Academic literature on the topic 'Document image interpretation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Document image interpretation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Document image interpretation"
A. Jain, Sajan, N. Shobha Rani, and N. Chandan. "Image Enhancement of Complex Document Images Using Histogram of Gradient Features." International Journal of Engineering & Technology 7, no. 4.36 (December 9, 2018): 780. http://dx.doi.org/10.14419/ijet.v7i4.36.24244.
Full textGolodkov, Alexander Olegovich, Oksana Vladimirovna Belyaeva, and Andrey Igorevich Perminov. "Real Application of CNN Interpretation Methods: Document Image Classification Model Errors’ Detection and Validation." Proceedings of the Institute for System Programming of the RAS 35, no. 2 (2023): 7–18. http://dx.doi.org/10.15514/ispras-2023-35(2)-1.
Full textZakirova, Oksana, and Andrei Bakhmutsky. "The Teacher Image Interpretation in Student Teachers: A Linguistic Anthropology Approach." Education Sciences 13, no. 8 (August 16, 2023): 834. http://dx.doi.org/10.3390/educsci13080834.
Full textMikhaylov, Andrey Anatolievitch. "Automatic data labeling for document image segmentation using deep neural networks." Proceedings of the Institute for System Programming of the RAS 34, no. 6 (2022): 137–46. http://dx.doi.org/10.15514/ispras-2022-34(6)-10.
Full textMendonça dos Santos, Alessandra, Francisco Montagner, Ana Márcia Viana Wanzeler, Heraldo Luis Dias da Silveira, Nádia Assein Arús, and Mariana Boessio Vizzotto. "Can the method of CBCT interpretation influence endodontic diagnosis?" Revista da Faculdade de Odontologia de Porto Alegre 63, no. 1 (September 15, 2022): 47–52. http://dx.doi.org/10.22456/2177-0018.117538.
Full textDietrich, C., M. Averkiou, J. M. Correas, N. Lassau, E. Leen, and F. Piscaglia. "An EFSUMB Introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for Quantification of Tumour Perfusion." Ultraschall in der Medizin - European Journal of Ultrasound 33, no. 04 (July 27, 2012): 344–51. http://dx.doi.org/10.1055/s-0032-1313026.
Full textRiba, Pau. "Distilling Structure from Imagery:Graph-based Models for the Interpretation of Document Images." ELCVIA Electronic Letters on Computer Vision and Image Analysis 19, no. 2 (January 12, 2021): 9–10. http://dx.doi.org/10.5565/rev/elcvia.1313.
Full textDaryal, Neeti, and Vinod Kumar. "An Error Analysis on Images Using Skeletonization Methods." Advanced Materials Research 403-408 (November 2011): 4184–88. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.4184.
Full textDe Vliegher, Beata Maria. "The Use of Spot-Hrv Data for the Mapping of the Land Cover (Applied upon East-Mono, Central Togo)." Afrika Focus 7, no. 1 (January 26, 1991): 15–48. http://dx.doi.org/10.1163/2031356x-00701003.
Full textWen, Yi Feng. "Icon, Archetype and Symbolic Meanings of Dragon: An Interpretation of Design Theme and Image." Advanced Materials Research 446-449 (January 2012): 1897–904. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.1897.
Full textDissertations / Theses on the topic "Document image interpretation"
Guimaraes, figueroa pralon Leandro. "Scene Analysis and Interpretation by ICA Based Polarimetric Incoherent Target Decomposition for Polarimetric SAR Data." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT100/document.
