Journal articles on the topic 'DNA'

To see the other types of publications on this topic, follow the link: DNA.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'DNA.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cho, Hyun Kuk, Kyung-Sook Kim, Nam-Ye Kim, Sang-ok Moon, and Seung Beom Hong. "The Effect of Female DNA Extracted from Vaginal Fluid on the Detection of Y-STR Profile and the Quantitative Value of Male DNA." Korean Journal of Forensic Science 24, no. 2 (November 30, 2023): 69–74. http://dx.doi.org/10.53051/ksfs.2023.24.2.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wulansari, Nuring, Mala Nurilmala, and N. Nurjanah. "Detection Tuna and Processed Products Based Protein and DNA Barcoding." Jurnal Pengolahan Hasil Perikanan Indonesia 18, no. 2 (August 25, 2015): 119–27. http://dx.doi.org/10.17844/jphpi.2015.18.2.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhandari, Deepika. "Touch DNA: Revolutionizing Evidentiary DNA Forensics." International Journal of Forensic Sciences 8, no. 3 (2023): 1–8. http://dx.doi.org/10.23880/ijfsc-16000314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Touch DNA is an advanced technique widely employed in modern criminal justice systems in many developed countries. It aims to extract genetic information from biological substances, specifically the cells shed from the outermost layer of skin, that are left behind on touched objects. This method involves recovering trace amounts of DNA from the biological cells released during contact, even though the quantity is usually very low. The recovered DNA is further analyzed to generate a person's DNA profile. Since dead cells are not really visible to the naked eye, successfully locating and recovering them can be challenging. Performing DNA profiling from the samples that are just touched is quite difficult, hence, requires a highly sensitive approach to its proper recovery, extraction, and amplification of the segment. The methods which are used for the collection, sampling procedure, preservation, removal of contaminants, quantification of DNA, the amplifying of the genetic material, and the subsequent analysis and interpretation of the findings all play a role in how well touch DNA analysis works. Various techniques have been created over time to gather touch DNA. Reliable DNA profiles are produced thanks to the use of sophisticated kits, tools, and well-equipped forensic laboratories, which benefit the criminal justice system.
4

Fitria, Fitria, R. I. N. K. Retno Triandhini, Jubhar C. Mangimbulude, and Ferry Fredy Karwur. "Merokok dan Oksidasi DNA." Sains Medika : Jurnal Kedokteran dan Kesehatan 5, no. 2 (December 9, 2013): 113. http://dx.doi.org/10.30659/sainsmed.v5i2.352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cigarette smoke consists of a mix of chemical substances in the form of gases and dispersed particles. Recently, more than 4000 compounds presented incigarette smoke have been isolated. Most of these compounds are toxic to our body’s cells. Toxic gases including carbon monoxide (CO), hydrogen cyanide(HCN), nitrogen oxides, and volatile chemicals such as nitrosamines, formaldehyde are found in in cigarette smoke. besides toxic compounds, cigarettesmoke also containsfree radicalsincluding peroxynitrite, hydrogen peroxide, and superoxide. These free radicals may accelerate cellular damage due tooxidative stress. Targets od free radical attacks include DNA, protein and lipids. The harmful chemicals in form of gases and volatile substances in cigarettescause multiple genetic mutations. the combination of genetic mutations and DNA damage lead to genetic instability and it may cause cancer. OxidativeDNA damage caused by cigarette smoke can be identified with the presence of 8-oxoguanosine used as one of the biomarkers for oxidative DNA damage.Increased concentration of 8-oxoguanosine in DNA has an important role in carcinogenesis and triggers tumor cells. both active and passive smokers havebeen reported to have an elevated concentration of 8-oxoguanosine in their lung tissue and peripheral leukocytes as well as for passive smokers. This paperprovide informations and understanding of the effects of smoking on the genetic stability, especially in the DNA molecule.
5

