://dx.doi.org/10.1111/jnc.15442.
Full textLi, J. Y., and P. Brundin. "Grafting dopamine neurons in Parkinson's disease: do stem cells have a role in the future?" Journal of Neurochemistry 85 (May 8, 2003): 13. http://dx.doi.org/10.1046/j.1471-4159.85.s2.13_4.x.
Full textHoffer, Barry J., Klaus L. Leenders, David Young, Greg Gerhardt, Gary O. Zerbe, Marc Bygdeman, Åke Seiger, Lars Olson, Ingrid Strömberg, and Robert Freedman. "Eighteen-month course of two patients with grafts of fetal dopamine neurons for severe Parkinson's disease." Experimental Neurology 118, no. 3 (December 1992): 243–52. http://dx.doi.org/10.1016/0014-4886(92)90181-o.
Full textWang, Yuhan, Safa Bouabid, Martin Darvas, and Fu-Ming Zhou. "The antiparkinson drug ropinirole inhibits movement in a Parkinson's disease mouse model with residual dopamine neurons." Experimental Neurology 333 (November 2020): 113427. http://dx.doi.org/10.1016/j.expneurol.2020.113427.
Full textYu, S. J., E. S. Lo, E. J. Cochran, D. H. Lin, C. J. Faselis, H. L. Klawans, and P. M. Carvey. "Cerebrospinal Fluid from Patients with Parkinson's Disease Alters the Survival of Dopamine Neurons in Mesencephalic Culture." Experimental Neurology 126, no. 1 (March 1994): 15–24. http://dx.doi.org/10.1006/exnr.1994.1038.
Full textAmos, Andrew. "A Computational Model of Information Processing in the Frontal Cortex and Basal Ganglia." Journal of Cognitive Neuroscience 12, no. 3 (May 2000): 505–19. http://dx.doi.org/10.1162/089892900562174.
Full textLohrenz, Terry, Kenneth T. Kishida, and P. Read Montague. "BOLD and its connection to dopamine release in human striatum: a cross-cohort comparison." Philosophical Transactions of the Royal Society B: Biological Sciences 371, no. 1705 (October 5, 2016): 20150352. http://dx.doi.org/10.1098/rstb.2015.0352.
Full textCruz, Ana V., Nicolas Mallet, Peter J. Magill, Peter Brown, and Bruno B. Averbeck. "Effects of Dopamine Depletion on Network Entropy in the External Globus Pallidus." Journal of Neurophysiology 102, no. 2 (August 2009): 1092–102. http://dx.doi.org/10.1152/jn.00344.2009.
Full textKerr, J. N. D., and J. R. Wickens. "Dopamine D-1/D-5 Receptor Activation Is Required for Long-Term Potentiation in the Rat Neostriatum In Vitro." Journal of Neurophysiology 85, no. 1 (January 1, 2001): 117–24. http://dx.doi.org/10.1152/jn.2001.85.1.117.
Full textRenko, Juho-Matti, Arun Kumar Mahato, Tanel Visnapuu, Konsta Valkonen, Mati Karelson, Merja H. Voutilainen, Mart Saarma, Raimo K. Tuominen, and Yulia A. Sidorova. "Neuroprotective Potential of a Small Molecule RET Agonist in Cultured Dopamine Neurons and Hemiparkinsonian Rats." Journal of Parkinson's Disease 11, no. 3 (August 2, 2021): 1023–46. http://dx.doi.org/10.3233/jpd-202400.
Full textAnvret, Anna, Caroline Ran, Marie Westerlund, Ann-Christin Thelander, Olof Sydow, Charlotta Lind, Anna Håkansson, Hans Nissbrandt, Dagmar Galter, and Andrea Carmine Belin. "Possible Involvement of a Mitochondrial Translation Initiation Factor 3 Variant Causing Decreased mRNA Levels in Parkinson's Disease." Parkinson's Disease 2010 (2010): 1–5. http://dx.doi.org/10.4061/2010/491751.
Full textBurke, Robert E. "Apoptosis in Degenerative Diseases of the Basal Ganglia." Neuroscientist 4, no. 4 (July 1998): 301–11. http://dx.doi.org/10.1177/107385849800400418.
Full textBrundin, P., R. E. Strecker, H. Widner, D. J. Clarke, O. G. Nilsson, B. Åstedt, O. Lindvall, and A. Björklund. "Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release." Experimental Brain Research 70, no. 1 (March 1988): 192–208. http://dx.doi.org/10.1007/bf00271860.
Full textKanaan, Nicholas M., Timothy J. Collier, Deanna M. Marchionini, Susan O. McGuire, Matthew F. Fleming, and Caryl E. Sortwell. "Exogenous erythropoietin provides neuroprotection of grafted dopamine neurons in a rodent model of Parkinson's disease." Brain Research 1068, no. 1 (January 2006): 221–29. http://dx.doi.org/10.1016/j.brainres.2005.10.078.
Full textSchneider, Andrew, Adam T. Sari, Hasan Alhaddad, and Youssef Sari. "Overview of Therapeutic Drugs and Methods for the Treatment of Parkinson’s Disease." CNS & Neurological Disorders - Drug Targets 19, no. 3 (August 17, 2020): 195–206. http://dx.doi.org/10.2174/1871527319666200525011110.
