Academic literature on the topic 'Do operator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Do operator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Do operator"

1

Rooin, Jamal, Akram Alikhani, and Mohammad Sal Moslehian. "Operator m-convex functions." Georgian Mathematical Journal 25, no. 1 (2018): 93–107. http://dx.doi.org/10.1515/gmj-2017-0045.

Full text
Abstract:
AbstractThe aim of this paper is to present a comprehensive study of operatorm-convex functions. Let{m\in[0,1]}, and{J=[0,b]}for some{b\in\mathbb{R}}or{J=[0,\infty)}. A continuous function{\varphi\colon J\to\mathbb{R}}is called operatorm-convex if for any{t\in[0,1]}and any self-adjoint operators{A,B\in\mathbb{B}({\mathscr{H}})}, whose spectra are contained inJ, we have{\varphi(tA+m(1-t)B)\leq t\varphi(A)+m(1-t)\varphi(B)}. We first generalize the celebrated Jensen inequality for continuousm-convex functions and Hilbert space operators and then use suitable weight functions to give some weighte
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Xiaochun, and Fugen Gao. "On Properties of ClassA(n)andn-Paranormal Operators." Abstract and Applied Analysis 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/629061.

Full text
Abstract:
Letnbe a positive integer, and an operatorT∈B(ℋ)is called a classA(n)operator ifT1+n2/1+n≥|T|2andn-paranormal operator ifT1+nx1/1+n≥||Tx||for every unit vectorx∈ℋ, which are common generalizations of classAand paranormal, respectively. In this paper, firstly we consider the tensor products for classA(n)operators, giving a necessary and sufficient condition forT⊗Sto be a classA(n)operator whenTandSare both non-zero operators; secondly we consider the properties forn-paranormal operators, showing that an-paranormal contraction is the direct sum of a unitary and aC.0completely non-unitary contrac
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, M. W. "Minimal and Maximal Operator Theory With Applications." Canadian Journal of Mathematics 43, no. 3 (1991): 617–27. http://dx.doi.org/10.4153/cjm-1991-036-7.

Full text
Abstract:
AbstractLetXbe a complex Banach space andAa linear operator fromXintoXwith dense domain. We construct the minimal and maximal operators of the operatorAand prove that they are equal under reasonable hypotheses on the spaceXand operatorA. As an application, we obtain the existence and regularity of weak solutions of linear equations on the spaceX. As another application we obtain a criterion for a symmetric operator on a complex Hilbert space to be essentially self-adjoint. An application to pseudo-differential operators of the Weyl type is given.
APA, Harvard, Vancouver, ISO, and other styles
4

Rosales, Edixo. "Operadores de riesz en el Alglat(T)∩{T}." Revista Bases de la Ciencia. e-ISSN 2588-0764 6, no. 1 (2021): 49. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v6i1.2515.

Full text
Abstract:

 En este trabajo X es un espacio de Banach y B(X) denota los operadores acotados. Si T∈B(X), por lat(T) entenderemos los subespacios invariantes por T. Se dice que T es lleno, si (T(M)) ̅=M, para todo M∈lat(T) (la barra indica la clausura en la topología inducida por la norma). Se prueba principalmente el siguiente resultado: Sean X un espacio de Banach y T ∈B(X) acotado por abajo. Sea K ∈Alglat(T)∩{T}' un operador de Riesz. Si K es lleno, entonces T es lleno. Aquí Alglat(T)={S∈B(X):M∈lat(T)⟾M∈lat(S)} y {T}^'={S∈B(X):S∘T=T∘S}.
 
 Palabras clave: Operador lleno, operador de Ries
APA, Harvard, Vancouver, ISO, and other styles
5

Harjule, Priyanka, Manish Bansal, and Serkan Araci. "An investigation of incomplete H−functions associated with some fractional integral operators." Filomat 36, no. 8 (2022): 2695–703. http://dx.doi.org/10.2298/fil2208695h.

