Academic literature on the topic 'Docetaxel resistance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Docetaxel resistance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Docetaxel resistance"
Kroon, Jan, Martin Puhr, Jeroen T. Buijs, Geertje van der Horst, Daniëlle M. Hemmer, Koen A. Marijt, Ming S. Hwang, et al. "Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer." Endocrine-Related Cancer 23, no. 1 (October 19, 2015): 35–45. http://dx.doi.org/10.1530/erc-15-0343.
Full textILHAN, Suleyman. "Effect of interleukin-8 on docetaxel resistance in prostate cancer cells: insights into the role of multidrug resistance 1 protein modulation." Cancer Insight 2, no. 1 (June 14, 2023): 53–67. http://dx.doi.org/10.58567/ci02010004.
Full textShen, Weiwei, Hailin Pang, Jiayu Liu, Jing Zhou, Feng Zhang, Lele Liu, Ningqiang Ma, Ning Zhang, Helong Zhang, and Lili Liu. "EpithelialMesenchymal Transition Contributes to Docetaxel Resistance in Human Non-Small Cell Lung Cancer." Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 22, no. 1 (October 23, 2014): 47–55. http://dx.doi.org/10.3727/096504014x14098532393473.
Full textFrancini, Edoardo, Fang-Shu Ou, Justin Rhoades, Eric G. Wolfe, Edward P. O’Connor, Gavin Ha, Gregory Gydush, et al. "Circulating Cell-Free DNA as Biomarker of Taxane Resistance in Metastatic Castration-Resistant Prostate Cancer." Cancers 13, no. 16 (August 12, 2021): 4055. http://dx.doi.org/10.3390/cancers13164055.
Full textZu, Shulu, Weiming Ma, Pan Xiao, Yazhou Cui, Tianjia Ma, Chunwen Zhou, and Huaiqiang Zhang. "Evaluation of Docetaxel-Sensitive and Docetaxel-Resistant Proteomes in PC-3 Cells." Urologia Internationalis 95, no. 1 (2015): 114–19. http://dx.doi.org/10.1159/000351263.
Full textLima, Thiago S., Diego Iglesias-Gato, Luciano D. O. Souza, Jan Stenvang, Diego S. Lima, Martin A. Røder, Klaus Brasso, and José M. A. Moreira. "Molecular Profiling of Docetaxel-Resistant Prostate Cancer Cells Identifies Multiple Mechanisms of Therapeutic Resistance." Cancers 13, no. 6 (March 14, 2021): 1290. http://dx.doi.org/10.3390/cancers13061290.
Full textBukhari, Nedal, Kylea R. Potvin, D. Scott Ernst, Lori Sax, and Eric Winquist. "Early docetaxel-resistance in metastatic hormone-sensitive prostate cancer." Journal of Clinical Oncology 35, no. 6_suppl (February 20, 2017): 260. http://dx.doi.org/10.1200/jco.2017.35.6_suppl.260.
Full textGruber, Martina, Lavinia Ferrone, Martin Puhr, Frédéric R. Santer, Tobias Furlan, Iris E. Eder, Natalie Sampson, Georg Schäfer, Florian Handle, and Zoran Culig. "p300 is upregulated by docetaxel and is a target in chemoresistant prostate cancer." Endocrine-Related Cancer 27, no. 3 (March 2020): 187–98. http://dx.doi.org/10.1530/erc-19-0488.
Full textZhao, Song, Ilsa Coleman, Roger Coleman, and Peter Nelson. "Association of PARP inhibitors and docetaxel resistance through suppressing a tumor microenvironment-associated secretory program." Journal of Clinical Oncology 31, no. 15_suppl (May 20, 2013): e22212-e22212. http://dx.doi.org/10.1200/jco.2013.31.15_suppl.e22212.
Full textWróbel, Tomasz, Marcin Luty, Jessica Catapano, Elżbieta Karnas, Małgorzata Szczygieł, Katarzyna Piwowarczyk, Damian Ryszawy, et al. "CD44+ cells determine fenofibrate-induced microevolution of drug-resistance in prostate cancer cell populations." Stem Cells 38, no. 12 (October 2, 2020): 1544–56. http://dx.doi.org/10.1002/stem.3281.
Full textDissertations / Theses on the topic "Docetaxel resistance"
Sangrithi-Wallace, Jay N. "An investigation of the molecular mechanisms of docetaxel resistance in breast cancer cells." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=56251.
Full textKastl, Lena. "Molecular mechanisms of docetaxel resistance in breast cancer." Thesis, University of Aberdeen, 2007. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=158488.