Full textThis thesis comprises two research axes. First, a new methodological framework to assess the conformity of multivariate high-resolution Synthetic Aperture Radar (SAR) data with respect to the Spherically Invariant Random Vector model in terms of asymptotic statistics is proposed. More precisely, spherical symmetry is investigated by applying statistical hypotheses testing on the structure of the quadricovariance matrix. Both simulated and real data are taken into consideration to investigate the performance of the derived test by a detailed qualitative and quantitative analysis. The most important conclusion drawn, regarding the methodology employed in analysing SAR data, is that, depending on the scenario under study, a considerable portion of high heterogeneous data may not fit the aforementioned model. Therefore, traditional detection and classification algorithms developed based on the latter become sub-optimal when applied in such kind of regions. This assertion highlights for the need of the development of model independent algorithms, like the Independent Component Analysis, what leads to the second part of the thesis. A Monte Carlo approach is performed in order to investigate the bias in estimating the Touzi's Target Scattering Vector Model (TSVM) parameters when ICA is employed using a sliding window approach under different scenarios. Finally, the performance of the algorithm is also evaluated under Gaussian clutter assumption and when spatial correlation is introduced in the model. These theoretical assessment of ICA based ICTD enables a more efficient analysis of the potential new information provided by the ICA based ICTD. Both Touzi TSVM as well as Cloude and Pottier H/alpha feature space are then taken into consideration for that purpose. The combined use of ICA and Touzi TSVM is straightforward, indicating new, but not groundbreaking information, when compared to the Eigenvector approach. Nevertheless, the analysis of the combined use of ICA and Cloude and Pottier H/alpha feature space revealed a potential aspect of the Independent Component Analysis based ICTD, which can not be matched by the Eigenvector approach. ICA does not introduce any unfeasible region in the H/alpha plane, increasing the range of possible natural phenomenons depicted in the aforementioned feature space
Détré, Natacha. "Les "relecteurs d'images" : une pratique artistique contemporaine de collecte, d'association et de rediffusion d'images photographiques." Thesis, Toulouse 2, 2014. http://www.theses.fr/2014TOU20050/document.
Full textThis thesis proposes to define a generation of artists who are collecting, associating and redistributing pictures without changing or transforming the iconic contents. In order to elaborate their characteristics, several french contemporary artists were interviewed: Eric Baudelaire, Ludovic Burel, Hervé Coqueret, documentation céline duval, Pierre Leguillon, Mathieu Pernot, Régis Perray and Eric Watier. The analysis of the devices implemented by the artists shows two aspects that could identify the specificity of their work: their way of associating the pictures with each other offers new possibilities of interpretation and leads to a second reading of the pictures; and their practice is taking place during the transition between the eras of image reproduction techniques and numerical techniques. Within the scope of a multi-field scientific research, it will be necessary to study the creation processes from the choice of the representation till the distribution of the projects (I), to analyse the polysemy of the images and the possibility of rereading their signs (II), and, finally, to understand how the artistic position is located between two, with respect to pictures, technically distinguished epoches (III). To differentiate this generation of artists from others reusing images, the thesis suggests a new name: the “Rereaders of pictures”
Ahouandjinou, Arnaud. "Reconnaissance de scénario par les Modèles de Markov Cachés Crédibilistes : Application à l'interprétation automatique de séquences vidéos médicales." Thesis, Littoral, 2014. http://www.theses.fr/2014DUNK0380/document.
Full textThis thesis focuses on the study and the implementation of an intelligent visual monitoring system in hospitals. In the context of an application for patient monitoring in mediacal intensive care unit, we introduce an original concept of the Medical Black Box and we propose a new system for visual monitoring of Automatic Detection of risk Situations and Alert (DASA) based on a CCTV system with network smart camera. The aim is to interpret the visual information flow and to detect at real-time risk situations to prevent the mediacl team and then archive the events in a video that is based Medical Black Box data. The interpretation system is based on scenario recognition algorithms that exploit the Hidden Markov Models (HMM). An extension of the classic model of HMM is proposed to handle the internal reporting structure of the scenarios and to control the duration of each state of the Markov model. The main contribution of this work relies on the integration of an evidential reasoning, in order to manage the recognition decision taking into account the imperfections of available information. The proposed scenarios recognition method have been tested and assessed on database of medical video sequences and compared to standard probabilistic Hidden Markov Models
Riba, Fiérrez Pau. "Distilling Structure from Imagery: Graph-based Models for the Interpretation of Document Images." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670774.