Panjiasih Susmiarsih, Tri. "Kajian DNA Rekombinan pada Vaksin DNA dan Vaksin Subunit Protein." Majalah Kesehatan Pharmamedika 10, no. 2 (January 28, 2019): 108. http://dx.doi.org/10.33476/mkp.v10i2.730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Vaksin telah dikenal sebagai substansi yang digunakan untuk menstimulasi sistem imun. Saat ini, perkembangan vaksin sudah mencapai generasi vaksin DNA dan vaksin subunit protein.Teknologi perancangan vaksin digunakan dalam mengembangkan berbagai jenis vaksin dengan pendekatan biologi molekular yaitu menggunakan teknik DNA rekombinan yang memerlukan sarana vektor, DNA target, enzim restriksi dan ligasi serta sel inang. Studi ini bertujuan mengkaji teknik DNA rekombinan dalam pembuatan vaksin DNA dan vaksin subunit protein.
6

Lee, Suk-Hwan, and Ki-Ryong Kwon. "DNA Information Hiding Method for DNA Data Storage." Journal of the Institute of Electronics and Information Engineers 51, no. 10 (October 25, 2014): 118–27. http://dx.doi.org/10.5573/ieie.2014.51.10.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

MATSUURA, Kazunori, and Nobuo KIMIZUKA. "DNA Nanocage." Kobunshi 52, no. 3 (2003): 141. http://dx.doi.org/10.1295/kobunshi.52.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Okayama, Tsuyoshi, Hiroshi Kitabata, and Haruhiko Murase. "DNA Algorithms." Agricultural Information Research 12, no. 1 (2003): 33–43. http://dx.doi.org/10.3173/air.12.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marfuah, Siti, Beivy Jonathan Kolondam, and Trina Ekawati Tallei. "Potensi Environmental DNA (e-DNA) Untuk Pemantauan dan Konservasi Keanekaragaman Hayati." JURNAL BIOS LOGOS 11, no. 1 (February 28, 2021): 75. http://dx.doi.org/10.35799/jbl.11.1.2021.31780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
(Article History: Received January 6, 2021; Revised February 12, 2021; Accepted February 28, 2021) ABSTRAK Hilangnya spesies dan adanya spesies invasif dalam suatu habitat dapat menjadi ancaman bagi spesies asli dalam satu ekosistem. Untuk itu diperlukan teknik terkini yang mampu mendeteksi keberadaan suatu organisme. Salah satu teknik yang dapat mendeteksi organisme target di lingkungan secara cepat dan akurat yaitu environmental DNA (e-DNA).Tujuan dari ulasan artikel ini yaitu untuk mengeksplorasi kemampuan e-DNA secara ekogenomik untuk pemantauan dan konservasi keanekaragaman hayati. Ulasan artikel ini menggunakan data sekunder yang diperoleh dari berbagai database yang berbasis dalam jaringan. Hasil analisis memperlihatkan bahwa dengan menggunakan pendekatan e-DNA pemantauan dan konsevasi keanekaragaman hayati dapat dideteksi sesuai dengan taksonomi organisme dan penanda molekuler. Penanda molekuler Cytochrome c Oxidase subunit 1 (COI) mampu mendeteksi berbagai spesies baik langka dan invasif. Dengan demikian dapat disimpulkan bahwa pendekatan e-DNA dapat dijadikan sebagai metode untuk pemantauan dan konsevasi keanekaragaman hayati pada berbagai ekosistem.Kata - kata kunci: environmental DNA; keanekaragaman hayati dan konservasi; penanda molekuler ABSTRACTThe loss of species and the presence of invasive species in a habitat can be a threat to native species in an ecosystem. So we need the latest techniques that are able to detect the presence of an organism. One technique that can detect target organisms in the environment quickly and accurately is environmental DNA (e-DNA). The purpose of this review article is to explore the ecogenomic ability of e-DNA for monitoring and conservation of biodiversity. This article reviews using secondary data obtained from various network-based databases. The results of the analysis show that by using the e-DNA approach, monitoring and conservation of biological diversity can be detected according to the taxonomy of organisms and molecular markers. Cytochrome c Oxidase subunit 1 (COI) molecular markers are capable of detecting a variety of both rare and invasive species. Thus it can be concluded that the e-DNA approach can be used as a method for monitoring and conservation of biological diversity in various ecosystems.Keywords: environmental DNA; biodiversity and conservation; molecular markers
10