Full textMcDonald, Sarah L. "Characterization of genetic events involved in docetaxel resistance in breast cancer." Thesis, University of Aberdeen, 2005. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU487906.
Full textDarcansoy, Iseri Ozlem. "Investigation Of Docetaxel And Doxorubicin Resistance In Mcf-7 Breast Carcinoma Cell Line." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610422/index.pdf.
Full text#946
-tubulin isotypes were performed by RT-PCR, qPCR, Western blot and immunocytochemistry. Genome-wide expression analysis was also performed by cDNA microarray. According to cell viability assays, drug applied cells developed varying degree of resistance to docetaxel and doxorubicin. Gene expression analysis demonstrated that de novo expression of P-gp contributed significantly to drug resistance. Expression levels of class II, III and V &
#946
-tubulin isotypes increased in docetaxel resistant sublines. According to microarray analysis, a variety of genes showed significantly altered expression levels particularly drug metabolizing and detoxification enzymes (i.e. increased GPX1 and GSTP1 with decreased POR), survival proteins (e.g. decreased TRAIL together with increased decoy receptors and CD40), extracellular matrix components (e.g. increased integrin signaling), growth factors and cytokines (e.g. EGFR1, FGFR1, CTGF, IL6, IL8 and IL18 overexpression), epithelial-mesenchymal transition proteins (i.e. increased vimentin and N-cadherin with decreased E-cadherin and occludin) and microtubule dynamics related proteins (e.g. increased MAP1B and decreased MAP7). Development of cross-resistance and combined drug effects on resistant sublines were also studied. Results demonstrated that docetaxel and doxorubicin resistant cells developed cross-resistance to paclitaxel, vincristine, ATRA, tamoxifen and irradiation. Finally, modulatory effects of verapamil and promethazine in combined drug applications were investigated and verapamil and promethazine were shown to decrease MDR1 expression level thus reverse the MDR. They also showed synergic and additive effects in combined docetaxel and doxorubicin applications. Identification of resistance mechanisms may personalize chemotherapy potentially increasing efficacy of chemotherapy and life quality of patients.
Pruitt, Freddie Lee III. "Chemoresistance of prostate cancer cells to docetaxel is modified by extracellular matrix substratum." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 92 p, 2008. http://proquest.umi.com/pqdweb?did=1459903001&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textIPPOLITO, LUIGI. "OXPHOS - a metabolic switch driven by tumor microenvironment and resistance to therapy in prostate carcinoma." Doctoral thesis, Università di Siena, 2016. http://hdl.handle.net/11365/1006820.
Full textAl, Nakouzi Nader. "Etablissement d'un nouveau modèle pérclinique de cancer de la prostate et identification de biomarqueurs de résistance au docetaxel." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00739261.
Full textRIZZUTI, ILARIA FRANCESCA. "STRENGTHEN OF DPNS FEATURES FOR THERANOSTIC APPLICATIONS AND MECHANICAL-CONTROL OF CHEMOTHERAPEUTIC EFFICACY THROUGH MODULATION OF CELL PROLIFERATION." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1000310.
Full textLen, Kateryna. "Vitamin D effects on prostate cancer progression." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ028.
Full textProstate cancer (PCa) is one of the leading causes of cancer-related deaths in men. Androgen receptor signaling inhibitors are the gold standard treatment for advanced PCa, but most patients develop castration-resistant prostate cancer (CRPC). The treatment of choice for CRPC is the chemotherapy (docetaxel), but the overall survival is only about one year. Thus, novel therapeutic strategies are required to improve PCa care. Low circulating vitamin D levels and reduced expression of its receptor VDR in prostatic epithelial cells (PECs) correlate with PCa severity, but the underlying mechanism is unclear. This study shows that VDR in PECs of Pten(i)pe-/- mice, a model of PCa, reduces cell proliferation via oxidative stress attenuation. Furthermore, VDR in PECs limits the recruitment of neutrophils, that are shown to be therapeutic target for PCa dissemination. Additionally, combining a VDR agonist with docetaxel effectively reduces tumor volumes in chemoresistant CRPC xenografts. Overall, this work highlights how vitamin D signaling slows PCa progression and suggests new therapeutic strategies for advanced PCa
Hou, Pei-Shen, and 侯佩伸. "Molecular mechanisms of AMPK mediated docetaxel-resistance in human prostate cancer." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/69158788833945408088.
