Academic literature on the topic 'Do operator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Do operator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Do operator"

1

Rooin, Jamal, Akram Alikhani, and Mohammad Sal Moslehian. "Operator m-convex functions." Georgian Mathematical Journal 25, no. 1 (March 1, 2018): 93–107. http://dx.doi.org/10.1515/gmj-2017-0045.

Full text
Abstract:
AbstractThe aim of this paper is to present a comprehensive study of operatorm-convex functions. Let{m\in[0,1]}, and{J=[0,b]}for some{b\in\mathbb{R}}or{J=[0,\infty)}. A continuous function{\varphi\colon J\to\mathbb{R}}is called operatorm-convex if for any{t\in[0,1]}and any self-adjoint operators{A,B\in\mathbb{B}({\mathscr{H}})}, whose spectra are contained inJ, we have{\varphi(tA+m(1-t)B)\leq t\varphi(A)+m(1-t)\varphi(B)}. We first generalize the celebrated Jensen inequality for continuousm-convex functions and Hilbert space operators and then use suitable weight functions to give some weighted refinements. Introducing the notion of operatorm-convexity, we extend the Choi–Davis–Jensen inequality for operatorm-convex functions. We also present an operator version of the Jensen–Mercer inequality form-convex functions and generalize this inequality for operatorm-convex functions involving continuous fields of operators and unital fields of positive linear mappings. Employing the Jensen–Mercer operator inequality for operatorm-convex functions, we construct them-Jensen operator functional and obtain an upper bound for it.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Xiaochun, and Fugen Gao. "On Properties of ClassA(n)andn-Paranormal Operators." Abstract and Applied Analysis 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/629061.

Full text
Abstract:
Letnbe a positive integer, and an operatorT∈B(ℋ)is called a classA(n)operator ifT1+n2/1+n≥|T|2andn-paranormal operator ifT1+nx1/1+n≥||Tx||for every unit vectorx∈ℋ, which are common generalizations of classAand paranormal, respectively. In this paper, firstly we consider the tensor products for classA(n)operators, giving a necessary and sufficient condition forT⊗Sto be a classA(n)operator whenTandSare both non-zero operators; secondly we consider the properties forn-paranormal operators, showing that an-paranormal contraction is the direct sum of a unitary and aC.0completely non-unitary contraction.
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, M. W. "Minimal and Maximal Operator Theory With Applications." Canadian Journal of Mathematics 43, no. 3 (June 1, 1991): 617–27. http://dx.doi.org/10.4153/cjm-1991-036-7.

Full text
Abstract:
AbstractLetXbe a complex Banach space andAa linear operator fromXintoXwith dense domain. We construct the minimal and maximal operators of the operatorAand prove that they are equal under reasonable hypotheses on the spaceXand operatorA. As an application, we obtain the existence and regularity of weak solutions of linear equations on the spaceX. As another application we obtain a criterion for a symmetric operator on a complex Hilbert space to be essentially self-adjoint. An application to pseudo-differential operators of the Weyl type is given.
APA, Harvard, Vancouver, ISO, and other styles
4

Rosales, Edixo. "Operadores de riesz en el Alglat(T)∩{T}." Revista Bases de la Ciencia. e-ISSN 2588-0764 6, no. 1 (April 30, 2021): 49. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v6i1.2515.