Nuraeny, Nanan, Dzulfikal DL Hakim, Fransisca S. Susilaningsih, and Dewi MD Herawati. "Metilasi DNA dan Mukosa Mulut." SRIWIJAYA JOURNAL OF MEDICINE 2, no. 2 (April 16, 2019): 99–105. http://dx.doi.org/10.32539/sjm.v2i2.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Pengaruh lingkungan eksternal pada gen manusia akan berpengaruh pada patogenesis penyakit, dan hal ini dapat diturunkan. Studi tentang perubahan gen fenotip yang diwariskan yang tidak disebabkan oleh perubahan urutan DNA disebut epigenetik. Salah satu mekanisme epigenetik adalah metilasi DNA yang penting dalam mengatur ekspresi gen. Ulasan ini akan menjelaskan studi tentang metilasi DNA pada mukosa mulut. Metode pencarian sistematis Google Scholar dan Pubmed dilakukan untuk semua studi dalam sepuluh tahun terakhir. Hasil pencarian mendapatkan sebanyak tujuh artikel dengan ukuran sampel yang bervariasi, 16 hingga 177 sampel, sebagian besar studi kasus-kontrol padaoral premalignan lesions (OPL), oral lichenoid disease (OLD), mucositis oral pada acute lymphoblactic leukemia (ALL), dan oral squamous cell carcinoma (OSCC). Metilasi DNA pada kanker mulut menunjukkan bahwa terdapat hipermetilasi beberapa gen, walaupun status metilasi DNA dalam beberapa kasus belum menunjukkan perbedaan yang signifikan antara gen yang diperiksa. Hasil penelitian lain menunjukkan bahwa tidak ada korelasi antara metilasi DNA dan perkembangan mukositis oral pada ALL yang menerima terapi metotreksat (MTX). Mekanisme metilasi DNA pada sel malignanadalah dengan menambahkan gugus metil ke sitosin dinukleotida di CpG (cytosine phosphate guanine) pada daerah promoter oleh enzim DNA methyltransferase sehingga dapat menghambat ekspresi beberapa gen terkait pertumbuhan sel, perbaikan DNA, dan penghambat metastasis. Metilasi DNA adalah biomarker penting dalam perkembangan penyakit mukosa mulut.
11

Nuraeny, Nanan, Dzulfikar DL Hakim, Fransisca S. Susilaningsih, Dewi MD Herawati, and Dida A. Gurnida. "Metilasi DNA dan Mukosa Mulut." Sriwijaya Journal of Medicine 2, no. 2 (April 2, 2019): 99–105. http://dx.doi.org/10.32539/sjm.v2i2.42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Pengaruh lingkungan eksternal pada gen manusia akan berpengaruh pada patogenesis penyakit, dan hal ini dapat diturunkan. Studi tentang perubahan gen fenotip yang diwariskan yang tidak disebabkan oleh perubahan urutan DNA disebut epigenetik. Salah satu mekanisme epigenetik adalah metilasi DNA yang penting dalam mengatur ekspresi gen. Ulasan ini akan menjelaskan studi tentang metilasi DNA pada mukosa mulut. Metode pencarian sistematis Google Scholar dan Pubmed dilakukan untuk semua studi dalam sepuluh tahun terakhir. Hasil pencarian mendapatkan sebanyak tujuh artikel dengan ukuran sampel yang bervariasi, 16 hingga 177 sampel, sebagian besar studi kasus-kontrol padaoral premalignan lesions (OPL), oral lichenoid disease (OLD), mucositis oral pada acute lymphoblactic leukemia (ALL), dan oral squamous cell carcinoma (OSCC). Metilasi DNA pada kanker mulut menunjukkan bahwa terdapat hipermetilasi beberapa gen, walaupun status metilasi DNA dalam beberapa kasus belum menunjukkan perbedaan yang signifikan antara gen yang diperiksa. Hasil penelitian lain menunjukkan bahwa tidak ada korelasi antara metilasi DNA dan perkembangan mukositis oral pada ALL yang menerima terapi metotreksat (MTX). Mekanisme metilasi DNA pada sel malignanadalah dengan menambahkan gugus metil ke sitosin dinukleotida di CpG (cytosine phosphate guanine) pada daerah promoter oleh enzim DNA methyltransferase sehingga dapat menghambat ekspresi beberapa gen terkait pertumbuhan sel, perbaikan DNA, dan penghambat metastasis. Metilasi DNA adalah biomarker penting dalam perkembangan penyakit mukosa mulut.
12