Full text
Abstract:
Arbitrary-order integral operators find variety of implementations in different science disciplines as well as engineering fields. The study presented as part of this research paper derives motivation from the fact that applications of fractional operators and special functions demonstrate a huge potential in understanding many of physical phenomena. Study and investigation of a fractional integral operator containing an incomplete H? functions (IHFs) as the kernel is the primary objective of the research work presented here. Specifically, few interesting relations involving the new fractional
APA, Harvard, Vancouver, ISO, and other styles
6

Rosales, Edixo. "RESULTADOS SOBRE OPERADORES LLENOS EN ESPACIOS DE HILBERT." Bases de la Ciencia 5, no. 1 (2020): 51–62. https://doi.org/10.5281/zenodo.6904284.

Full text
Abstract:
<strong>RESUMEN</strong> Se prueba, entre otros, el siguiente resultado: Sea T:H&rarr;H un operador autoadjunto inyectivo, y K:H&rarr;H un operador de Riesz, tal que&nbsp; K&isin;Alglat(T)&cap;{T}&#39;.&nbsp; Si K:H&rarr;H es lleno, entonces T:H&rarr;H es lleno.&nbsp;&nbsp;&nbsp; <strong>Abstract</strong>&nbsp;It is proved here, among other results, the following: Let T:H&rarr;H&nbsp; be a self-adjoint injective operator, and K:H&rarr;H a Riesz operator, &nbsp;such that K&isin;Alglat(T)&cap;{T}&#39;. If K:H&rarr;H is a full operator, then T:H&rarr;H is a full operator.&nbsp;&nbsp;
APA, Harvard, Vancouver, ISO, and other styles
7

Miloslova, A. A., and T. A. Suslina. "Averaging of Higher-Order Parabolic Equations with Periodic Coefficients." Contemporary Mathematics. Fundamental Directions 67, no. 1 (2021): 130–91. http://dx.doi.org/10.22363/2413-3639-2021-67-1-130-191.

Full text
Abstract:
In L2(Rd;Cn), we consider a wide class of matrix elliptic operators A of order 2p (where p2) with periodic rapidly oscillating coefficients (depending on x/). Here 0 is a small parameter. We study the behavior of the operator exponent e-A for 0 and small . We show that the operatore-A converges as 0 in the operator norm in L2(Rd;Cn) to the exponent e-A0 of the effective operator A0. Also we obtain an approximation of the operator exponent e-A in the norm of operators acting from L2(Rd;Cn) to the Sobolev space Hp(Rd; Cn). We derive estimates of errors of these approximations depending on two pa
APA, Harvard, Vancouver, ISO, and other styles
8

Rosales, Edixo. "RESULTADOS SOBRE OPERADORES LLENOS EN ESPACIOS DE HILBERT." Revista Bases de la Ciencia. e-ISSN 2588-0764 5, no. 1 (2020): 51. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v5i1.1686.

Full text
Abstract:
&#x0D; Se prueba, entre otros, el siguiente resultado: Sea T:H→H un operador autoadjunto inyectivo, y K:H→H un operador de Riesz, tal que K∈Alglat(T)∩{T}'. Si K:H→H es lleno, entonces T:H→H es lleno.&#x0D; &#x0D; Palabras clave: Operador de Riesz, operador autoadjunto, operador lleno.&#x0D; &#x0D; Abstract&#x0D; It is proved here, among other results, the following: Let T:H→H be a self-adjoint injective operator, and K:H→H a Riesz operator, such that K∈Alglat(T)∩{T}'. If K:H→H is a full operator, then T:H→H is a full operator.&#x0D; &#x0D; Keywords: Riesz operator, self-adjoint operator, full
APA, Harvard, Vancouver, ISO, and other styles
9

Muxayyo, Muxtor qizi Sharopova. "INTRODUCING "PROGRAM CONTROL OPERATORS" IN THE JAVA PROGRAMMING LANGUAGE." Multidisciplinary Journal of Science and Technology 3, no. 5 (2023): 222–31. https://doi.org/10.5281/zenodo.10423915.

Full text
Abstract:
This article introduces operators in the Java programming language and their functions. Including comparison operator if-else, ternary operators, loop operators for, while, do-while, selection operator switch, break and continue operator. Solutions to problems associated with each operator are shown.
APA, Harvard, Vancouver, ISO, and other styles
10

Gunawan, Gunawan, and Erni Widiyastuti. "KARAKTERISTIK OPERATOR PARANORMAL- * QUASI." Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika 3, no. 1 (2022): 256–73. http://dx.doi.org/10.46306/lb.v3i1.114.

Full text
Abstract:
Given Hilbert space H over the fields of . This study aimed to investigate the paranormal- * quasi operators and their properties in Hilbert space. The study resulted the properties of paranormal- * quasi operators, hyponormal operator, class A operator, Class A- * operator, p- hyponormal operator for p &gt; 0, - paranormal operators, compact operator, and the relationship between them
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Do operator"

1

Charbonnel, Anne-Marie. "Contribution à l'étude du spectre conjoint de systèmes d'opérateurs pseudodifférentiels qui commutent." Nantes, 1989. http://www.theses.fr/1989NANT2012.

Full text
Abstract:
On considere plusieurs operateurs pseudodifferentiels dependant d'un petit parametre h, commutant deux a deux, agissant sur l'espace a n dimensions. L'un d'eux peut etre, par exemple, l'operateur de schroedinger. Nous definissons la notion de "spectre conjoint" pour ces operateurs, et etudions le comportement asymptotique de ce dernier dans deux types de situation: 1) nous supposons h fixe et nous nous interessons aux gcrandes valeurs de l'energie; 2) nous fixons un niveau d'energie, et etudions le comportement semi-classique du spectre conjoint, c'est-a-dire pour h tendant vers 0. Dans les de
APA, Harvard, Vancouver, ISO, and other styles
2

Phanzu, Serge Phanzu. "Every Pure Quasinormal Operator Has a Supercyclic Adjoint." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1592579020787873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moussai, Madani. "Continuite de certains operateurs integraux singuliers sur les espaces de besov." Paris 7, 1987. http://www.theses.fr/1987PA077016.

Full text
Abstract:
On s'interesse a des conditions necessaires et suffisantes de continuite-l**(2) (resp. Continuite - besov b**(s)::(p,q)), des commutateurs entre les operateurs pseudo-differentiels o. P. D. De type s**(11,a); a1 (resp. S**(11,0)), et les fonctions dont les gradients sont bornes (resp. Des multiplicateurs de besov m(b**(s)::(p,q))). La continuite - besov du commutateur a l'aide du critere de lemarie, mene a etudier la continuite des o. P. D. De type s**(01,0) sur m(b**(sp,q)): les o. P. D. D'ordre 0 sont bornes sur les versions "localisees l**(e") de b**(s)::(p,q), par consequent sur m(b**(s)::
APA, Harvard, Vancouver, ISO, and other styles
4

Gustafsson, Tapper Michael. "Operator Feedback." Thesis, KTH, Maskinkonstruktion (Inst.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232505.

Full text
Abstract:
Det här är en rapport som sammanfattar ett examensarbete av studenten Michael GustafssonTapper skriven under våren 2018. Examensarbetet är en del av mastern Integreradproduktutveckling inom spåret Teknisk design på KTH, Kungliga Tekniska Högskolan iStockholm, Sverige. Dagens montörer i monteringsliner i fabriker får sin feedback från sinaverktyg men ibland missas denna information av montörerna. Det här examensarbetetresulterade i en vidareutveckling av ett tidigare projekt in kursen MF2016 Industriell design högrekurs, del 2. Resultatet var en lösning av ett par skyddsglasögon vid namn Protec
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Tabrina M. "Operator Ranges and Porosity." Kent State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=kent1215466700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mathew, Panakkal Jesu. "On Some Aspects of the Differential Operator." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/math_theses/12.

Full text
Abstract:
The Differential Operator D is a linear operator from C1[0,1] onto C[0,1]. Its domain C1[0,1] is thoroughly studied as a meager subspace of C[0,1]. This is analogous to the status of the set of all rational numbers Q in the set of the real numbers R. On the polynomial vector space Pn the Differential Operator D is a nilpotent operator. Using the invariant subspace and reducing subspace technique an appropriate basis for the underlying vector space can be found so that the nilpotent operator admits its Jordan Canonical form. The study of D on Pn is completely carried out. Finally, the solu
APA, Harvard, Vancouver, ISO, and other styles
7

Matjila, D. M. "On a class of pseudo-differential operators in IRⁿ". Thesis, Rhodes University, 1988. http://hdl.handle.net/10962/d1001981.