Full text
Abstract:
En este trabajo X es un espacio de Banach y B(X) denota los operadores acotados. Si T∈B(X), por lat(T) entenderemos los subespacios invariantes por T. Se dice que T es lleno, si (T(M)) ̅=M, para todo M∈lat(T) (la barra indica la clausura en la topología inducida por la norma). Se prueba principalmente el siguiente resultado: Sean X un espacio de Banach y T ∈B(X) acotado por abajo. Sea K ∈Alglat(T)∩{T}' un operador de Riesz. Si K es lleno, entonces T es lleno. Aquí Alglat(T)={S∈B(X):M∈lat(T)⟾M∈lat(S)} y {T}^'={S∈B(X):S∘T=T∘S}. Palabras clave: Operador lleno, operador de Riesz, operador acotado por abajo. Abstract In this work X is a Banach space and B(X) denotes the bounded operators. If T ∈B(X), for lat(T) we will understand the invariant subspaces for T. An operator T is full, if (T(M)) ̅=M, for all M∈ latT (the bar indicates the closure in the topology induced by the norm). The following result is true: Let X be a Banach space, T ∈B(X) a bounded below operator and K ∈Alglat(T)∩{T}' a Riesz operator: If K is a full operator, then T is a full operator. Here Alglat(T)={S∈B(X):M∈lat(T)⟾M∈lat(S)} and {T}^'={S∈B(X):S∘T=T∘S}. Keywords: full operator, Riesz operator, bounded below operator.
APA, Harvard, Vancouver, ISO, and other styles
5

Harjule, Priyanka, Manish Bansal, and Serkan Araci. "An investigation of incomplete H−functions associated with some fractional integral operators." Filomat 36, no. 8 (2022): 2695–703. http://dx.doi.org/10.2298/fil2208695h.

Full text
Abstract:
Arbitrary-order integral operators find variety of implementations in different science disciplines as well as engineering fields. The study presented as part of this research paper derives motivation from the fact that applications of fractional operators and special functions demonstrate a huge potential in understanding many of physical phenomena. Study and investigation of a fractional integral operator containing an incomplete H? functions (IHFs) as the kernel is the primary objective of the research work presented here. Specifically, few interesting relations involving the new fractional operator with IHFs in its kernel and classical Riemann Liouville(R-L) fractional integral and derivative operators, the Hilfer fractional derivative operator, the generalized composite fractonal derivate operaor are established. Results established by the authors in [1-3] follow as few interesting and significant special cases of our main results.
APA, Harvard, Vancouver, ISO, and other styles
6

Miloslova, A. A., and T. A. Suslina. "Averaging of Higher-Order Parabolic Equations with Periodic Coefficients." Contemporary Mathematics. Fundamental Directions 67, no. 1 (December 15, 2021): 130–91. http://dx.doi.org/10.22363/2413-3639-2021-67-1-130-191.

Full text
Abstract:
In L2(Rd;Cn), we consider a wide class of matrix elliptic operators A of order 2p (where p2) with periodic rapidly oscillating coefficients (depending on x/). Here 0 is a small parameter. We study the behavior of the operator exponent e-A for 0 and small . We show that the operatore-A converges as 0 in the operator norm in L2(Rd;Cn) to the exponent e-A0 of the effective operator A0. Also we obtain an approximation of the operator exponent e-A in the norm of operators acting from L2(Rd;Cn) to the Sobolev space Hp(Rd; Cn). We derive estimates of errors of these approximations depending on two parameters: and . For a fixed 0 the errors have the exact order O(). We use the results to study the behavior of a solution of the Cauchy problem for the parabolic equation u(x,)= -(A u)(x,)+F(x,) in Rd.
APA, Harvard, Vancouver, ISO, and other styles
7

Gunawan, Gunawan, and Erni Widiyastuti. "KARAKTERISTIK OPERATOR PARANORMAL- * QUASI." Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika 3, no. 1 (April 30, 2022): 256–73. http://dx.doi.org/10.46306/lb.v3i1.114.

Full text
Abstract:
Given Hilbert space H over the fields of . This study aimed to investigate the paranormal- * quasi operators and their properties in Hilbert space. The study resulted the properties of paranormal- * quasi operators, hyponormal operator, class A operator, Class A- * operator, p- hyponormal operator for p > 0, - paranormal operators, compact operator, and the relationship between them
APA, Harvard, Vancouver, ISO, and other styles
8

Alomari, Mohammad W., Christophe Chesneau, and Ahmad Al-Khasawneh. "Operator Jensen’s Inequality for Operator Superquadratic Functions." Axioms 11, no. 11 (November 6, 2022): 617. http://dx.doi.org/10.3390/axioms11110617.

