Academic literature on the topic 'DNN architecture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNN architecture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DNN architecture"
Roorda, Esther, Seyedramin Rasoulinezhad, Philip H. W. Leong, and Steven J. E. Wilton. "FPGA Architecture Exploration for DNN Acceleration." ACM Transactions on Reconfigurable Technology and Systems 15, no. 3 (September 30, 2022): 1–37. http://dx.doi.org/10.1145/3503465.
Full textElola, Andoni, Elisabete Aramendi, Unai Irusta, Artzai Picón, Erik Alonso, Pamela Owens, and Ahamed Idris. "Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest." Entropy 21, no. 3 (March 21, 2019): 305. http://dx.doi.org/10.3390/e21030305.
Full textTran, Van Duy, Duc Khai Lam, and Thi Hong Tran. "Hardware-Based Architecture for DNN Wireless Communication Models." Sensors 23, no. 3 (January 23, 2023): 1302. http://dx.doi.org/10.3390/s23031302.
Full textTurner, Daniel, Pedro J. S. Cardoso, and João M. F. Rodrigues. "Modular Dynamic Neural Network: A Continual Learning Architecture." Applied Sciences 11, no. 24 (December 18, 2021): 12078. http://dx.doi.org/10.3390/app112412078.
Full textLee, Junghwan, Huanli Sun, Yuxia Liu, Xue Li, Yixin Liu, and Myungjun Kim. "State-of-Health Estimation and Anomaly Detection in Li-Ion Batteries Based on a Novel Architecture with Machine Learning." Batteries 9, no. 5 (May 8, 2023): 264. http://dx.doi.org/10.3390/batteries9050264.
Full textMudgil, Pooja, Pooja Gupta, Iti Mathur, and Nisheeth Joshi. "An ontological architecture for context data retrieval and ranking using SVM and DNN." Journal of Information and Optimization Sciences 44, no. 3 (2023): 369–82. http://dx.doi.org/10.47974/jios-1347.
Full textElsisi, Mahmoud, and Minh-Quang Tran. "Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles." Sensors 21, no. 24 (December 18, 2021): 8467. http://dx.doi.org/10.3390/s21248467.
Full textP, Shanmugavadivu, Mary Shanthi Rani M, Chitra P, Lakshmanan S, Nagaraja P, and Vignesh U. "Bio-Optimization of Deep Learning Network Architectures." Security and Communication Networks 2022 (September 20, 2022): 1–11. http://dx.doi.org/10.1155/2022/3718340.
Full textKrishnan, Gokul, Sumit K. Mandal, Chaitali Chakrabarti, Jae-Sun Seo, Umit Y. Ogras, and Yu Cao. "Impact of On-chip Interconnect on In-memory Acceleration of Deep Neural Networks." ACM Journal on Emerging Technologies in Computing Systems 18, no. 2 (April 30, 2022): 1–22. http://dx.doi.org/10.1145/3460233.
Full textZhao, Jiaqi, Ming Xu, Yunzhi Chen, and Guoliang Xu. "A DNN Architecture Generation Method for DDoS Detection via Genetic Alogrithm." Future Internet 15, no. 4 (March 26, 2023): 122. http://dx.doi.org/10.3390/fi15040122.
Full textDissertations / Theses on the topic "DNN architecture"
Azam, Md Ali. "Energy Efficient Spintronic Device for Neuromorphic Computation." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6036.
Full textRiera, Villanueva Marc. "Low-power accelerators for cognitive computing." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669828.