Weitzman, Jonathan B. "DNA/DNA microarrays." Genome Biology 2 (2001): spotlight—20010813–03. http://dx.doi.org/10.1186/gb-spotlight-20010813-03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Strey, Helmut H., Rudi Podgornik, Donald C. Rau, and V. Adrian Parsegian. "DNA-DNA interactions." Current Opinion in Structural Biology 8, no. 3 (June 1998): 309–13. http://dx.doi.org/10.1016/s0959-440x(98)80063-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yokoyama, Toru. "DNA Analysis." Journal of the Institute of Image Information and Television Engineers 67, no. 9 (2013): 812–14. http://dx.doi.org/10.3169/itej.67.812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

TABATA, Hitoshi, and Tomoji KAWAI. "DNA Network." Kobunshi 50, no. 4 (2001): 251. http://dx.doi.org/10.1295/kobunshi.50.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sutton, M. D., and G. C. Walker. "Managing DNA polymerases: Coordinating DNA replication, DNA repair, and DNA recombination." Proceedings of the National Academy of Sciences 98, no. 15 (July 17, 2001): 8342–49. http://dx.doi.org/10.1073/pnas.111036998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pinto, L. B., I. G. C. Caputo, and M. M. I. Pereira. "Importância do DNA em Investigações Forenses: Análise de DNA Mitocondrial." Brazilian Journal of Forensic Sciences, Medical Law and Bioethics 6, no. 1 (2016): 84–107. http://dx.doi.org/10.17063/bjfs6(1)y201684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hain, Patricia, and Donald Lee. "DNA and DNA Extraction." Journal of Natural Resources and Life Sciences Education 32, no. 1 (2003): 134. http://dx.doi.org/10.2134/jnrlse.2003.0134a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sreedhara, Alavattam, Yingfu Li, and Ronald R. Breaker. "Ligating DNA with DNA." Journal of the American Chemical Society 126, no. 11 (March 2004): 3454–60. http://dx.doi.org/10.1021/ja039713i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Yingfu, Yong Liu, and Ronald R. Breaker. "Capping DNA with DNA†." Biochemistry 39, no. 11 (March 2000): 3106–14. http://dx.doi.org/10.1021/bi992710r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Carmi, N., S. R. Balkhi, and R. R. Breaker. "Cleaving DNA with DNA." Proceedings of the National Academy of Sciences 95, no. 5 (March 3, 1998): 2233–37. http://dx.doi.org/10.1073/pnas.95.5.2233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Y., and R. R. Breaker. "Phosphorylating DNA with DNA." Proceedings of the National Academy of Sciences 96, no. 6 (March 16, 1999): 2746–51. http://dx.doi.org/10.1073/pnas.96.6.2746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Graham, E. A. M. "DNA reviews: Ancient DNA." Forensic Science, Medicine, and Pathology 3, no. 3 (October 11, 2007): 221–25. http://dx.doi.org/10.1007/s12024-007-9009-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Arnott, Struther, R. Chandrasekaran, R. P. Millane, and H. S. Park. "RNA-RNA, DNA-DNA, and DNA-RNA Polymorphism." Biophysical Journal 49, no. 1 (January 1986): 3–5. http://dx.doi.org/10.1016/s0006-3495(86)83568-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Garai, Ashok, Suman Saurabh, Yves Lansac, and Prabal K. Maiti. "DNA Elasticity from Short DNA to Nucleosomal DNA." Journal of Physical Chemistry B 119, no. 34 (July 24, 2015): 11146–56. http://dx.doi.org/10.1021/acs.jpcb.5b03006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