Full text
Abstract:
The class of pseudo-differential operators with symbols from Sm (superscript) po̧̧ (subscipt)(Ωx IRⁿ) has been extensively studied.The main assumption which characterises this class of symbols is that a(x,Ȩ) є Sm (superscript)po̧̧ (subscipt)(Ωx IRⁿ) should have a polynomial growth in the Ȩ variable only. The x-variable is controlled on compact subsets of Ω. A polynomial growth in both the x and Ȩ variables on a C°°(lR²ⁿ) function a(x,Ȩ) gives rise to a different class of symbols and a corresponding class of operators. In this work, such symbols and the action of the operators on the functi
APA, Harvard, Vancouver, ISO, and other styles
8

Bian, Wenming. "Operator inclusions and operator-differential inclusions." Thesis, University of Glasgow, 1998. http://theses.gla.ac.uk/2029/.

Full text
Abstract:
In Chapter 2, we first introduce a generalized inverse differentiability for set-valued mappings and consider some of its properties. Then, we use this differentiability, Ekeland's Variational Principle and some fixed point theorems to consider constrained implicit function and open mapping theorems and surjectivity problems of set-valued mappings. The mapping considered is of the form F(x, u) + G (x, u). The inverse derivative condition is only imposed on the mapping x F(x, u), and the mapping x G(x, u) is supposed to be Lipschitz. The constraint made to the variable x is a closed convex cone
APA, Harvard, Vancouver, ISO, and other styles
9

Tazi, Hemida Mohamed. "Regularite l**(p) maximale pour une classe d'operateurs a caracteristiques multiples." Rennes 1, 1988. http://www.theses.fr/1988REN10046.

Full text
Abstract:
Il s'agit de regarder dans le 1er sujet la regularite l**(p) maximale pour une classe d'operateurs a characteristiques multiples. Dans le 2eme sujet, nous etudions l'hypoellipticite maximale d'un systeme d'operateurs pseudo-differentiels
APA, Harvard, Vancouver, ISO, and other styles
10

Huettenmueller, Rhonda. "The Pettis Integral and Operator Theory." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2844/.

Full text
Abstract:
Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-to­weak continuous operators on dual spaces. For instance, if Tf i
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Do operator"

1

Helffer, Bernard. Semiclassical analysis for Schrödinger operators, Laplace integrals and transfer operators in large dimension : an introduction: Cours de DEA. Paris Onze édition, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krasnoselʹskiĭ, A. M. Asymptotics of nonlinearities and operator equations. Birkhäuser Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eisner, Tanja. Stability of operators and operator semigroups. Birkhäuser, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eisner, Tanja. Stability of Operators and Operator Semigroups. Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0195-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eisner, Tanja. Stability of operators and operator semigroups. Birkhäuser, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ge, Liming, Huaxin Lin, Zhong-Jin Ruan, Dianzhou Zhang, and Shuang Zhang, eds. Operator Algebras and Operator Theory. American Mathematical Society, 1998. http://dx.doi.org/10.1090/conm/228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cordes, H. O. The technique of pseudodifferential operators. Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beckhoff, Ferdinand. Korovkin-Theorie in Algebren. Mathematisches Institut der Universität Münster, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wong, M. W. An introduction to pseudo-differential operators. 3rd ed. World Scientific, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1955-, Putinar Mihai, ed. Lectures on hyponormal operators. Birkhäuser Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Do operator"

1

Slama, Dirk. "Digital Equipment Operator." In The Digital Playbook. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-88221-1_8.

Full text
Abstract:
AbstractThe Digital Equipment Operator utilizes AIoT to optimize how they operate physical assets or equipment. Goals often include asset performance optimization and process improvements. Examples of Digital Equipment Operators include manufacturers, electricity grid operators, railroad operators, and mining companies. This chapter introduces the concept of the The Digital Equipment Operator in detail, again following the why, what, how structure from the Introduction (Fig. 8.1).
APA, Harvard, Vancouver, ISO, and other styles
2

Cohen, Leon. "Arbitrary Operators: Single Operator." In The Weyl Operator and its Generalization. Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0294-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bogachev, Vladimir I., and Oleg G. Smolyanov. "Unbounded Operators and Operator Semigroups." In Real and Functional Analysis. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38219-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berkolaiko, Gregory, and Peter Kuchment. "Linear operators and operator-functions." In Mathematical Surveys and Monographs. American Mathematical Society, 2012. http://dx.doi.org/10.1090/surv/186/09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oury, Jacob D., and Frank E. Ritter. "Cognition and Operator Performance." In Human–Computer Interaction Series. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-47775-2_3.