Full textLa comunidad que investiga el reconocimiento de patrones y la visión por computador ha reconocido la importancia de aprovechar la información estructural de las imágenes. Los grafos se han seleccionado como el marco adecuado para representar este tipo de información a causa de su flexibilidad y poder de representación capaz de codificar los componentes, los objetos, las entidades y sus relaciones. Aunque los grafos se han aplicado con éxito a una gran variedad de tareas –como resultado de su naturaleza simbólica y relacional–, siempre han sufrido algunas limitaciones comparados con los métodos estadísticos. Esto se debe al hecho que algunas operaciones matemáticas triviales no tienen una equivalencia en el dominio de los grafos. Por ejemplo, en la base de la mayoría de aplicaciones de reconocimiento de patrones hay la necesidad de comparar objetos. No obstante, esta operación trivial no está debidamente definida por grafos cuando consideramos vectores de características. Durante la investigación, el principal dominio de aplicación se basa en el Análisis y Reconocimiento de Imágenes de Documentos. Este es un subcampo de la Visión por Computador que tiene como objetivo comprender imágenes de documentos. En este contexto la estructura -particularmente la representación en forma de grafo- proporciona una dimensión complementaria al contenido de la imágen. En Visión por Computador la primera dificultad que nos encontramos se basa en construir una representación significativa de grafos que sea capaz de codificar las características relevantes de una imagen. Esto se debe a que es un proceso que tiene que encontrar un equilibrio entre la simplicidad de la representación y la flexibilidad, para representar las diferentes deformaciones que aparecen en cada dominio de la aplicación. Hemos estudiado este tema en la aplicación de la búsqueda de palabras, dividiendo los diferentes trazos en grafemas –las unidades más pequeñas de un alfabeto manuscrito–. Tambien, hemos investigado diferentes metodologías para acelerar el proceso de comparación entre grafos para que la búsqueda de palabras o, incluso, de forma más general, la aplicación de búsqueda de grafos, pueda incluir grandes colecciones de documentos. Estas metodologías han estado principalmente dos: (a) un sistema de indexación de grafos combinado con un sistema de votación en el ámbito de los nodos capaces de eliminar resultados improbables y (b) usando representaciones jerárquicas de grafos que llevan a término la mayoría de las comparaciones en una versión reducida del grafo original mediante comparativas entre los niveles más abstractos y los más detallados. Asimismo, la representación jerárquica también ha demostrado obtener una representación más robusta que el grafo original, además de lidiar con el ruido y las deformaciones de manera elegante. Así pues, proponemos explotar esta información en forma de codificación jerárquica del grafo que permita utilizar técnicas estadísticas clásicas. Los nuevos avances en el aprendizaje profundo geométrico han aparecido como una generalización de las metodologías de aprendizaje profundo aplicadas a dominios no Euclidianos –como grafos y variedades– y han promovido un gran interés en la comunidad científica por estos esquemas de representación. Proponemos una distancia de grafos capaz de obtener resultados comparables al estado del arte en diferentes tareas aprovechando estos nuevos desarrollos, pero considerando las metodologías tradicionales como base. También hemos realizado una colaboración industrial con la finalidad de extraer información automática de las facturas de la empresa (con datos anónimos). El resultado ha sido el desarrollo de un sistema de detección de tablas en documentos administrativos. Así pues, las redes neuronales basadas en grafos han demostrado ser aptas para detectar patrones repetitivos, los cuales, después de un proceso de agregación, constituyen una tabla.