Full text
Abstract:
In this work, an operator superquadratic function (in the operator sense) for positive Hilbert space operators is defined. Several examples with some important properties together with some observations which are related to the operator convexity are pointed out. A general Bohr’s inequality for positive operators is thus deduced. A Jensen-type inequality is proved. Equivalent statements of a non-commutative version of Jensen’s inequality for operator superquadratic function are also established. Finally, several trace inequalities for superquadratic functions (in the ordinary sense) are provided as well.
APA, Harvard, Vancouver, ISO, and other styles
9

Rosales, Edixo. "RESULTADOS SOBRE OPERADORES LLENOS EN ESPACIOS DE HILBERT." Revista Bases de la Ciencia. e-ISSN 2588-0764 5, no. 1 (April 30, 2020): 51. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v5i1.1686.

Full text
Abstract:
Se prueba, entre otros, el siguiente resultado: Sea T:H→H un operador autoadjunto inyectivo, y K:H→H un operador de Riesz, tal que K∈Alglat(T)∩{T}'. Si K:H→H es lleno, entonces T:H→H es lleno. Palabras clave: Operador de Riesz, operador autoadjunto, operador lleno. Abstract It is proved here, among other results, the following: Let T:H→H be a self-adjoint injective operator, and K:H→H a Riesz operator, such that K∈Alglat(T)∩{T}'. If K:H→H is a full operator, then T:H→H is a full operator. Keywords: Riesz operator, self-adjoint operator, full operator. Resumo O siguiente resultado, entre outros, está provado: Seja T:H→H um operador autoadjunto limitado abaixo, e K:H→H um operador de Riesz, tal qual K∈AlglatT⋂{T}^'. Se K:H→H é um operador completo, então T:H→H é um operador completo. Palavras-chave: operador Riesz, operador autoadjunto completo.
APA, Harvard, Vancouver, ISO, and other styles
10

Chetverikov, V. N. "Linear Differential Operators Invertible in the Integro-differential Sense." Mathematics and Mathematical Modeling, no. 4 (December 13, 2019): 20–33. http://dx.doi.org/10.24108/mathm.0419.0000195.

Full text
Abstract:
The paper studies linear differential operators in derivatives with respect to one variable. Such operators include, in particular, operators defined on infinite prolongations of evolutionary systems of differential equations with one spatial variable. In this case, differential operators in total derivatives with respect to the spatial variable are considered. In parallel, linear differential operators with one independent variable are investigated. The known algorithms for reducing the matrix to a stepwise or diagonal form are generalized to the operator matrices of both types. These generalizations are useful at points, where the functions, into which the matrix components are divided when applying the algorithm, are nonzero.In addition, the integral operator is defined as a multi-valued operator that is the right inverse of the total derivative. Linear operators that involve both the total derivatives and the integral operator are called integro-differential. An invertible operator in the integro-differential sense is an operator for which there exists a two-sided inverse integro-differential operator. A description of scalar differential operators that are invertible in this sense is obtained. An algorithm for checking the invertibility in the integro-differential sense of a differential operator and for constructing the inverse integro-differential operator is formulated.The results of the work can be used to solve linear equations for matrix differential operators arising in the theory of evolutionary systems with one spatial variable. Such operator equations arise when describing systems that are integrable by the inverse scattering method, when calculating recursion operators, higher symmetries, conservation laws and symplectic operators, and also when solving some other problems. The proposed method for solving operator equations is based on reducing the matrices defining the operator equation to a stepwise or diagonal form and solving the resulting scalar operator equations.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Do operator"

1

Charbonnel, Anne-Marie. "Contribution à l'étude du spectre conjoint de systèmes d'opérateurs pseudodifférentiels qui commutent." Nantes, 1989. http://www.theses.fr/1989NANT2012.

