Academic literature on the topic 'Domain translation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Domain translation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Domain translation"
Li, Rumeng, Xun Wang, and Hong Yu. "MetaMT, a Meta Learning Method Leveraging Multiple Domain Data for Low Resource Machine Translation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 8245–52. http://dx.doi.org/10.1609/aaai.v34i05.6339.
Full textDjebaili, Baya. "ترجمة النص المالي." Traduction et Langues 14, no. 1 (August 31, 2015): 243–54. http://dx.doi.org/10.52919/translang.v14i1.787.
Full textMarie, Benjamin, and Atsushi Fujita. "Synthesizing Parallel Data of User-Generated Texts with Zero-Shot Neural Machine Translation." Transactions of the Association for Computational Linguistics 8 (November 2020): 710–25. http://dx.doi.org/10.1162/tacl_a_00341.
Full textXiang, Cailing. "Study on the Effectiveness of ChatGPT in Translating Forestry Sci-tech Texts." International Journal of Linguistics, Literature and Translation 7, no. 9 (August 29, 2024): 88–94. http://dx.doi.org/10.32996/ijllt.2024.7.9.11.
Full textSokolova, Natalia. "Machine vs Human Translation in the Synergetic Translation Space." Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 2. Jazykoznanije, no. 6 (February 2021): 89–98. http://dx.doi.org/10.15688/jvolsu2.2021.6.8.
Full textYin, Xu, Yan Li, and Byeong-Seok Shin. "DAGAN: A Domain-Aware Method for Image-to-Image Translations." Complexity 2020 (March 28, 2020): 1–15. http://dx.doi.org/10.1155/2020/9341907.
Full textBernaerts, Lars, Liesbeth De Bleeker, and July De Wilde. "Narration and translation." Language and Literature: International Journal of Stylistics 23, no. 3 (July 31, 2014): 203–12. http://dx.doi.org/10.1177/0963947014536504.
Full textDai, Diwei. "A Study on Application of Construal Theory in English Translation of Chinese Medical book: take English Translation of Jin Gui Yao Liao as an Example." International Journal of Public Health and Medical Research 1, no. 1 (March 25, 2024): 20–28. http://dx.doi.org/10.62051/ijphmr.v1n1.03.
Full textKaratsiolis, Savvas, Christos N. Schizas, and Nicolai Petkov. "Modular domain-to-domain translation network." Neural Computing and Applications 32, no. 11 (July 26, 2019): 6779–91. http://dx.doi.org/10.1007/s00521-019-04358-8.
Full textMarie, Benjamin, and Atsushi Fujita. "Phrase Table Induction Using In-Domain Monolingual Data for Domain Adaptation in Statistical Machine Translation." Transactions of the Association for Computational Linguistics 5 (December 2017): 487–500. http://dx.doi.org/10.1162/tacl_a_00075.
Full textDissertations / Theses on the topic "Domain translation"
Brunello, Marco. "Domain and genre dependency in Statistical Machine Translation." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8420/.
Full textMayet, Tsiry. "Multi-domain translation in a semi-supervised setting." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR46.