Full textStanford, I. M. "Independent Neuronal Oscillators of the Rat Globus Pallidus." Journal of Neurophysiology 89, no. 3 (March 1, 2003): 1713–17. http://dx.doi.org/10.1152/jn.00864.2002.
Full textFarooqui, Tahira, and Akhlaq A. Farooqui. "Lipid-Mediated Oxidative Stress and Inflammation in the Pathogenesis of Parkinson's Disease." Parkinson's Disease 2011 (2011): 1–9. http://dx.doi.org/10.4061/2011/247467.
Full textLelos, M. J., R. J. Morgan, C. M. Kelly, E. M. Torres, A. E. Rosser, and S. B. Dunnett. "Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease." Experimental Neurology 278 (April 2016): 54–61. http://dx.doi.org/10.1016/j.expneurol.2016.02.003.
Full textLobb, C. J., A. K. Zaheer, Y. Smith, and D. Jaeger. "In vivo electrophysiology of nigral and thalamic neurons in alpha-synuclein-overexpressing mice highlights differences from toxin-based models of parkinsonism." Journal of Neurophysiology 110, no. 12 (December 15, 2013): 2792–805. http://dx.doi.org/10.1152/jn.00441.2013.
Full textMoustafa, Ahmed A., and Mark A. Gluck. "A Neurocomputational Model of Dopamine and Prefrontal–Striatal Interactions during Multicue Category Learning by Parkinson Patients." Journal of Cognitive Neuroscience 23, no. 1 (January 2011): 151–67. http://dx.doi.org/10.1162/jocn.2010.21420.
Full textWeinberger, M., W. D. Hutchison, A. M. Lozano, M. Hodaie, and J. O. Dostrovsky. "Increased Gamma Oscillatory Activity in the Subthalamic Nucleus During Tremor in Parkinson's Disease Patients." Journal of Neurophysiology 101, no. 2 (February 2009): 789–802. http://dx.doi.org/10.1152/jn.90837.2008.
Full textFilipović, Marko, Maya Ketzef, Ramon Reig, Ad Aertsen, Gilad Silberberg, and Arvind Kumar. "Direct pathway neurons in mouse dorsolateral striatum in vivo receive stronger synaptic input than indirect pathway neurons." Journal of Neurophysiology 122, no. 6 (December 1, 2019): 2294–303. http://dx.doi.org/10.1152/jn.00481.2019.
Full textMashima, Kyoko, Shinichi Takahashi, Kazushi Minami, Yoshikane Izawa, Takato Abe, Naoki Tsukada, Takako Hishiki, Makoto Suematsu, Mayumi Kajimura, and Norihiro Suzuki. "Neuroprotective Role of Astroglia in Parkinson Disease by Reducing Oxidative Stress Through Dopamine-Induced Activation of Pentose-Phosphate Pathway." ASN Neuro 10 (January 2018): 175909141877556. http://dx.doi.org/10.1177/1759091418775562.
Full textLebel, Manon, Pierre Robinson, and Michel Cyr. "Canadian Association of Neurosciences Review: The Role of Dopamine Receptor Function in Neurodegenerative Diseases." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 34, no. 1 (February 2007): 18–29. http://dx.doi.org/10.1017/s0317167100005746.
Full textLu, Jing-Shan, Qi-Yu Chen, Xiang Chen, Xu-Hui Li, Zhaoxiang Zhou, Qin Liu, Yuwan Lin, Miaomiao Zhou, Ping-Yi Xu, and Min Zhuo. "Cellular and synaptic mechanisms for Parkinson’s disease-related chronic pain." Molecular Pain 17 (January 2021): 174480692199902. http://dx.doi.org/10.1177/1744806921999025.
Full textZiv, Ilan, Eldad Melamed, Nurit Nardi, Drorit Luria, Anat Achiron, Daniel Offen, and Ari Barzilai. "Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons — A possible novel pathogenetic mechanism in Parkinson's disease." Neuroscience Letters 170, no. 1 (March 1994): 136–40. http://dx.doi.org/10.1016/0304-3940(94)90258-5.
Full textIvanova, Svetlana A., and Anton J. M. Loonen. "Levodopa-Induced Dyskinesia Is Related to Indirect Pathway Medium Spiny Neuron Excitotoxicity: A Hypothesis Based on an Unexpected Finding." Parkinson's Disease 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/6461907.
Full textFink, Jackson, Heather Pathak, John Smith, Cindy Achat-Mendes, and Robert L. Haining. "Development of a Competition-Binding Assay to Determine Binding Affinity of Molecules to Neuromelanin via Fluorescence Spectroscopy." Biomolecules 9, no. 5 (May 8, 2019): 175. http://dx.doi.org/10.3390/biom9050175.
Full textInamdar, Arati A., Anathbandhu Chaudhuri, and Janis O’Donnell. "The Protective Effect of Minocycline in a Paraquat-Induced Parkinson's Disease Model inDrosophilais Modified in Altered Genetic Backgrounds." Parkinson's Disease 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/938528.
Full textDejean, Cyril, Christian E. Gross, Bernard Bioulac, and Thomas Boraud. "Dynamic Changes in the Cortex-Basal Ganglia Network After Dopamine Depletion in the Rat." Journal of Neurophysiology 100, no. 1 (July 2008): 385–96. http://dx.doi.org/10.1152/jn.90466.2008.
Full text