Full text
Abstract:
On considere plusieurs operateurs pseudodifferentiels dependant d'un petit parametre h, commutant deux a deux, agissant sur l'espace a n dimensions. L'un d'eux peut etre, par exemple, l'operateur de schroedinger. Nous definissons la notion de "spectre conjoint" pour ces operateurs, et etudions le comportement asymptotique de ce dernier dans deux types de situation: 1) nous supposons h fixe et nous nous interessons aux gcrandes valeurs de l'energie; 2) nous fixons un niveau d'energie, et etudions le comportement semi-classique du spectre conjoint, c'est-a-dire pour h tendant vers 0. Dans les deux contextes, nous precisons les resultats dans le cas ou le systeme d'operateurs est integrable. Notre travail permet d'obtenir des resultats analogues a ceux que demontre y. Colin de verdiere pour des operateurs agissant sur une variete compacte, et generalise ceux de b. Helffer et d. Robert qui concernent un seul operateur sur l'espace tout entier
APA, Harvard, Vancouver, ISO, and other styles
2

Phanzu, Serge Phanzu. "Every Pure Quasinormal Operator Has a Supercyclic Adjoint." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1592579020787873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moussai, Madani. "Continuite de certains operateurs integraux singuliers sur les espaces de besov." Paris 7, 1987. http://www.theses.fr/1987PA077016.

Full text
Abstract:
On s'interesse a des conditions necessaires et suffisantes de continuite-l**(2) (resp. Continuite - besov b**(s)::(p,q)), des commutateurs entre les operateurs pseudo-differentiels o. P. D. De type s**(11,a); a1 (resp. S**(11,0)), et les fonctions dont les gradients sont bornes (resp. Des multiplicateurs de besov m(b**(s)::(p,q))). La continuite - besov du commutateur a l'aide du critere de lemarie, mene a etudier la continuite des o. P. D. De type s**(01,0) sur m(b**(sp,q)): les o. P. D. D'ordre 0 sont bornes sur les versions "localisees l**(e") de b**(s)::(p,q), par consequent sur m(b**(s)::(p,p)) pour s>n/p. Si s
APA, Harvard, Vancouver, ISO, and other styles
4

Gustafsson, Tapper Michael. "Operator Feedback." Thesis, KTH, Maskinkonstruktion (Inst.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232505.

Full text
Abstract:
Det här är en rapport som sammanfattar ett examensarbete av studenten Michael GustafssonTapper skriven under våren 2018. Examensarbetet är en del av mastern Integreradproduktutveckling inom spåret Teknisk design på KTH, Kungliga Tekniska Högskolan iStockholm, Sverige. Dagens montörer i monteringsliner i fabriker får sin feedback från sinaverktyg men ibland missas denna information av montörerna. Det här examensarbetetresulterade i en vidareutveckling av ett tidigare projekt in kursen MF2016 Industriell design högrekurs, del 2. Resultatet var en lösning av ett par skyddsglasögon vid namn Protective SignalProvider eller PSP inom produktfamiljen Operator Feedback, OPF. PSP använde ljus från LEDlamporoch ljudvågor i form av vibrationer från benöverförande högtalare. En mer utförligundersökning gjordes också för att para den PSP med Atlas Copcos monteringssystem controllerPF6000. PSP använde sig av Bluetooth low energy för kommunikation och kan anslutas tillverktyget och till monteringens gränssnitt. En utvärdering jämförde den tidigare externaprodukten som kunde fästas på ett par skyddsglasögon med den nya produkten med integreradekomponenter. Utvärderingen resulterade i att den externa produkten skulle bli den bästalösningen för Atlas Copco att fortsätta med eftersom regleringar, lagar och standarder gör PSPför komplex att producera.
This report is a document summarizing a master thesis by the student Michael GustafssonTapper written during the spring of 2018. The thesis is the part of the master Integrated ProductDesign in the field of Industrial Design engineering at KTH, The Royal Institute of Technologyin Stockholm, Sweden. Today workers in assembly lines get feedback from their tools, butsometimes this transmitted information is missed by the worker. This thesis resulted in adevelopment of a previous project in the course MF2016 Industrial Design Engineering AdvancedCourse, Part 2. The result was a solution with a pair of safety glasses by the name Protective SignalProvider or PSP within the product family Operator Feedback, OPF. PSP used light of LEDsand soundwaves in form of vibration from bone conductive speakers. A more extensiveinvestigation was also done to pair PSP to Atlas Copco’s assembly system controller PF6000. ThePSP used Bluetooth low energy for communication and can be connected to the tool in use andthe interface of the assembly. An evaluation compared the previous external product that couldbe placed on a pair of safety glasses with the new internal product with integrated components.The evaluation resulted in the external product being the best solution for Atlas Copco toproceed with since regulations, laws and standards make PSP too complex to produce.
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Tabrina M. "Operator Ranges and Porosity." Kent State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=kent1215466700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mathew, Panakkal Jesu. "On Some Aspects of the Differential Operator." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/math_theses/12.