From its early stages, the community of Pattern Recognition and Computer Vision has considered the importance on leveraging the structural information when understanding images. Usually, graphs have been selected as the adequate framework to represent this kind of information due to their flexibility and representational power able to codify both, the components, objects or entities and their pairwise relationship. Even though graphs have been successfully applied to a huge variety of tasks, as a result of their symbolic and relational nature, graphs have always suffered from some limitations compared to statistical approaches. Indeed, some trivial mathematical operations do not have an equivalence in the graph domain. For instance, in the core of many pattern recognition application, there is the need to compare two objects. This operation, which is trivial when considering feature vectors, is not properly defined for graphs. Along this dissertation the main application domain has been on the topic of Document Image Analysis and Recognition. It is a subfield of Computer Vision aiming at understanding images of documents. In this context, the structure and in particular graph representations, provides a complementary dimension to the raw image contents. In computer vision, the first challenge we face is how to build a meaningful graph representation that is able to encode the relevant characteristics of a given image. This representation should find a trade off between the simplicity of the representation and its flexibility to represent the deformations appearing on each application domain. We applied our proposal to the word spotting application where strokes are divided into graphemes which are the smaller units of a handwritten alphabet. We have investigated different approaches to speed-up the graph comparison in order that word spotting, or more generally, a retrieval application is able to handle large collections of documents. On the one hand, a graph indexing framework combined with a votation scheme at node level is able to quickly prune unlikely results. On the other hand, making use of graph hierarchical representations, we are able to perform a coarse-to-fine matching scheme which performs most of the comparisons in a reduced graph representation. Besides, the hierarchical graph representation demonstrated to be drivers of a more robust scheme than the original graph. This new information is able to deal with noise and deformations in an elegant fashion. Therefore, we propose to exploit this information in a hierarchical graph embedding which allows the use of classical statistical techniques. Recently, the new advances on geometric deep learning, which has emerged as a generalization of deep learning methods to non-Euclidean domains such as graphs and manifolds, has raised again the attention to these representation schemes. Taking advantage of these new developments but considering traditional methodologies as a guideline, we proposed a graph metric learning framework able to obtain state-of-the-art results on different tasks. Finally, the contributions of this thesis have been validated in real industrial use case scenarios. For instance, an industrial collaboration has resulted in the development of a table detection framework in annonymized administrative documents containing sensitive data. In particular, the interest of the company is the automatic information extraction from invoices. In this scenario, graph neural networks have proved to be able to detect repetitive patterns which, after an aggregation process, constitute a table.
Vitter, Maxime. "Cartographier l'occupation du sol à grande échelle : optimisation de la photo-interprétation par segmentation d'image." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSES011/document.
Full textOver the last fifteen years, the emergence of remote sensing data at Very High Spatial Resolution (VHRS) and the democratization of Geographic Information Systems (GIS) have helped to meet the new and growing needs for spatial information. The development of new mapping methods offers an opportunity to understand and anticipate land cover change at large scales, still poorly known. In France, spatial databases about land cover and land use at large scale have become an essential part of current planning and monitoring of territories. However, the acquisition of this type of database is still a difficult need to satisfy because the demands concern tailor-made cartographic productions, adapted to the local problems of the territories. Faced with this growing demand, regular service providers of this type of data seek to optimize manufacturing processes with recent image-processing techniques. However, photo interpretation remains the favoured method of providers. Due to its great flexibility, it still meets the need for mapping at large scale, despite its high cost. Using fully automated production methods to substitute for photo interpretation is rarely considered. Nevertheless, recent developments in image segmentation can contribute to the optimization of photo-interpretation practice. This thesis presents a series of tools that participate in the development of digitalization assistance for the photo-interpretation exercise. The assistance results in the realization of a pre-cutting of the landscape from a segmentation carried out on a VHRS image. Tools development is carried out through three large-scale cartographic services, each with different production instructions, and commissioned by public entities. The contribution of these automation tools is analysed through a comparative analysis between two mapping procedures: manual photo interpretation versus digitally assisted segmentation. The productivity gains brought by segmentation are evaluated using quantitative and qualitative indices on different landscape configurations. To varying degrees, it appears that whatever type of landscape is mapped, the gains associated with assisted mapping are substantial. These gains are discussed both technically and thematically from a commercial perspective
Raveaux, Romain. "Fouille de graphes et classification de graphes : application à l’analyse de plans cadastraux." Thesis, La Rochelle, 2010. http://www.theses.fr/2010LAROS311/document.