Full text高雄醫學大學
醫學研究所碩士班
105
Docetaxel is the first-line chemotherapeutic agent for patients with castration resistant prostate cancer (CRPC). Unfortunately, clinical treatment with docetaxel often encounters a number of undesirable side effects, including drug resistance. AMP-activated protein kinase (AMPK) is the cellular energy sensor, which can regulate metabolism and maintain energy homeostasis involving glycolysis. Recently, we found AMPK was associated with the development of docetaxel resistance in PC. However, the mechanisms of AMPK-mediated docetaxel-resistance in PC were remained unclear. Our results showed that the level of phospho-AMPK (S487) was significantly higher expression in PC/DX25 cells (a docetaxel resistance PC cell line) than in parental PC3 cells by Western blotting analysis. The expression of phospho-AMPK (S487) was gradually increased by docetaxel treatment in a dose-dependent manner in PC3 cells. Knockdown of AMPK expression reversed docetaxel sensitivity in PC/DX25 cells by MTT assay. However, using the AMPK agonist 2-Deoxy-D-glucose (2DG) and 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) enhanced the docetaxel resistance in PC/DX25 cells. We also found the expression of HIF-1α and PFKFB4 were reduced via AMPK in PC/DX25 cells. Downregulation of HIF-1α and PFKFB4 were associated with PC/DX25 cell proliferation. The phospho-AMPK (S487) was overexpressed in clinical cancer samples of castration-resistant prostate cancer (CRPC). According to the above results, AMPK may play an important role in regulating chemoresistane in docetaxel-resistant prostate cancer.
Book chapters on the topic "Docetaxel resistance"
Narita, Shintaro, and Tomonori Habuchi. "Intermittent Chemotherapy with Docetaxel for Metastatic Castration-Resistant Prostate Cancer." In Hormone Therapy and Castration Resistance of Prostate Cancer, 357–68. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7013-6_36.
Full textMatsuyama, Hideyasu, Tomoyuki Shimabukuro, Isao Hara, Kazuhiro Suzuki, Hirotsugu Uemura, Munehisa Ueno, Yoshihiko Tomita, and Nobuaki Shimizu. "Prediction of Optimal Number of Cycles in Docetaxel Regimen for Patients with mCRPC." In Hormone Therapy and Castration Resistance of Prostate Cancer, 345–55. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7013-6_35.
Full textPetrylak, Daniel P., and Navid Hafez. "Docetaxel in Advanced and Castration Resistant Prostate Cancer." In Managing Metastatic Prostate Cancer In Your Urological Oncology Practice, 77–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31341-2_6.
Full textBozkurt, Yunus Erol, and Turgay Turan. "Enzalutamide Therapy for Metastatic Prostate Cancer." In Current Management of Metastatic Prostate Cancer, 79–88. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053359142.7.
Full textSzturz, Petr, and Jan B. Vermorken. "Systemic Treatment Sequencing and Prediction of First-line Therapy Outcomes in Recurrent or Metastatic Head and Neck Cancer." In Critical Issues in Head and Neck Oncology, 199–215. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23175-9_13.
Full textKulkarni, Harshad R. "PSMA Radioligand Therapy: A Revolution in the Precision Radiomolecular Oncology of Prostate Cancer." In Beyond Becquerel and Biology to Precision Radiomolecular Oncology: Festschrift in Honor of Richard P. Baum, 181–85. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-33533-4_18.
Full textLawal, Ismaheel O., Alfred Morgenstern, Otto Knoesen, Mariza Vorster, Frank Bruchertseifer, and Mike M. Sathekge. "Therapy of Castration-Resistant Prostate Cancer: Where Is the Place of 225Ac-PSMA?" In Beyond Becquerel and Biology to Precision Radiomolecular Oncology: Festschrift in Honor of Richard P. Baum, 255–65. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-33533-4_26.
Full textJ. Suzuki, Yuichiro, Yasmine F. Ibrahim, Vladyslava Rybka, Jaquantey R. Bowens, Adenike S. Falade, and Nataliia V. Shults. "Strategies to Treat Pulmonary Hypertension Using Programmed Cell Death-Inducing Anti-Cancer Drugs without Damaging the Heart." In Muscle Cell and Tissue - Novel Molecular Targets and Current Advances [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95264.
Full textPriya Muthaiah, Gnana Ruba, Motamarri Venkata Naga Lalitha Chaitanya, Seema Sajjan Singh Rathore, Maida Engels S.E., and Vishnu Nayak Badavath. "Importance of In silico Tools in Anticancer Drug Discovery from Nature." In Alternative Remedies and Natural Products for Cancer Therapy: An Integrative Approach, 139–64. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815124699123010010.