Full text
Abstract:
The Differential Operator D is a linear operator from C1[0,1] onto C[0,1]. Its domain C1[0,1] is thoroughly studied as a meager subspace of C[0,1]. This is analogous to the status of the set of all rational numbers Q in the set of the real numbers R. On the polynomial vector space Pn the Differential Operator D is a nilpotent operator. Using the invariant subspace and reducing subspace technique an appropriate basis for the underlying vector space can be found so that the nilpotent operator admits its Jordan Canonical form. The study of D on Pn is completely carried out. Finally, the solution space V of the nth order differential equation with leading coefficient one is studied. The behavior of D on V is explored using some notions from linear algebra and linear operators. NOTE- Due to the limitation of the above being in "text only form" , further details of this abstract can be viewed in the pdf file.
APA, Harvard, Vancouver, ISO, and other styles
7

Matjila, D. M. "On a class of pseudo-differential operators in IRⁿ." Thesis, Rhodes University, 1988. http://hdl.handle.net/10962/d1001981.

Full text
Abstract:
The class of pseudo-differential operators with symbols from Sm (superscript) po̧̧ (subscipt)(Ωx IRⁿ) has been extensively studied.The main assumption which characterises this class of symbols is that a(x,Ȩ) є Sm (superscript)po̧̧ (subscipt)(Ωx IRⁿ) should have a polynomial growth in the Ȩ variable only. The x-variable is controlled on compact subsets of Ω. A polynomial growth in both the x and Ȩ variables on a C°°(lR²ⁿ) function a(x,Ȩ) gives rise to a different class of symbols and a corresponding class of operators. In this work, such symbols and the action of the operators on the functional spaces S(lRⁿ) , S'(lRⁿ) and the Sobolev spaces Qs (superscript) (lRⁿ) (s є lRⁿ) are studied. A study of the calculus (i.e. transposes, adjoints and compositions) and the functional analysis of these operators is done with special attention to L-boundedness and compactness. The class of hypoelliptic pseudo-differential operators in IRⁿ is introduced as a subclass of those considered earlier.These operators possess the property that they allow a pseudo- inverse or parametrix. In conclusion. the spectral theory of these operators is considered. Since a general spectral theory would be beyond the scope of this work, only some special cases of the pseudo-differential operators in IRⁿ are considered. A few applications of this spectral theory are discussed
APA, Harvard, Vancouver, ISO, and other styles
8

Bian, Wenming. "Operator inclusions and operator-differential inclusions." Thesis, University of Glasgow, 1998. http://theses.gla.ac.uk/2029/.