Full textThis thesis tackles the problem of technical document interpretationapplied to ancient and colored cadastral maps. This subject is on the crossroadof different fields like signal or image processing, pattern recognition, artificial intelligence,man-machine interaction and knowledge engineering. Indeed, each of thesedifferent fields can contribute to build a reliable and efficient document interpretationdevice. This thesis points out the necessities and importance of dedicatedservices oriented to historical documents and a related project named ALPAGE.Subsequently, the main focus of this work: Content-Based Map Retrieval within anancient collection of color cadastral maps is introduced
Books on the topic "Document image interpretation"
Ablameyko, Sergey. Machine Interpretation of Line Drawing Images: Technical Drawings, Maps and Diagrams. London: Springer London, 2000.
Find full textElliott, Neil. Documents and images for the study of Paul. Minneapolis, MN: Fortress Press, 2011.
Find full textDocuments and images for the study of Paul. Minneapolis: Fortress Press, 2010.
Find full textMachine Interpretation of Line Drawing Images: Technical Drawings, Maps and Diagrams. Springer, 2000.
Find full textMachine Interpretation of Line Drawing Images: Technical Drawings, Maps and Diagrams. Springer, 2011.
Find full textLombardi, Elena. Women as Text, Text as Woman. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198818960.003.0004.
Full textTerras, Melissa. Image to Interpretation: An Intelligent System to Aid Historians in Reading the Vindolanda Texts. Oxford Studies in Ancient Documents. Oxford University Press, 2006.
Find full textTerras, Melissa. Image to Interpretation: An Intelligent System to Aid Historians in Reading the Vindolanda Texts (Oxford Studies in Ancient Documents). Oxford University Press, USA, 2006.
Find full textBieringer, Reimund, Karlijn Demasure, Sabine Van Den Eynde, and Barbara Baert. Noli Me Tangere: Mary Magdelene: One Person, Many Images (Documenta Libraria) (Documenta Libraria). Peeters, 2006.
Find full textBook chapters on the topic "Document image interpretation"
Ablameyko, Sergey, and Tony Pridmore. "Document Image Acquisition." In Machine Interpretation of Line Drawing Images, 45–56. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0789-7_3.
Full textLamiroy, Bart, and Jean-Marc Ogier. "Analysis and Interpretation of Graphical Documents." In Handbook of Document Image Processing and Recognition, 553–90. London: Springer London, 2014. http://dx.doi.org/10.1007/978-0-85729-859-1_19.
Full textNeumann, Günter, and Bogdan Sacaleanu. "Experiments on Robust NL Question Interpretation and Multi-layered Document Annotation for a Cross–Language Question/Answering System." In Multilingual Information Access for Text, Speech and Images, 411–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11519645_41.
Full textChampion, David C., and David L. Huston. "Applications of Neodymium Isotopes to Ore Deposits and Metallogenic Terranes; Using Regional Isotopic Maps and the Mineral Systems Concept." In Isotopes in Economic Geology, Metallogenesis and Exploration, 123–54. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27897-6_5.
Full textOppedisano, Fabrizio. "Ostrogoths vs. Franks: Imagining the Past in the Middle Ages." In Reti Medievali E-Book, 1–18. Florence: Firenze University Press, 2022. http://dx.doi.org/10.36253/978-88-5518-664-3.04.
Full textBrumana, R. "How to Measure Quality Models? Digitization into Informative Models Re-use." In 3D Research Challenges in Cultural Heritage III, 77–102. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35593-6_5.
Full textTOMBRE, KARL, and DOV DORI. "INTERPRETATION OF ENGINEERING DRAWINGS." In Handbook of Character Recognition and Document Image Analysis, 457–84. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789812830968_0017.
Full textJANSSEN, RIK D. T. "INTERPRETATION OF MAPS: FROM BOTTOM-UP TO MODEL-BASED." In Handbook of Character Recognition and Document Image Analysis, 529–55. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789812830968_0020.
Full textMÖRI, D., and H. BUNKE. "AUTOMATIC INTERPRETATION AND EXECUTION OF MANUAL CORRECTIONS ON TEXT DOCUMENTS." In Handbook of Character Recognition and Document Image Analysis, 679–702. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789812830968_0026.
Full textAugustyniak, Piotr, and Ryszard Tadeusiewicz. "Interpretation of the ECG as a Web-Based Subscriber Service." In Ubiquitous Cardiology, 228–47. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-080-6.ch008.
Full textConference papers on the topic "Document image interpretation"
Ablameyko, Sergey V., and Vladimir V. Bereishik. "Document image interpretation: classification of technologies." In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, edited by Luc M. Vincent and Theo Pavlidis. SPIE, 1994. http://dx.doi.org/10.1117/12.171104.
Full textStanica, Iulia cristina, Costin anton Boiangiu, Giorgiana violeta Vlasceanu, Marcel Prodan, Cristian Avatavului, Razvan adrian Deaconescu, and Codrin Taut. "A SURVEY ON HISTORY, PRESENT AND PERSPECTIVES OF DOCUMENT IMAGE ANALYSIS SYSTEMS." In eLSE 2019. Carol I National Defence University Publishing House, 2019. http://dx.doi.org/10.12753/2066-026x-19-025.
Full textCoppins, Gavin J., Michael Ayres, and Mike Pearl. "A Data Managment and Geographic Information System (GIS) for the Management of Land Quality on UKAEA Sites." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4519.
Full textBons, Jeffrey P., and Jack L. Kerrebrock. "Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-464.
Full textFeng, Xiaohan, and Makoto Murakami. "Design that uses AI to Subvert Stereotypes: Make Witches Wicked Again." In 4th International Conference on Natural Language Processing, Information Retrieval and AI. Academy and Industry Research Collaboration Center (AIRCC), 2023. http://dx.doi.org/10.5121/csit.2023.130305.
Full textGonzalez, Andres, Zoya Heidari, and Olivier Lopez. "A NEW OPTIMIZATION METHOD FOR ENHANCED FORMATION EVALUATION AND ROBUST PHYSICS-BASED AUTOMATIC ROCK CLASSIFICATION USING HIGH-RESOLUTION CT-SCAN IMAGE DATA AND CONVENTIONAL WELL LOGS." In 2021 SPWLA 62nd Annual Logging Symposium Online. Society of Petrophysicists and Well Log Analysts, 2021. http://dx.doi.org/10.30632/spwla-2021-0030.
Full textGalli, Claudio, and Alessandro Tosarelli. "Rapporto di ricerca storica sulle superfici architettoniche esterne della fortezza di San Leo." In FORTMED2020 - Defensive Architecture of the Mediterranean. Valencia: Universitat Politàcnica de València, 2020. http://dx.doi.org/10.4995/fortmed2020.2020.11532.
Full textQuindazzi, Emma, and Samuel Sambasivam. "An Exploration of a Virtual Connection for Researchers and Educators by Exploring Strategies Enterprise Information Systems Specialists Need to Integrate Novel Neural Network Algorithms Into an Imaging Application – A Design Science Study." In InSITE 2022: Informing Science + IT Education Conferences. Informing Science Institute, 2022. http://dx.doi.org/10.28945/4953.
Full textMargaritoiu, Alina, and Simona Eftimie. "INTEGRATING INFORMATICS TECHNOLOGY IN PRIMARY AND PRE-PRIMARY TEACHING ACTIVITIES - STUDY CASE." In eLSE 2013. Carol I National Defence University Publishing House, 2013. http://dx.doi.org/10.12753/2066-026x-13-022.
Full textReports on the topic "Document image interpretation"
Sharpe, D. R., G. Leduc, C. S. Smart, and J. Shaw. Georgian Bay bedrock erosion: evidence for regional floods, Ontario. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331409.
Full textDurling, P. W. Seismic reflection interpretation of the Carboniferous Cumberland Basin, Northern Nova Scotia. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331223.
Full textLamontagne, M., K. B. S. Burke, and L. Olson. Felt reports and impact of the November 25, 1988, magnitude 5.9 Saguenay, Quebec, earthquake sequence. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328194.
Full textL51815 The Development of a TOFD Image Reference Collection. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 1997. http://dx.doi.org/10.55274/r0010365.
Full text