KEOHAVONG, PHOUTHONE, ALEXANDRA G. KAT, NEAL F. CARIELLO, and WILLIAM G. THILLY. "DNA Amplification In Vitro Using T4 DNA Polymerase." DNA 7, no. 1 (January 1988): 63–70. http://dx.doi.org/10.1089/dna.1988.7.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tanida, Jun, and Yusuke Ogura. "Photonic DNA computing." Review of Laser Engineering 33, Supplement (2005): 239–40. http://dx.doi.org/10.2184/lsj.33.239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

ISOBE, Hiroyuki, and Eiichi NAKAMURA. "Fulleren and DNA." Kobunshi 52, no. 3 (2003): 142. http://dx.doi.org/10.1295/kobunshi.52.142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

TOKUNAGA, Shuto, Shinichi MOCHIZUKI, Noriko MIYAMOTO, and Kazuo SAKURAI. "CpG-DNA Delivery Using DNA Nanotechnology." KOBUNSHI RONBUNSHU 74, no. 6 (2017): 603–7. http://dx.doi.org/10.1295/koron.2017-0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Petraccone, L., E. Erra, A. Messere, D. Montesarchio, G. Piccialli, L. De Napoli, G. Barone, and C. Giancola. "Targeting duplex DNA with DNA-PNA chimeras? Physico-chemical characterization of a triplex DNA-PNA/DNA/DNA." Biopolymers 73, no. 4 (2004): 434–42. http://dx.doi.org/10.1002/bip.10599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Eun-Gyeong, Hyo-Gun Yun, and Sang-Yong Lee. "DNA Computing Adopting DNA coding Method to solve Traveling Salesman Problem." Journal of Korean Institute of Intelligent Systems 14, no. 1 (February 1, 2004): 105–11. http://dx.doi.org/10.5391/jkiis.2004.14.1.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kim, Eun-Gyeong, and Sang-Yong Lee. "DNA Computing Adopting DNA coding Method to solve effective Knapsack Problem." Journal of Korean Institute of Intelligent Systems 15, no. 6 (December 1, 2005): 730–35. http://dx.doi.org/10.5391/jkiis.2005.15.6.730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Immoos, Chad E., Stephen J. Lee, and Mark W. Grinstaff. "DNA-PEG-DNA Triblock Macromolecules for Reagentless DNA Detection." Journal of the American Chemical Society 126, no. 35 (September 2004): 10814–15. http://dx.doi.org/10.1021/ja046634d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Burgers, Peter M. J. "Eukaryotic DNA polymerases in DNA replication and DNA repair." Chromosoma 107, no. 4 (September 22, 1998): 218–27. http://dx.doi.org/10.1007/s004120050300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ossipov, Dimitri, Edouard Zamaratski, and Jyoti Chattopadhyaya. "Dipyrido[3,2-a:2′,3′-c]phenazine-Tethered Oligo-DNA: Synthesis and Thermal Stability of Their DNA⋅DNA and DNA⋅RNA Duplexes and DNA⋅DNA⋅DNA Triplexes." Helvetica Chimica Acta 82, no. 12 (December 15, 1999): 2186–200. http://dx.doi.org/10.1002/(sici)1522-2675(19991215)82:12<2186::aid-hlca2186>3.0.co;2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