Full textThis thesis explores multi-modal generation and semi-supervised learning, addressing two critical challenges: supporting flexible configurations of input and output across multiple domains, and developing efficient training strategies for semi-supervised data settings. As artificial intelligence systems advance, there is growing need for models that can flexibly integrate and generate multiple modalities, mirroring human cognitive abilities. Conventional deep learning systems often struggle when deviating from their training configuration, which occurs when certain modalities are unavailable in real-world applications. For instance, in medical settings, patients might not undergo all possible scans for a comprehensive analysis system. Additionally, obtaining finer control over generated modalities is crucial for enhancing generation capabilities and providing richer contextual information. As the number of domains increases, obtaining simultaneous supervision across all domains becomes increasingly challenging. We focus on multi-domain translation in a semi-supervised setting, extending the classical domain translation paradigm. Rather than addressing specific translation directions or limiting translations to domain pairs, we develop methods facilitating translations between any possible domain configurations, determined at test time. The semi-supervised aspect reflects real-world scenarios where complete data annotation is often infeasible or prohibitively expensive. Our work explores three main areas: (1) studying latent space regularization functions to enhance domain translation learning with limited supervision, (2) examining the scalability and flexibility of diffusion-based translation models, and (3) improving the generation speed of diffusion-based inpainting models. First, we propose LSM, a semi-supervised translation framework leveraging additional input and structured output data to regularize inter-domain and intra-domain dependencies. Second, we develop MDD, a novel diffusion-based multi-domain translation semi-supervised framework. MDD shifts the classical reconstruction loss of diffusion models to a translation loss by modeling different noise levels per domain. The model leverages less noisy domains to reconstruct noisier ones, modeling missing data from the semi-supervised setting as pure noise and enabling flexible configuration of condition and target domains. Finally, we introduce TD-Paint, a novel diffusion-based inpainting model improving generation speed and reducing computational burden. Through investigation of the generation sampling process, we observe that diffusion-based inpainting models suffer from unsynchronized generation and conditioning. Existing models often rely on resampling steps or additional regularization losses to realign condition and generation, increasing time and computational complexity. TD-Paint addresses this by modeling variable noise levels at the pixel level, enabling efficient use of the condition from the generation onset
Wu, Fei. "An online domain-based Portuguese-Chinese machine translation system." Thesis, University of Macau, 1999. http://umaclib3.umac.mo/record=b1636999.
Full textChinea, Ríos Mara. "Advanced techniques for domain adaptation in Statistical Machine Translation." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/117611.
Full text[CAT] La Traducció Automàtica Estadística és un sup-camp de la lingüística computacional que investiga com emprar els ordinadors en el procés de traducció d'un text d'un llenguatge humà a un altre. La traducció automàtica estadística és l'enfocament més popular que s'empra per a construir aquests sistemes de traducció automàtics. La qualitat d'aquests sistemes depèn en gran mesura dels exemples de traducció que s'empren durant els processos d'entrenament i adaptació dels models. Els conjunts de dades emprades són obtinguts a partir d'una gran varietat de fonts i en molts casos pot ser que no tinguem a mà les dades més adequades per a un domini específic. Donat aquest problema de manca de dades, la idea principal per a solucionar-ho és trobar aquells conjunts de dades més adequades per a entrenar o adaptar un sistema de traducció. En aquest sentit, aquesta tesi proposa un conjunt de tècniques de selecció de dades que identifiquen les dades bilingües més rellevants per a una tasca extrets d'un gran conjunt de dades. Com a primer pas en aquesta tesi, les tècniques de selecció de dades són aplicades per a millorar la qualitat de la traducció dels sistemes de traducció sota el paradigma basat en frases. Aquestes tècniques es basen en el concepte de representació contínua de les paraules o les oracions en un espai vectorial. Els resultats experimentals demostren que les tècniques utilitzades són efectives per a diferents llenguatges i dominis. El paradigma de Traducció Automàtica Neuronal també va ser aplicat en aquesta tesi. Dins d'aquest paradigma, investiguem l'aplicació que poden tenir les tècniques de selecció de dades anteriorment validades en el paradigma basat en frases. El treball realitzat es va centrar en la utilització de dues tasques diferents. D'una banda, investiguem com augmentar la qualitat de traducció del sistema, augmentant la grandària del conjunt d'entrenament. D'altra banda, el mètode de selecció de dades es va emprar per a crear un conjunt de dades sintètiques. Els experiments es van realitzar per a diferents dominis i els resultats de traducció obtinguts són convincents per a ambdues tasques. Finalment, cal assenyalar que les tècniques desenvolupades i presentades al llarg d'aquesta tesi poden implementar-se fàcilment dins d'un escenari de traducció real.
[EN] La Traducció Automàtica Estadística és un sup-camp de la lingüística computacional que investiga com emprar els ordinadors en el procés de traducció d'un text d'un llenguatge humà a un altre. La traducció automàtica estadística és l'enfocament més popular que s'empra per a construir aquests sistemes de traducció automàtics. La qualitat d'aquests sistemes depèn en gran mesura dels exemples de traducció que s'empren durant els processos d'entrenament i adaptació dels models. Els conjunts de dades emprades són obtinguts a partir d'una gran varietat de fonts i en molts casos pot ser que no tinguem a mà les dades més adequades per a un domini específic. Donat aquest problema de manca de dades, la idea principal per a solucionar-ho és trobar aquells conjunts de dades més adequades per a entrenar o adaptar un sistema de traducció. En aquest sentit, aquesta tesi proposa un conjunt de tècniques de selecció de dades que identifiquen les dades bilingües més rellevants per a una tasca extrets d'un gran conjunt de dades. Com a primer pas en aquesta tesi, les tècniques de selecció de dades són aplicades per a millorar la qualitat de la traducció dels sistemes de traducció sota el paradigma basat en frases. Aquestes tècniques es basen en el concepte de representació contínua de les paraules o les oracions en un espai vectorial. Els resultats experimentals demostren que les tècniques utilitzades són efectives per a diferents llenguatges i dominis. El paradigma de Traducció Automàtica Neuronal també va ser aplicat en aquesta tesi. Dins d'aquest paradigma, investiguem l'aplicació que poden tenir les tècniques de selecció de dades anteriorment validades en el paradigma basat en frases. El treball realitzat es va centrar en la utilització de dues tasques diferents d'adaptació del sistema. D'una banda, investiguem com augmentar la qualitat de traducció del sistema, augmentant la grandària del conjunt d'entrenament. D'altra banda, el mètode de selecció de dades es va emprar per a crear un conjunt de dades sintètiques. Els experiments es van realitzar per a diferents dominis i els resultats de traducció obtinguts són convincents per a ambdues tasques. Finalment, cal assenyalar que les tècniques desenvolupades i presentades al llarg d'aquesta tesi poden implementar-se fàcilment dins d'un escenari de traducció real.
Chinea Ríos, M. (2019). Advanced techniques for domain adaptation in Statistical Machine Translation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117611
TESIS
Farajian, Mohammad Amin. "Online Adaptive Neural Machine Translation: from single- to multi-domain scenarios." Doctoral thesis, Università degli studi di Trento, 2018. https://hdl.handle.net/11572/367944.
Full textFarajian, Mohammad Amin. "Online Adaptive Neural Machine Translation: from single- to multi-domain scenarios." Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/2921/1/PhD_Thesis_Amin.pdf.
Full textMansour, Saab Verfasser], Hermann [Akademischer Betreuer] [Ney, and Khalil [Akademischer Betreuer] Sima'an. "Domain adaptation for statistical machine translation / Saab Mansour ; Hermann Ney, Khalil Sima'an." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1170780180/34.
Full textLaranjeira, Bruno Rezende. "On the application of focused crawling for statistical machine translation domain adaptation." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/117259.
Full textStatistical Machine Translation (SMT) is highly dependent on the availability of parallel corpora for training. However, these kinds of resource may be hard to be found, especially when dealing with under-resourced languages or very specific domains, like the dermatology. For working this situation around, one possibility is the use of comparable corpora, which are much more abundant resources. One way of acquiring comparable corpora is to apply Focused Crawling (FC) algorithms. In this work we propose novel approach for FC algorithms, some based on n-grams and other on the expressive power of multiword expressions. We also assess the viability of using FC for performing domain adaptations for generic SMT systems and whether there is a correlation between the quality of the FC algorithms and of the SMT systems that can be built with its collected data. Results indicate that the use of FCs is, indeed, a good way for acquiring comparable corpora for SMT domain adaptation and that there is a correlation between the qualities of both processes.
Mansour, Saab [Verfasser], Hermann [Akademischer Betreuer] Ney, and Khalil [Akademischer Betreuer] Sima'an. "Domain adaptation for statistical machine translation / Saab Mansour ; Hermann Ney, Khalil Sima'an." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1170780180/34.
Full textPizzati, Fabio <1993>. "Exploring domain-informed and physics-guided learning in image-to-image translation." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10499/1/pizzati_fabio_tesi.pdf.
Full textBooks on the topic "Domain translation"
Kaźmierczak, Marta. Przekład w kręgu intertekstualności: Na materiale tłumaczeń poezji Bolesława Leśmiana = [Perevod v krugu intertekstualʹnosti] = Translation in the domain of intertextuality. Warszawa: Instytut Lingwistyki Stosowanej Uniwersytetu Warszawskiego, 2012.
Find full textYŏn'guwŏn, Han'guk Chŏnja T'ongsin. Ŭngyong t'ŭkhwa Han-Chung-Yŏng chadong pŏnyŏk kisul kaebal e kwanhan yŏn'gu =: Domain customized machine translation technology development for Korean, Chinese, English. [Kyŏnggi-do Kwach'ŏn-si]: Chisik Kyŏngjebu, 2009.
Find full textGarzone, G. Domain-specific English and language mediation in professional and institutional settings. Milano: Arcipelago, 2003.
Find full text1939-, Memon Muhammad Umar, ed. Domains of fear and desire: Urdu stories. Toronto, Ontario: TSAR, 1992.
Find full text1949-, Rioux Hélène, ed. Anne au Domaine des Peupliers. Charlottetown, P.E.I: Ragweed Press, 1989.
Find full textMontgomery, L. M. Anne au Domaine des peupliers: Roman. Charlottetown, Î.-P.-É: Ragweed Press, 1989.
Find full textMontgomery, L. M. Anne au Domaine des peupliers: Roman. Montréal: Québec/Amérique, 1989.
Find full textHaroutyunian, Sona, and Dario Miccoli. Orienti migranti: tra letteratura e traduzione. Venice: Fondazione Università Ca’ Foscari, 2020. http://dx.doi.org/10.30687/978-88-6969-499-8.
Full textA, Constas Mark, and Sternberg Robert J, eds. Translating theory and research into educational practice: Developments in content domains, large scale reform, and intellectual capacity. Mahwah, NJ: Lawrence Erlbaum Associates, 2006.
Find full textBook chapters on the topic "Domain translation"
Karatsiolis, Savvas, Christos N. Schizas, and Nicolai Petkov. "Modular Domain-to-Domain Translation Network." In Artificial Neural Networks and Machine Learning – ICANN 2018, 425–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_42.
Full textKatzir, Oren, Dani Lischinski, and Daniel Cohen-Or. "Cross-Domain Cascaded Deep Translation." In Computer Vision – ECCV 2020, 673–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58536-5_40.
Full textNoordman, Leo G. M., Wietske Vonk, and Wim H. G. Simons. "Knowledge representation in the domain of economics." In Text, Translation, Computational Processing, 235–60. Berlin, New York: DE GRUYTER MOUTON, 2000. http://dx.doi.org/10.1515/9783110826005.235.
Full textSperanza, Giulia, and Johanna Monti. "Chapter 3. Evaluating the Italian-English machine translation quality of MWUs in the domain of archaeology." In Current Issues in Linguistic Theory, 40–56. Amsterdam: John Benjamins Publishing Company, 2024. http://dx.doi.org/10.1075/cilt.366.03spe.
Full textLivbjerg, Inge, and Inger M. Mees. "Patterns of dictionary use in non-domain-specific translation." In Benjamins Translation Library, 123–36. Amsterdam: John Benjamins Publishing Company, 2003. http://dx.doi.org/10.1075/btl.45.11liv.
Full textBiggerstaff, Ted J. "Control Localization in Domain Specific Translation." In Software Reuse: Methods, Techniques, and Tools, 153–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46020-9_11.
Full textMurez, Zak, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi, and Kyungnam Kim. "Domain Adaptation via Image to Image Translation." In Domain Adaptation in Computer Vision with Deep Learning, 117–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45529-3_7.
Full textSapiro, Gisèle. "The Sociology of Translation: A New Research Domain." In A Companion to Translation Studies, 82–94. Oxford, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118613504.ch6.
Full textRoyer, Amélie, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole, and Kevin Murphy. "XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings." In Domain Adaptation for Visual Understanding, 33–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30671-7_3.
Full textYang, Manzhi, Huaping Zhang, Chenxi Yu, and Guotong Geng. "Continual Domain Adaption for Neural Machine Translation." In Communications in Computer and Information Science, 427–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8145-8_33.
Full textConference papers on the topic "Domain translation"
Hendy, Amr, Mohamed Abdelghaffar, Mohamed Afify, and Ahmed Y. Tawfik. "Domain Specific Sub-network for Multi-Domain Neural Machine Translation." In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 351–56. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.aacl-short.43.