Full textSiddiqui, Surayya, Sridevi I. Puranik, Aimen Akbar, and Shridhar C. Ghagane. "Genetic Polymorphism and Prostate Cancer: An Update." In Genetic Polymorphisms - New Insights [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99483.
Full textConference papers on the topic "Docetaxel resistance"
Dahmani, Ahmed, Ludmilla De Plater, Charlotte Guyader, Jean‐Jacques Fontaine, Aurélie Berniard, Franck Assayag, Philippe Beuzeboc, et al. "Abstract A27: Efficacy of estramustine + docetaxel in docetaxel‐resistant human prostate cancer xenograft: a preclinical model of docetaxel resistance reversion." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-a27.
Full textNagesh, Prashanth K. B., Pallabita Chowdhury, Elham Hatami, Vivek K. Kashyap, Bilal B. Hafeez, Sheema Khan, Subhash C. Chauhan, Meena Jaggi, and Murali M. Yallapu. "Abstract 4657: Docetaxel nanoformulation reverts drug resistance in prostate cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4657.
Full textSprowl, Jason A., and Amadeo Parissenti. "Abstract 3550: Role of TNFα in the cytotoxicity of docetaxel and in docetaxel resistance in MCF-7 cells." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3550.
Full textPeery, Robert C. "Abstract 4396: Targeting survivin to overcome docetaxel resistance in prostate cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4396.
Full textCotteret, Sophie, Nader Al Nakouzi, Catherine Gaudin, Frederic Commo, Shanna Rajpar, Sandra Lejuste, Nicolas Martin, Karim Fizazi, and Anne Chauchereau. "Abstract 956: Role of the cell cycle regulator LZTS1 in docetaxel resistance of prostate cancer cells and overcoming the docetaxel resistance by cell cycle pharmacological inhibitors." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-956.
Full textLichtenfels, Martina, Vivian Fontana, Francine Hickmann Nyland, Bianca Silva Marques, Mário Casales Schorr, Júlia Caroline Marcolin, Caroline Brunetto de Farias, and José Luiz Pedrini. "What happens in residual disease after neoadjuvant chemotherapy? Efficacy of a novel in vitro breast cancer chemoresistance platform to demonstrate high resistance to drugs." In Brazilian Breast Cancer Symposium 2023. Mastology, 2023. http://dx.doi.org/10.29289/259453942023v33s1010.
Full textDuran, Ignacio, Clara Montagut, Emiliano Calvo, Alicia Navarrete, Antonia Garcia, Manuel Hidalgo, Jesus Rodriguez-Pascual, et al. "Abstract C65: Overcoming docetaxel resistance through m-TOR inhibition: A phase I study of the combination of docetaxel and temsirolimus." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-c65.
Full textShimomura, Tatsuya, Evelyn Kono, Chau P. Tran, Joyce Yamashiro, Shu Lin, Sean Hyung-Kwon Lee, Zev A. Wainberg, and Robert E. Reiter. "Abstract 3310: N-cadherin promotes docetaxel resistance through upregulated TLR4 signaling in castration resistant prostate cancers." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3310.
Full textLannér, Carita, Stephen Armstrong, Irina Kalatskaya, Baoqing Guo, and Amadeo Parissenti. "Abstract 1716: Mechanisms of resistance in carboplatin, docetaxel and dual drug resistant ovarian cancer cell lines." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-1716.
Full textWatanabe, Mototsugu, Yasutaka Masada, Shinsuke Hashida, Tomoaki Ohtsuka, Ken Suzawa, Yuho Maki, Hiromasa Yamamoto, et al. "Abstract 358: The role of GDF-15 on docetaxel resistance in lung cancer." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-358.
Full textReports on the topic "Docetaxel resistance"
Singh, Ajay. Exploring a Novel Mechanism of Docetaxel Resistance in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada576367.
Full textSingh, Ajay. Exploring a Novel Mechanism of Docetaxel Resistance in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada601299.
Full textZhang, Ying, Xinjun Wang, Guangcheng Luo, Xiao Zhou, and Ran Xu. Neutrophil-to-lymphocyte ratio as a prognostic factor in patients with castration-resistant prostate cancer treated with docetaxel-based chemotherapy:A meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0018.
Full textFan, Long-wen. Efficacy of docetaxel combined carboplatin for the treatment of patients with castration-resistant prostate cancer: a protocol of systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review Protocols, April 2020. http://dx.doi.org/10.37766/inplasy2020.4.0076.
Full text