Full textLes xarxes neuronals profundes (DNN) han aconseguit un èxit enorme en aplicacions cognitives, i són especialment eficients en problemes de classificació i presa de decisions com ara reconeixement de veu o traducció automàtica. Els dispositius mòbils depenen cada cop més de les DNNs per entendre el món. Els telèfons i rellotges intel·ligents, o fins i tot els cotxes, realitzen diàriament tasques discriminatòries com ara el reconeixement de rostres o objectes. Malgrat la popularitat creixent de les DNNs, el seu funcionament en sistemes mòbils presenta diversos reptes: proporcionar una alta precisió i rendiment amb un petit pressupost de memòria i energia. Les DNNs modernes consisteixen en milions de paràmetres que requereixen recursos computacionals i de memòria enormes i, per tant, no es poden utilitzar directament en sistemes de baixa potència amb recursos limitats. L'objectiu d'aquesta tesi és abordar aquests problemes i proposar noves solucions per tal de dissenyar acceleradors eficients per a sistemes de computació cognitiva basats en DNNs. En primer lloc, ens centrem en optimitzar la inferència de les DNNs per a aplicacions de processament de seqüències. Realitzem una anàlisi de la similitud de les entrades entre execucions consecutives de les DNNs. A continuació, proposem DISC, un accelerador que implementa una tècnica de càlcul diferencial, basat en l'alt grau de semblança de les entrades, per reutilitzar els càlculs de l'execució anterior, en lloc de computar tota la xarxa. Observem que, de mitjana, més del 60% de les entrades de qualsevol capa de les DNNs utilitzades presenten canvis menors respecte a l'execució anterior. Evitar els accessos de memòria i càlculs d'aquestes entrades comporta un estalvi d'energia del 63% de mitjana. En segon lloc, proposem optimitzar la inferència de les DNNs basades en capes FC. Primer analitzem el nombre de pesos únics per neurona d'entrada en diverses xarxes. Aprofitant optimitzacions comunes com la quantització lineal, observem un nombre molt reduït de pesos únics per entrada en diverses capes FC de DNNs modernes. A continuació, per millorar l'eficiència energètica del càlcul de les capes FC, presentem CREW, un accelerador que implementa un eficient mecanisme de reutilització de càlculs i emmagatzematge dels pesos. CREW redueix el nombre de multiplicacions i proporciona estalvis importants en l'ús de la memòria. Avaluem CREW en un conjunt divers de DNNs modernes. CREW proporciona, de mitjana, una millora en rendiment de 2,61x i un estalvi d'energia de 2,42x. En tercer lloc, proposem un mecanisme per optimitzar la inferència de les RNNs. Les cel·les de les xarxes recurrents realitzen multiplicacions element a element de les activacions de diferents comportes, sigmoides i tanh sent les funcions habituals d'activació. Realitzem una anàlisi dels valors de les funcions d'activació i mostrem que una fracció significativa està saturada cap a zero o un en un conjunto d'RNNs populars. A continuació, proposem CGPA per podar dinàmicament les activacions de les RNNs a una granularitat gruixuda. CGPA evita l'avaluació de neurones senceres cada vegada que les sortides de neurones parelles estan saturades. CGPA redueix significativament la quantitat de càlculs i accessos a la memòria, aconseguint en mitjana un 12% de millora en el rendiment i estalvi d'energia. Finalment, en l'última contribució d'aquesta tesi ens centrem en metodologies de poda estàtica de les DNNs. La poda redueix la petjada de memòria i el treball computacional mitjançant l'eliminació de connexions o neurones redundants. Tanmateix, mostrem que els esquemes de poda previs fan servir un procés iteratiu molt llarg que requereix l'entrenament de les DNNs moltes vegades per ajustar els paràmetres de poda. A continuació, proposem un esquema de poda basat en l'anàlisi de components principals i la importància relativa de les connexions de cada neurona que optimitza automàticament el DNN optimitzat en un sol tret sense necessitat de sintonitzar manualment múltiples paràmetres
Heath, Felicity. "Variable architecture polymers for DNA delivery." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539162.
Full textDing, Ke. "Architectures of DNA block copolymers." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=98214217X.
Full textMarriott, Hannah. "Genome architecture and DNA replication in Haloferax volcanii." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50190/.
Full textWei, Diming. "The beauty of DNA architecture : the design and applications in DNA nanotechnology /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CBME%202009%20WEI.
Full textSchilter, David. "Synthesis and DNA-binding of Metallocyclic Architectures." Thesis, The University of Sydney, 2009. http://hdl.handle.net/2123/5317.
Full textSchilter, David. "Synthesis and DNA-binding of Metallocyclic Architectures." University of Sydney, 2009. http://hdl.handle.net/2123/5317.