Full textYou, WangJie, Pei Guo, Juntao Li, Kehai Chen, and Min Zhang. "Efficient Domain Adaptation for Non-Autoregressive Machine Translation." In Findings of the Association for Computational Linguistics ACL 2024, 13657–70. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-acl.810.
Full textBhattacharjee, Soham, Baban Gain, and Asif Ekbal. "Domain Dynamics: Evaluating Large Language Models in English-Hindi Translation." In Proceedings of the Ninth Conference on Machine Translation, 341–54. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.wmt-1.27.
Full textHu, Tianxiang, Pei Zhang, Baosong Yang, Jun Xie, Derek F. Wong, and Rui Wang. "Large Language Model for Multi-Domain Translation: Benchmarking and Domain CoT Fine-tuning." In Findings of the Association for Computational Linguistics: EMNLP 2024, 5726–46. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.328.
Full textLuo, Yuanchang, Zhanglin Wu, Daimeng Wei, Hengchao Shang, Zongyao Li, Jiaxin Guo, Zhiqiang Rao, et al. "Multilingual Transfer and Domain Adaptation for Low-Resource Languages of Spain." In Proceedings of the Ninth Conference on Machine Translation, 949–54. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.wmt-1.93.
Full textVogel, Stephan. "Speech-translation: from domain-limited to domain-unlimited translation tasks." In 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU). IEEE, 2007. http://dx.doi.org/10.1109/asru.2007.4430141.
Full textLin, Jianxin, Yingce Xia, Yijun Wang, Tao Qin, and Zhibo Chen. "Image-to-Image Translation with Multi-Path Consistency Regularization." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/413.
Full textAla, Hema, Vandan Mujadia, and Dipti Misra Sharma. "Domain Adaptation for Hindi-Telugu Machine Translation using Domain Specific Back Translation." In International Conference Recent Advances in Natural Language Processing. INCOMA Ltd. Shoumen, BULGARIA, 2021. http://dx.doi.org/10.26615/978-954-452-072-4_004.
Full textSokova, Daria, and Cristina Toledo-Báez. "Linguistic Complexity in Domain-Specific Neural Machine Translation." In New Trends in Translation and Technology Conference 2024, 191–200. INCOMA Ltd. Shoumen, BULGARIA, 2024. http://dx.doi.org/10.26615/issn.2815-4711.2024_015.
Full textWei, Hao-Ran, Zhirui Zhang, Boxing Chen, and Weihua Luo. "Iterative Domain-Repaired Back-Translation." In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.emnlp-main.474.
Full textReports on the topic "Domain translation"
Micher, Jeffrey C. Improving Domain-specific Machine Translation by Constraining the Language Model. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada568649.
Full textLavoie, Benoit, Michael White, and Tanya Korelsky. Learning Domain-Specific Transfer Rules: An Experiment with Korean to English Translation. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada457732.
Full textShaver, Amber, Hayam Megally, Sean Boynes, Tooka Zokaie, Nithya Puttige Ramesh, Don Clermont, and Annaliese Cothron. Illustrating the Role of Dental Journals in the Translational Science Process. American Institute of Dental Public Health, 2022. http://dx.doi.org/10.58677/pqbg1492.
Full textKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Full textChejanovsky, Nor, and Suzanne M. Thiem. Isolation of Baculoviruses with Expanded Spectrum of Action against Lepidopteran Pests. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7586457.bard.
Full textRogers, Aaron. Translational Fidelity of a Eukaryotic Glutaminyl-tRNA Synthetase with an N-terminal Domain Appendage. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2005.
Full textPaule, Bernard, Flourentzos Flourentzou, Tristan de KERCHOVE d’EXAERDE, Julien BOUTILLIER, and Nicolo Ferrari. PRELUDE Roadmap for Building Renovation: set of rules for renovation actions to optimize building energy performance. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541614638.
Full textChristopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Full textOhad, Nir, and Robert Fischer. Regulation of Fertilization-Independent Endosperm Development by Polycomb Proteins. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695869.bard.
Full textMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon, and R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, October 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Full text