Full text
Abstract:
In Chapter 2, we first introduce a generalized inverse differentiability for set-valued mappings and consider some of its properties. Then, we use this differentiability, Ekeland's Variational Principle and some fixed point theorems to consider constrained implicit function and open mapping theorems and surjectivity problems of set-valued mappings. The mapping considered is of the form F(x, u) + G (x, u). The inverse derivative condition is only imposed on the mapping x F(x, u), and the mapping x G(x, u) is supposed to be Lipschitz. The constraint made to the variable x is a closed convex cone if x F(x, u) is only a closed mapping, and in case x F(x, u) is also Lipschitz, the constraint needs only to be a closed subset. We obtain some constrained implicit function theorems and open mapping theorems. Pseudo-Lipschitz property and surjectivity of the implicit functions are also obtained. As applications of the obtained results, we also consider both local constrained controllability of nonlinear systems and constrained global controllability of semilinear systems. The constraint made to the control is a time-dependent closed convex cone with possibly empty interior. Our results show that the controllability will be realized if some suitable associated linear systems are constrained controllable. In Chapter 3, without defining topological degree for set-valued mappings of monotone type, we consider the solvability of the operator inclusion y0 N1(x) + N2 (x) on bounded subsets in Banach spaces with N1 a demicontinuous set-valued mapping which is either of class (S+) or pseudo-monotone or quasi-monotone, and N2 is a set-valued quasi-monotone mapping. Conclusions similar to the invariance under admissible homotopy of topological degree are obtained. Some concrete existence results and applications to some boundary value problems, integral inclusions and controllability of a nonlinear system are also given. In Chapter 4, we will suppose u A (t,u) is a set-valued pseudo-monotone mapping and consider the evolution inclusions x' (t) + A(t,x((t)) f (t) a.e. and (d)/(dt) (Bx(t)) + A (t,x((t)) f(t) a.e. in an evolution triple (V,H,V*), as well as perturbation problems of those two inclusions.
APA, Harvard, Vancouver, ISO, and other styles
9

Tazi, Hemida Mohamed. "Regularite l**(p) maximale pour une classe d'operateurs a caracteristiques multiples." Rennes 1, 1988. http://www.theses.fr/1988REN10046.

Full text
Abstract:
Il s'agit de regarder dans le 1er sujet la regularite l**(p) maximale pour une classe d'operateurs a characteristiques multiples. Dans le 2eme sujet, nous etudions l'hypoellipticite maximale d'un systeme d'operateurs pseudo-differentiels
APA, Harvard, Vancouver, ISO, and other styles
10

Huettenmueller, Rhonda. "The Pettis Integral and Operator Theory." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2844/.

Full text
Abstract:
Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-to­weak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used to construct determining subspaces for T. For example, if T*(Y*) ∩ X is weak* dense in T*(Y*), then T is determined by T*(Y*) ∩ X. Also if ker(T) is weak* closed in X*, then the annihilator of ker(T) (in X) is the unique minimal determining subspace for T.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Do operator"

1

Helffer, Bernard. Semiclassical analysis for Schrödinger operators, Laplace integrals and transfer operators in large dimension : an introduction: Cours de DEA. Orsay: Paris Onze édition, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Linear operator equations: Approximation and regularization. New Jersey: World Scientific, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eisner, Tanja. Stability of operators and operator semigroups. Basel: Birkhäuser, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eisner, Tanja. Stability of Operators and Operator Semigroups. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0195-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eisner, Tanja. Stability of operators and operator semigroups. Basel: Birkhäuser, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krasnoselʹskiĭ, A. M. Asymptotics of nonlinearities and operator equations. Basel: Birkhäuser Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ge, Liming, Huaxin Lin, Zhong-Jin Ruan, Dianzhou Zhang, and Shuang Zhang, eds. Operator Algebras and Operator Theory. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/conm/228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

1939-, Zabrei︣ko P. P., ed. Nonlinear superposition operators. Cambridge: Cambridge University Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1935-, Pearcy Carl M., Bercovici Hari 1953-, and Foiaş Ciprian, eds. Nonselfadjoint operator algebras, operator theory, and related topics: The Carl M. Pearcy anniversary volume. Basel: Birkhäuser, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

An introduction to Hankel operators. Cambridge: Cambridge University Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Do operator"

1

Cohen, Leon. "Arbitrary Operators: Single Operator." In The Weyl Operator and its Generalization, 111–19. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0294-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bogachev, Vladimir I., and Oleg G. Smolyanov. "Unbounded Operators and Operator Semigroups." In Real and Functional Analysis, 433–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38219-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berkolaiko, Gregory, and Peter Kuchment. "Linear operators and operator-functions." In Mathematical Surveys and Monographs, 213–17. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/surv/186/09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stulpe, Werner. "Operator." In Compendium of Quantum Physics, 440–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gooch, Jan W. "Operator." In Encyclopedic Dictionary of Polymers, 912. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oury, Jacob D., and Frank E. Ritter. "Cognition and Operator Performance." In Human–Computer Interaction Series, 37–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-47775-2_3.