Full textA new family of cationic N-heterocyclic ligand derivatives was prepared and characterised. Among these compounds are halide salts of the dications [Y(spacer)Y]2+, each of which comprise two N heterocyclic donor groups (Y = 4,4′-bipy, pyz, apyz, apym) linked by a conformationally flexible spacer such as (CH2)n, α,α′-xylylene, 2,6-lutidylene or thiabicyclo[3.3.1]nonane-2,6 diyl. The diquaternary halide salts were converted to NO3- and PF6- salts, and interaction of these bridging ligands with labile palladium(II) and platinum(II) precursors afforded several multinuclear complexes. Bis(4,4′-bipyridinium) dications were incorporated into the dinuclear macrocycles [M2(2,2′ bipy)2{4,4′ bipy(CH2)n4,4′-bipy}2]8+ (M = Pd, Pt; n = 4, 6), cis [Pd2Cl4{4,4′ bipy(CH2)34,4′-bipy}2]4+, [Pt2(dppp)2{4,4′-bipy(1,2-xylylene)4,4′-bipy}2]8+ and cis-[Pt2Cl4{4,4′-bipy(1,2-xylylene)4,4′-bipy}2]4+. While bis(pyrazinium) analogues were unreactive towards the palladium(II) and platinum(II) precursors, the doubly deprotonated bis(3 aminopyrazinium) and bis(2 aminopyrimidinium) derivatives served as charge-neutral quadruply-bridging ligands in the complexes [Pt4(2,2′ bipy)4{apyz(CH2)6apyz–2H}2]8+ and [Pt4(2,2′ bipy)4{apym(CH2)5apym–2H}2]8+, both of which feature Pt(II). Pt(II) interactions. Larger species formed when the diamine O,O′-bis(2-aminoethyl)octadeca(ethylene glycol) (PEGda) was treated with cis dinitratopalladium(II) and platinum(II) precursors. The resulting complexes [M(N,N)(PEGda)]2+ (M = Pd, Pt; N,N = 2,2′-bipy, en, tmeda) possessed great size (62 membered chelate rings) and aqueous solubility. DNA-binding studies were conducted with selected complexes in order to investigate the types of interactions these species might participate in. Equimolar mixtures containing either the 16mer duplex DNA D2 or the single strand D2a and palladium(II)/platinum(II) complexes were prepared and analysed by negative-ion ESI MS. Studies of D2/Pd(II) mixtures suggested extensive fragmentation was occuring, and the use of [Pd(tmeda)(PEGda)]2+ and [Pd2(2,2′-bipy)2{4,4′-bipy(CH2)44,4′-bipy}2]8+ resulted in D2 adducts of [Pd(tmeda)]2+ and [4,4′-bipy(CH2)44,4′-bipy]2+, respectively. Decomposition also occurred when D2a was used, although 1 : 1 adducts were observed with [Pd(tmeda)(PEGda)]2+, [Pd(2,2′ bipy)(PEGda)]2+ and [Pd2(2,2′-bipy)2{4,4′-bipy(CH2)44,4′-bipy}2]8+. The low intensities of these adducts indicated that they are unstable towards ESI MS. Analogous ESI-MS experiments using platinum(II) derivatives were performed and, in contrast to those with palladium(II), indicated that the complexes remained largely intact. ESI-MS analysis of D2/Pt(II) mixtures allowed for the detection of 1 : 1 D2 adducts of [Pt(en)(PEGda)]2+, [Pt(tmeda)(PEGda)]2+ and [Pt2(2,2′-bipy)2{4,4′-bipy(CH2)44,4′-bipy}2]8+. Intensities of the adduct ions suggested the greater charge and aryl surface area allow the dinuclear species to bind D2 most strongly. Both [Pt(2,2′-bipy)(Mebipy)2]4+ and [Pt(2,2′ bipy)(NH3)2]2+ gave rise to 1 : 2 adducts of D2, although the latter was found to be a weaker binder, perhaps owing to its lower charge. Data obtained using 1 : 5 (D2 : complex) mixtures were consistent with the results above and suggested that D2 can bind more molecules of daunomycin than any of the platinum(II) species. Analyses of D2a/Pt(II) mixtures gave results similar to those obtained with D2, although fragmentation was more pronounced, indicating that the nucleobases in D2a play more significant roles in mediating decomposition than those in D2, in which they are paired in a complementary manner. Investigations into the effects of selected platinum(II) complexes on the thermal denaturation of calf-thymus DNA (CT-DNA) in solution were conducted. Both [Pt2(2,2′ bipy)2{4,4′-bipy(CH2)64,4′-bipy}2]8+ and [Pt(2,2′-bipy)(Mebipy)2]4+ greatly stabilised CT-DNA, most likely by intercalation. In contrast, [Pt(tmeda)(PEGda)]2+ and [Pt(en)(PEGda)]2+ (as well as PEGda) caused negligible changes in melting temperature (∆Tm), suggesting that these interact weakly with CT-DNA. Data for [Pt(2,2′ bipy)(PEGda)]2+ and [Pt(2,2′-bipy)(NH3)2]2+ indicated that these species perhaps intercalate CT-DNA, with similar ∆Tm values for both complexes implying that PEGda does not play a major role in binding. While findings from ESI-MS experiments were similar to those from the thermal denaturation experiments, discrepancies between results from the two methods could be found. In particular, fragmentation of cyclic species during ESI-MS caused the binding strength of the species to be underestimated when this method was employed.
Yu, Zhiling. "Interactions and architecture of human MCM proteins in vitro and in vivo /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?BICH%202003%20YU.