Full text
Abstract:
AbstractDeveloping systems that foster situation awareness in operators requires that stakeholders can make informed decisions about the design. These decisions must account for the operator’s underlying cognitive processes based on perception, comprehension, and projection of the system state. This chapter reviews the core cognitive processes responsible for monitoring and responding to changes in system state. Operators must perceive information before they can act in response, and the interface design affects operator accuracy and speed via known mechanisms (i.e., effects of color on visual
APA, Harvard, Vancouver, ISO, and other styles
6

Stulpe, Werner. "Operator." In Compendium of Quantum Physics. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gooch, Jan W. "Operator." In Encyclopedic Dictionary of Polymers. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yokoi, Kazuhito, Katsumi Nakashima, and Yoshitaka Yanagihara. "A Tele-operated Humanoid Operator." In Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11552246_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dijksma, Aad, and Heinz Langer. "Operator theory and ordinary differential operators." In Fields Institute Monographs. American Mathematical Society, 1995. http://dx.doi.org/10.1090/fim/003/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eisner, Tanja. "Functional analytic tools." In Stability of Operators and Operator Semigroups. Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0195-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Do operator"

1

John, Maneesh, Jyothi Rikhab Chand, and Mathews Jacob. "Local Monotone Operator Learning Using Non-Monotone Operators: MNM-MOL." In 2024 IEEE International Symposium on Biomedical Imaging (ISBI). IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Curtiss, Peter, Kumaraguru Prabakar, Deepthi Vaidhynathan, Subhankar Ganguly, Saeed Kamalinia, and Rishabh Jain. "Flexible Operation of Microgrids Through Operator-Configurable Microgrid Controllers." In 2025 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge). IEEE, 2025. https://doi.org/10.1109/gridedge61154.2025.10887451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carpi, Sebastiano. "Operator algebras and vertex operator algebras." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zwart, Hans. "Is A-1an infinitesimal generator?" In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lyubich, Yu I. "A reducibility problem for the classical residue formula." In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Galé, José E. "Some applications of fractional calculus to operator semigroups and functional calculus." In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Benhida, C., and E. H. Zerouali. "Back to RS-SR spectral theory." In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bračič, J., and V. Müller. "Open set of eigenvalues and SVEP." In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Allan, Graham R. "Some simple proofs in holomorphic spectral theory." In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

González, Manuel. "Banach spaces with small Calkin algebras." In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Do operator"

1

Haaland, K. S., and D. D. Sworder. Operator Multiple-Tasking Study for Remotely Operated Platforms. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada184487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lysaght, Robert J., Susan G. Hill, A. O. Dick, Brian D. Plamondon, and Paul M. Linton. Operator Workload: Comprehensive Review and Evaluation of Operator Workload Methodologies. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada212879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Draper, Marker. Advanced UMV Operator Interfaces. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada441423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nelson, Jeremy. Advanced UMV Operator Interfaces. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada444168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nelson, Matthew A., Dmitry Keselman, and Joseph F. Longo. BioWatch SMS Operator Guide. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1093942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lipinski, John J. Raven Operator Assessment Tool. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada564660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stottler, Richard, and Alexander Davis. A Case-Based Reasoning Approach to Operator Assessment and Operator Machine Interface Enhancement. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada334196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baker, Michael. DTRS56-02-D-70036-16 Mechanical Damage. Pipeline Research Council International, Inc. (PRCI), 2009. http://dx.doi.org/10.55274/r0011844.

Full text
Abstract:
This report reviews and summarizes the current state of knowledge and practice related to mechanical damage in natural gas and hazardous liquid steel pipelines, with a particular focus on transmission pipelines. Comprehensive voluntary interviews were conducted with 10 pipeline operators who represent a diverse cross-section of industry professionals in the United States, Canada, and Europe. The interviews, which focused on operator practices for detection, characterization, and mitigation of mechanical damage on both gas and liquid transmission and gas distribution pipelines (the latter exami
APA, Harvard, Vancouver, ISO, and other styles
9

Reising, John. Uninhabited Systems and Operator Control. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada444046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hague, J. R. DOE/KEURP Site Operator Program. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/6138856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!