Full text
Abstract:
AbstractDeveloping systems that foster situation awareness in operators requires that stakeholders can make informed decisions about the design. These decisions must account for the operator’s underlying cognitive processes based on perception, comprehension, and projection of the system state. This chapter reviews the core cognitive processes responsible for monitoring and responding to changes in system state. Operators must perceive information before they can act in response, and the interface design affects operator accuracy and speed via known mechanisms (i.e., effects of color on visual search time). Perception of key information also relies on how the operator thinks during tasks, and certain design choices can support better attention control and detection of signals. After perceiving the information, operators also must comprehend and interpret the information. Design guidance and factors related to supporting comprehension are presented alongside explanations of how cognitive load and working memory affect the operator’s ability to develop and maintain a useful mental model of the system. This review of cognitive mechanisms gives designers a strong foundation to make informed decisions ranging from choosing an alarm color to assessing how much information should be on screen at once.
APA, Harvard, Vancouver, ISO, and other styles
7

Yokoi, Kazuhito, Katsumi Nakashima, and Yoshitaka Yanagihara. "A Tele-operated Humanoid Operator." In Springer Tracts in Advanced Robotics, 229–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11552246_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dijksma, Aad, and Heinz Langer. "Operator theory and ordinary differential operators." In Fields Institute Monographs, 73–139. Providence, Rhode Island: American Mathematical Society, 1995. http://dx.doi.org/10.1090/fim/003/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eisner, Tanja. "Functional analytic tools." In Stability of Operators and Operator Semigroups, 5–35. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0195-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eisner, Tanja. "Stability of linear operators." In Stability of Operators and Operator Semigroups, 37–77. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0195-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Do operator"

1

Carpi, Sebastiano. "Operator algebras and vertex operator algebras." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zwart, Hans. "Is A-1an infinitesimal generator?" In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lyubich, Yu I. "A reducibility problem for the classical residue formula." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Galé, José E. "Some applications of fractional calculus to operator semigroups and functional calculus." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Benhida, C., and E. H. Zerouali. "Back to RS-SR spectral theory." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bračič, J., and V. Müller. "Open set of eigenvalues and SVEP." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Allan, Graham R. "Some simple proofs in holomorphic spectral theory." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

González, Manuel. "Banach spaces with small Calkin algebras." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zemánek, Jaroslav. "Orbits in strips." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Batty, Charles J. K. "Differentiability of perturbed semigroups and delay semigroups." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Do operator"

1

Haaland, K. S., and D. D. Sworder. Operator Multiple-Tasking Study for Remotely Operated Platforms. Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada184487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lysaght, Robert J., Susan G. Hill, A. O. Dick, Brian D. Plamondon, and Paul M. Linton. Operator Workload: Comprehensive Review and Evaluation of Operator Workload Methodologies. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada212879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Draper, Marker. Advanced UMV Operator Interfaces. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada441423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nelson, Jeremy. Advanced UMV Operator Interfaces. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada444168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nelson, Matthew A., Dmitry Keselman, and Joseph F. Longo. BioWatch SMS Operator Guide. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1093942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lipinski, John J. Raven Operator Assessment Tool. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada564660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stottler, Richard, and Alexander Davis. A Case-Based Reasoning Approach to Operator Assessment and Operator Machine Interface Enhancement. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada334196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reising, John. Uninhabited Systems and Operator Control. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada444046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hague, J. R. DOE/KEURP Site Operator Program. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6138856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beach, Matthew G. Managing Cyber Operator Training Curriculum. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada522684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!