Full textIncludes bibliographical references (leaves 118-137). Also available in electronic version. Access restricted to campus users.
van, der Merwe Mariè. "Enzyme architecture and flexibility affect DNA topoisomerase I function." View the abstract Download the full-text PDF version, 2007. http://etd.utmem.edu/ABSTRACTS/2007-026-van_der_Merwe-Index.html.
Full textTitle from title page screen (viewed on July 29, 2008). Research advisor: Mary-Ann Bjornsti, Ph.D. Document formatted into pages (xiii, 175 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 161-175).
Books on the topic "DNN architecture"
Charre, Alain. Dan Graham. Paris: Dis Voir, 1995.
Find full textCharre, Alain. Dan Graham. Paris: Editions Dis voir, 1995.
Find full text1944-, Budihardjo Eko, ed. Pengaruh budaya dan iklim dalam perancangan arsitektur. Bandung: Alumni, 2009.
Find full text1944-, Budihardjo Eko, ed. Pengaruh budaya dan iklim dalam perancangan arsitektur. Bandung: Alumni, 2009.
Find full textTiantian, Xu, ed. Architecture as transformer: DnA-Design and Architecture, Beijing : projects 2004-2018. Berlin: Aedes, 2018.
Find full textÜber den Minderwertigkeitskomplex der deutschen Architektur: Ursachen einer Kontroverse. Göttingen: Optimus Verlag, 2010.
Find full textMayr, Fingerle Christoph, ed. Neues Bauen in den Alpen: Architekturpreis 2006 = Architettura alpina contemporanea : premio d'architettura 2006 = New Alpine architecture : architectural prize 2006. Basel: Birkhäuser, 2008.
Find full textvan, Boven Cees, Freijser Victor, and Vaillant Christiaan, eds. Gids van de moderne architectuur in Den Haag =: Guide to modern architecture in The Hague. 2nd ed. Den Haag: Uitgeverij Ulysses, 1998.
Find full text1931-, Böhm Elisabeth, ed. Gottfried Böhm: Bauten und Projekte : Auszug aus den Jahren 1985-2000 = Buildings and projects : a selection of works 1985-2000. Tübingen: Wasmuth, 2001.
Find full textFoundation, Solomon R. Guggenheim, ed. Dan Flavin: The architecture of light. New York: The Solomon R. Guggenheim Foundation, 1999.
Find full textBook chapters on the topic "DNN architecture"
Wang, Liang, and Jianxin Zhao. "Deep Neural Networks." In Architecture of Advanced Numerical Analysis Systems, 121–47. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8853-5_5.
Full textBartz-Beielstein, Thomas, Sowmya Chandrasekaran, and Frederik Rehbach. "Case Study III: Tuning of Deep Neural Networks." In Hyperparameter Tuning for Machine and Deep Learning with R, 235–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5170-1_10.
Full textHan, Donghyeon, and Hoi-Jun Yoo. "An Overview of Energy-Efficient DNN Training Processors." In On-Chip Training NPU - Algorithm, Architecture and SoC Design, 183–210. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34237-0_8.
Full textAnjum, Muhammad, Moizzah Asif, and Jonathan Williams. "Towards an Optimal Deep Neural Network for SOC Estimation of Electric-Vehicle Lithium-Ion Battery Cells." In Springer Proceedings in Energy, 11–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_2.
Full textPontes, Felipe Arruda, and Edward Curry. "Cloud-Edge Microservice Architecture for DNN-based Distributed Multimedia Event Processing." In Communications in Computer and Information Science, 65–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71906-7_6.
Full textHan, Donghyeon, and Hoi-Jun Yoo. "HNPU-V1: An Adaptive DNN Training Processor Utilizing Stochastic Dynamic Fixed-Point and Active Bit-Precision Searching." In On-Chip Training NPU - Algorithm, Architecture and SoC Design, 121–61. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34237-0_6.
Full textHan, Donghyeon, and Hoi-Jun Yoo. "HNPU-V2: An Energy-Efficient DNN Training Processor for Robust Object Detection with Real-World Environmental Adaptation." In On-Chip Training NPU - Algorithm, Architecture and SoC Design, 163–82. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34237-0_7.
Full textSinha, Bam Bahadur, Gurvinder Singh Yadav, and Sagar Badrish Kudkelwar. "Modified-PIP with Deep Neural Network (DNN) Architecture: A Coherent Recommendation Framework for Capturing User Behaviour." In Studies in Big Data, 121–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10869-3_7.
Full textAlsuhli, Ghada, Vasilis Sakellariou, Hani Saleh, Mahmoud Al-Qutayri, Baker Mohammad, and Thanos Stouraitis. "BFP for DNN Architectures." In Synthesis Lectures on Engineering, Science, and Technology, 61–72. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38133-1_6.
Full textAlsuhli, Ghada, Vasilis Sakellariou, Hani Saleh, Mahmoud Al-Qutayri, Baker Mohammad, and Thanos Stouraitis. "Posit for DNN Architectures." In Synthesis Lectures on Engineering, Science, and Technology, 81–88. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38133-1_8.
Full textConference papers on the topic "DNN architecture"
Krishnan, Gokul, Zhenyu Wang, Li Yang, Injune Yeo, Jian Meng, Rajiv V. Joshi, Nathaniel C. Cady, Deliang Fan, Jae-Sun Seo, and Yu Cao. "IMC Architecture for Robust DNN Acceleration." In 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT). IEEE, 2022. http://dx.doi.org/10.1109/icsict55466.2022.9963165.
Full textYemini, Yochai, Shlomo E. Chazan, Jacob Goldberger, and Sharon Gannot. "A Composite DNN Architecture for Speech Enhancement." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053821.
Full textKim, Jinhan, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella, and Shin Yoo. "Repairing DNN Architecture: Are We There Yet?" In 2023 IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE, 2023. http://dx.doi.org/10.1109/icst57152.2023.00030.
Full textHe, Zhezhi. "Session details: Architecture for DNN Acceleration (Virtual)." In ICCAD '22: IEEE/ACM International Conference on Computer-Aided Design. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3578439.
Full textYazdani, Reza, Marc Riera, Jose-Maria Arnau, and Antonio Gonzalez. "The Dark Side of DNN Pruning." In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2018. http://dx.doi.org/10.1109/isca.2018.00071.
Full textKwon, Hyoukjun, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen, and Vikas Chandra. "Heterogeneous Dataflow Accelerators for Multi-DNN Workloads." In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021. http://dx.doi.org/10.1109/hpca51647.2021.00016.
Full textCai, Chengtao, and Dongning Guo. "CNN-Self-Attention-DNN Architecture For Mandarin Recognition." In 2020 Chinese Control And Decision Conference (CCDC). IEEE, 2020. http://dx.doi.org/10.1109/ccdc49329.2020.9164333.
Full textGeng, Wei, Dongyu Liu, and Xiu Cao. "A Power Anomaly Detection Architecture Based on DNN." In the 3rd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3331453.3361641.
Full textGlint, Tom, Chandan Kumar Jha, Manu Awasthi, and Joycee Mekie. "Analysis of Quantization Across DNN Accelerator Architecture Paradigms." In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023. http://dx.doi.org/10.23919/date56975.2023.10136899.
Full textJanfaza, Vahid, Kevin Weston, Moein Razavi, Shantanu Mandal, Farabi Mahmud, Alex Hilty, and Abdullah Muzahid. "MERCURY: Accelerating DNN Training By Exploiting Input Similarity." In 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2023. http://dx.doi.org/10.1109/hpca56546.2023.10071051.
Full textReports on the topic "DNN architecture"
Tayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, January 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Full textBenner, Steven A. Design Automation Software for DNA-Based Nano-Sensor Architecture. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada582334.
Full textClark, Paul C., Timothy E. Lavin, Cynthia E. Irvine, and David J. Shifflett. DNS and Multilevel Secure Networks: Architectures and Recommendations. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada498511.
Full textPeterson, J., O. Kolkman, H. Tschofenig, and B. Aboba. Architectural Considerations on Application Features in the DNS. RFC Editor, October 2013. http://dx.doi.org/10.17487/rfc6950.
Full textMacula, Anthony, Russell Deaton, and Junghuei Chen. A Two-Dimensional Deoxyribonucleic Acid (DNA) Matrix Based Biomolecular Computing and Memory Architecture. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada494650.
Full textYu, Haichao, Haoxiang Li, Honghui Shi, Thomas S. Huang, and Gang Hua. Any-Precision Deep Neural Networks. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ejai.v1i1.82.
Full textJoel, Daniel M., Steven J. Knapp, and Yaakov Tadmor. Genomic Approaches for Understanding Virulence and Resistance in the Sunflower-Orobanche Host-Parasite Interaction. United States Department of Agriculture, August 2011. http://dx.doi.org/10.32747/2011.7592655.bard.
Full textCrowley, David E., Dror Minz, and Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Full textWeller, Joel I., Derek M. Bickhart, Micha Ron, Eyal Seroussi, George Liu, and George R. Wiggans. Determination of actual polymorphisms responsible for economic trait variation in dairy cattle. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600017.bard.
Full textEshed-Williams, Leor, and Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Full text