DEGUCHI, Tetsuo, and SHIMAMURA Miyuki. "Knotted DNA." Kobunshi 53, no. 4 (2004): 274. http://dx.doi.org/10.1295/kobunshi.53.274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nawy, Tal. "DNA variants or DNA damage?" Nature Methods 14, no. 4 (April 2017): 341. http://dx.doi.org/10.1038/nmeth.4254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Seeman, Nadrian C. "DNA NANOTECHNOLOGY: Novel DNA Constructions." Annual Review of Biophysics and Biomolecular Structure 27, no. 1 (June 1998): 225–48. http://dx.doi.org/10.1146/annurev.biophys.27.1.225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

LILLEY, DAVID M. J. "DNA supercoiling and DNA structure." Biochemical Society Transactions 14, no. 2 (April 1, 1986): 211–13. http://dx.doi.org/10.1042/bst0140211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Brookfield, John. "DNA markers and DNA trees." Journal of Evolutionary Biology 12, no. 3 (May 1999): 630–31. http://dx.doi.org/10.1046/j.1420-9101.1999.0072d.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Burnier, Y., J. Dorier, and A. Stasiak. "DNA supercoiling inhibits DNA knotting." Nucleic Acids Research 36, no. 15 (July 24, 2008): 4956–63. http://dx.doi.org/10.1093/nar/gkn467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Reich, Norbert O., and Michael J. Danzitz. "EcoRI DNA methyltransferase-DNA interactions." Biochemistry 31, no. 7 (February 1992): 1937–45. http://dx.doi.org/10.1021/bi00122a006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Breaker, R. "DNA aptamers and DNA enzymes." Current Opinion in Chemical Biology 1, no. 1 (June 1997): 26–31. http://dx.doi.org/10.1016/s1367-5931(97)80105-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Travers, Andrew. "DNA Topology: Dynamic DNA Looping." Current Biology 16, no. 19 (October 2006): R838—R840. http://dx.doi.org/10.1016/j.cub.2006.08.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Barone, G., A. Barbieri, S. Posante, A. Trotta, A. Silvestri, G. Ruisi, A. M. Giuliani, M. T. Lo Giudice, M. T. Musmeci, and R. Barbieri. "DNA-tin and DNA-iron." Journal of Inorganic Biochemistry 59, no. 2-3 (August 1995): 176. http://dx.doi.org/10.1016/0162-0134(95)97284-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Westerhoff, Hans V., Mary H. O’Dea, Anthony Maxwell, and Martin Gellert. "DNA supercoiling by DNA gyrase." Cell Biophysics 12, no. 1 (January 1988): 157–81. http://dx.doi.org/10.1007/bf02918357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Witz, Guillaume, Giovanni Dietler, and Andrzej Stasiak. "DNA knots and DNA supercoiling." Cell Cycle 10, no. 9 (May 2011): 1339–40. http://dx.doi.org/10.4161/cc.10.9.15293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

López-Moyado, Isaac F., and Anjana Rao. "Active DNA demethylation damages DNA." Science 378, no. 6623 (December 2, 2022): 948–49. http://dx.doi.org/10.1126/science.adf3171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Gehring, Mary, Wolf Reik, and Steven Henikoff. "DNA demethylation by DNA repair." Trends in Genetics 25, no. 2 (February 2009): 82–90. http://dx.doi.org/10.1016/j.tig.2008.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nöll, Tanja, Sabine Wenderhold-Reeb, Holger Schönherr, and Gilbert Nöll. "DNA-Hydrogele aus Plasmid-DNA." Angewandte Chemie 129, no. 39 (August 17, 2017): 12167–71. http://dx.doi.org/10.1002/ange.201705001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography