Academic literature on the topic 'Domain specific knowledge graph'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Domain specific knowledge graph.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Domain specific knowledge graph"
Barai, Mohit Kumar, and Subhasis Sanyal. "DOMAIN SPECIFIC KEY FEATURE EXTRACTION USING KNOWLEDGE GRAPH MINING." Multiple Criteria Decision Making 15 (2020): 1–22. http://dx.doi.org/10.22367/mcdm.2020.15.01.
Full textTong, Peihao, Qifan Zhang, and Junjie Yao. "Leveraging Domain Context for Question Answering Over Knowledge Graph." Data Science and Engineering 4, no. 4 (November 4, 2019): 323–35. http://dx.doi.org/10.1007/s41019-019-00109-w.
Full textWu, Jiajing, Zhiqiang Wei, Dongning Jia, Xin Dou, Huo Tang, and Nannan Li. "Constructing marine expert management knowledge graph based on Trellisnet-CRF." PeerJ Computer Science 8 (September 5, 2022): e1083. http://dx.doi.org/10.7717/peerj-cs.1083.
Full textChoi, Junho. "Graph Embedding-Based Domain-Specific Knowledge Graph Expansion Using Research Literature Summary." Sustainability 14, no. 19 (September 27, 2022): 12299. http://dx.doi.org/10.3390/su141912299.
Full textYuan, Jianbo, Zhiwei Jin, Han Guo, Hongxia Jin, Xianchao Zhang, Tristram Smith, and Jiebo Luo. "Constructing biomedical domain-specific knowledge graph with minimum supervision." Knowledge and Information Systems 62, no. 1 (March 23, 2019): 317–36. http://dx.doi.org/10.1007/s10115-019-01351-4.
Full textHassani, Kaveh. "Cross-Domain Few-Shot Graph Classification." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (June 28, 2022): 6856–64. http://dx.doi.org/10.1609/aaai.v36i6.20642.
Full textKim, Taejin, Yeoil Yun, and Namgyu Kim. "Deep Learning-Based Knowledge Graph Generation for COVID-19." Sustainability 13, no. 4 (February 19, 2021): 2276. http://dx.doi.org/10.3390/su13042276.
Full textSharma, Bhuvan, Van C. Willis, Claudia S. Huettner, Kirk Beaty, Jane L. Snowdon, Shang Xue, Brett R. South, Gretchen P. Jackson, Dilhan Weeraratne, and Vanessa Michelini. "Predictive article recommendation using natural language processing and machine learning to support evidence updates in domain-specific knowledge graphs." JAMIA Open 3, no. 3 (September 29, 2020): 332–37. http://dx.doi.org/10.1093/jamiaopen/ooaa028.
Full textLiu, Weijie, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. "K-BERT: Enabling Language Representation with Knowledge Graph." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 03 (April 3, 2020): 2901–8. http://dx.doi.org/10.1609/aaai.v34i03.5681.
Full textHuang, Lan, Yuanwei Zhao, Bo Wang, Dongxu Zhang, Rui Zhang, Subhashis Das, Simone Bocca, and Fausto Giunchiglia. "Property-Based Semantic Similarity Criteria to Evaluate the Overlaps of Schemas." Algorithms 14, no. 8 (August 17, 2021): 241. http://dx.doi.org/10.3390/a14080241.
Full textDissertations / Theses on the topic "Domain specific knowledge graph"
Lalithsena, Sarasi. "Domain-specific Knowledge Extraction from the Web of Data." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1527202092744638.
Full textPORRINI, RICCARDO. "Construction and Maintenance of Domain Specific Knowledge Graphs for Web Data Integration." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/126789.
Full textJen, Chun-Heng. "Exploring Construction of a Company Domain-Specific Knowledge Graph from Financial Texts Using Hybrid Information Extraction." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291107.
Full textFöretag existerar inte som isolerade organisationer. De är inbäddade i strukturella relationer med varandra. Att kartlägga ett visst företags relationer med andra företag när det gäller konkurrenter, dotterbolag, leverantörer och kunder är nyckeln till att förstå företagets huvudsakliga riskfaktorer och möjligheter. Det konventionella sättet att hålla sig uppdaterad med denna viktiga kunskap var genom att läsa ekonomiska nyheter och rapporter från högkvalificerad manuell arbetskraft som till exempel en finansanalytiker. Men med utvecklingen av ”Natural Language Processing” (NLP) och grafdatabaser är det nu möjligt att systematiskt extrahera och lagra strukturerad information från ostrukturerade datakällor. Den nuvarande metoden för att effektivt extrahera information använder övervakade maskininlärningsmodeller som kräver en stor mängd märkta träningsdata. Datamärkningsprocessen är vanligtvis tidskrävande och svår att få i ett domänspecifikt område. Detta projekt utforskar ett tillvägagångssätt för att konstruera en företagsdomänspecifikt ”Knowledge Graph” (KG) som innehåller företagsrelaterade enheter och relationer från SEC 10-K-arkivering genom att kombinera en i förväg tränad allmän NLP med regelbaserade mönster i ”Named Entity Recognition” (NER) och ”Relation Extraction” (RE). Detta tillvägagångssätt eliminerar den tidskrävande datamärkningsuppgiften i det statistiska tillvägagångssättet och genom att utvärdera tio SEC 10-K arkiv har modellen den totala återkallelsen på 53,6 %, precision på 75,7 % och F1-poängen på 62,8 %. Resultatet visar att det är möjligt att extrahera företagsinformation med hybridmetoderna, vilket inte kräver en stor mängd märkta träningsdata. Projektet kräver dock en tidskrävande process för att hitta lexikala mönster från meningar för att extrahera företagsrelaterade enheter och relationer.
Kerzhner, Aleksandr A. "Using domain specific languages to capture design knowledge for model-based systems engineering." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28249.
Full textDubé, Denis 1981. "Graph layout for domain-specific modeling." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97943.
Full textAs a starting point, all major graph drawing techniques and many of their variants are summarized from the literature. Thereafter, several of these graph drawing techniques are chosen and implemented in AToM3, A Tool for Multi-formalism and Meta-Modeling.
A new means of specifying formalism-specific user-interface behaviour is then described. By fully modeling the reactive behaviour of a formalism-specific modeling environment, including layout, existing graph drawing algorithms can be re-used without modification. The DCharts formalism is modeled to demonstrate the effectiveness of this approach.
Yoon, Changwoo. "Domain-specific knowledge-based informational retrieval model using knowledge reduction." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011560.
Full textEryarsoy, Enes. "Using domain-specific knowledge in support vector machines." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011358.
Full textKelemen, Deborah Ann 1967. "The effects of domain-specific knowledge on similarity judgements." Thesis, The University of Arizona, 1992. http://hdl.handle.net/10150/278269.
Full textYang, Mengjiao. "Cache and NUMA optimizations in a domain-specific language for graph processing." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119915.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 63-67).
High-performance graph processing is challenging because the sizes and structures of real-world graphs can vary widely. Graph algorithms also have distinct performance characteristics that lead to different performance bottlenecks. Even though memory technologies such as CPU cache and non-uniform memory access (NUMA) have been designed to improve software performance, the existing graph processing frameworks either do not take advantage of these hardware features or over-complicate the original graph algorithms. In addition, these frameworks do not provide an interface for easily composing and fine-tuning performance optimizations from various levels of the software stack. As a result, they achieve suboptimal performance. The work described in this thesis builds on recent research in developing a domain-specific language (DSL) for graph processing. GraphIt is a DSL designed to provide a comprehensive set of performance optimizations and an interface to combine the best optimization schedules. This work extends the GraphIt DSL to support locality optimizations on modern multisocket multicore machines, while preserving the simplicity of graph algorithms. To our knowledge, this is the first work to support cache and NUMA optimizations in a graph DSL. We show that cache and NUMA optimizations together are able to improve the performance of GraphIt by up to a factor of 3. Combined with all of the optimizations in GraphIt, our performance is up to 4.8x faster than the next fastest existing framework. In addition, algorithms implemented in GraphIt use fewer lines of code than existing frameworks. The work in this thesis supports the design choice of a compiler approach to constructing graph processing systems. The high performance and simplicity of GraphIt justify the separation of concerns (modularity) design principle in computer science, and contribute to the larger effort of agile software systems development.
by Mengjiao Yang.
M. Eng.
Lewenhaupt, Adam, and Emil Brismar. "The impact of corpus choice in domain specific knowledge representation." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-220679.
Full textBooks on the topic "Domain specific knowledge graph"
Kejriwal, Mayank. Domain-Specific Knowledge Graph Construction. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12375-8.
Full textGdanskiy, Nikolay. Fundamentals of the theory and algorithms on graphs. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/978686.
Full textKejriwal, Mayank. Domain-Specific Knowledge Graph Construction. Springer, 2019.
Find full textFischer, Frank, Jonathan Osborne, Clark A. Chinn, and Katharina Engelmann. Scientific Reasoning and Argumentation: The Roles of Domain-Specific and Domain-General Knowledge. Taylor & Francis Group, 2018.
Find full textScientific Reasoning and Argumentation: The Roles of Domain-Specific and Domain-General Knowledge. Taylor & Francis Group, 2018.
Find full textScientific Reasoning and Argumentation: The Roles of Domain-Specific and Domain-General Knowledge. Taylor & Francis Group, 2018.
Find full textLennox, James G. Aristotle on Inquiry: Erotetic Frameworks and Domain-Specific Norms. University of Cambridge ESOL Examinations, 2021.
Find full textLennox, James G. Aristotle on Inquiry: Erotetic Frameworks and Domain-Specific Norms. Cambridge University Press, 2021.
Find full textWahtera, Sandra Lee. DIFFERENTIATING NURSING PROCESS PERFORMANCE BY EDUCATION, EXPERIENCE, DOMAIN-SPECIFIC KNOWLEDGE, STRATEGIC KNOWLEDGE AND SELF-EFFICACY. 1991.
Find full textThe effect of domain knowledge on searching for specific information in a hypertext environment. Ann Arbor, Mich: University Microfilms International, 1991.
Find full textBook chapters on the topic "Domain specific knowledge graph"
Kejriwal, Mayank. "What Is a Knowledge Graph?" In Domain-Specific Knowledge Graph Construction, 1–7. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12375-8_1.
Full textKejriwal, Mayank. "Advanced Topic: Knowledge Graph Completion." In Domain-Specific Knowledge Graph Construction, 59–74. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12375-8_4.
Full textKejriwal, Mayank. "Information Extraction." In Domain-Specific Knowledge Graph Construction, 9–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12375-8_2.
Full textKejriwal, Mayank. "Entity Resolution." In Domain-Specific Knowledge Graph Construction, 33–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12375-8_3.
Full textKejriwal, Mayank. "Ecosystems." In Domain-Specific Knowledge Graph Construction, 75–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12375-8_5.
Full textMo, Wenkai, Peng Wang, Haiyue Song, Jianyu Zhao, and Xiang Zhang. "Learning Domain-Specific Ontologies from the Web." In Linked Data and Knowledge Graph, 132–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-54025-7_12.
Full textYang, Hang, Yubo Chen, Kang Liu, and Jun Zhao. "Meta Learning for Event Argument Extraction via Domain-Specific Information Enhanced." In Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence, 160–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1964-9_13.
Full textJain, Nitisha. "Domain-Specific Knowledge Graph Construction for Semantic Analysis." In The Semantic Web: ESWC 2020 Satellite Events, 250–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62327-2_40.
Full textHuang, Shanshan, and Xiaojun Wan. "AKMiner: Domain-Specific Knowledge Graph Mining from Academic Literatures." In Lecture Notes in Computer Science, 241–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41154-0_18.
Full textGohourou, Didier, and Kazuhiro Kuwabara. "Building a Domain-Specific Knowledge Graph for Business Networking Analysis." In Intelligent Information and Database Systems, 362–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73280-6_29.
Full textConference papers on the topic "Domain specific knowledge graph"
Alotaibi, Rana, Chuan Lei, Abdul Quamar, Vasilis Efthymiou, and Fatma Ozcan. "Property Graph Schema Optimization for Domain-Specific Knowledge Graphs." In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021. http://dx.doi.org/10.1109/icde51399.2021.00085.
Full textGoyal, Nidhi, Niharika Sachdeva, Vijay Choudhary, Rijula Kar, Ponnurangam Kumaraguru, and Nitendra Rajput. "Con2KG-A Large-scale Domain-Specific Knowledge Graph." In HT '19: 30th ACM Conference on Hypertext and Social Media. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3342220.3344931.
Full textYang, Hao, Gengui Xie, Ying Qin, and Song Peng. "Domain Specific NMT based on Knowledge Graph Embedding and Attention." In 2019 21st International Conference on Advanced Communication Technology (ICACT). IEEE, 2019. http://dx.doi.org/10.23919/icact.2019.8701980.
Full textZhao, Xuejiao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya Sawada, Jing Li, and Shang-Wei Lin. "HDSKG: Harvesting domain specific knowledge graph from content of webpages." In 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017. http://dx.doi.org/10.1109/saner.2017.7884609.
Full textWang, Yan, Yacine Allouache, and Christian Joubert. "A Staffing Recommender System based on Domain-Specific Knowledge Graph." In 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS). IEEE, 2021. http://dx.doi.org/10.1109/snams53716.2021.9732087.
Full textHou, Pei-Yu, Daniel R. Korn, Cleber C. Melo-Filho, David R. Wright, Alexander Tropsha, and Rada Chirkova. "Compact Walks: Taming Knowledge-Graph Embeddings with Domain- and Task-Specific Pathways." In SIGMOD/PODS '22: International Conference on Management of Data. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3514221.3517903.
Full textZhu, Xixi, Bin Liu, Zhaoyun Ding, Cheng Zhu, and Li Yao. "Approximate Ontology Reasoning for Domain-Specific Knowledge Graph based on Deep Learning." In 2021 7th International Conference on Big Data and Information Analytics (BigDIA). IEEE, 2021. http://dx.doi.org/10.1109/bigdia53151.2021.9619694.
Full textYang, Yuanyuan, Kailei Li, Yun Yan, and Jiali Zhu. "Research on the Development Process and Construction of Domain-specific Knowledge Graph." In 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). IEEE, 2022. http://dx.doi.org/10.1109/ipec54454.2022.9777576.
Full textStewart, Michael, and Wei Liu. "Seq2KG: An End-to-End Neural Model for Domain Agnostic Knowledge Graph (not Text Graph) Construction from Text." In 17th International Conference on Principles of Knowledge Representation and Reasoning {KR-2020}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/kr.2020/77.
Full textWang, Shuai, Yu Zhang, and Zhiyong Liao. "Building Domain-Specific Knowledge Graph for Unmanned Combat Vehicle Decision Making under Uncertainty." In 2019 Chinese Automation Congress (CAC). IEEE, 2019. http://dx.doi.org/10.1109/cac48633.2019.8996418.
Full textReports on the topic "Domain specific knowledge graph"
Pereira, Fernando. Candide: An Interactive System for the Acquisition of Domain Specific Knowledge. Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada196646.
Full textShalatska, Hanna M., Olena Yu Zotova-Sadylo, and Ivan O. Muzyka. Moodle course in teaching English language for specific purposes for masters in mechanical engineering. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3881.
Full textShapovalov, Viktor B., Yevhenii B. Shapovalov, Zhanna I. Bilyk, Artem I. Atamas, Roman A. Tarasenko, and Vitaliy V. Tron. Centralized information web-oriented educational environment of Ukraine. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3251.
Full textMehmood, Hamid. Bibliometrics of Water Research: A Global Snapshot. United Nations University Institute for Water, Environment and Health, May 2019. http://dx.doi.org/10.53328/eybt8774.
Full textMarold, Juliane, Ruth Wagner, Markus Schöbel, and Dietrich Manzey. Decision-making in groups under uncertainty. Fondation pour une culture de sécurité industrielle, February 2012. http://dx.doi.org/10.57071/361udm.
Full textSessa, Guido, and Gregory Martin. role of FLS3 and BSK830 in pattern-triggered immunity in tomato. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604270.bard.
Full text