Academic literature on the topic 'DNA sequencing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA sequencing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DNA sequencing"
Rees, W. D. "DNA sequencing." Proceedings of the Nutrition Society 55, no. 1B (March 1996): 605–12. http://dx.doi.org/10.1079/pns19960054.
Full textGriffin, H. G., and A. M. Griffin. "DNA sequencing." Applied Biochemistry and Biotechnology 38, no. 1-2 (January 1993): 147–59. http://dx.doi.org/10.1007/bf02916418.
Full textDewey, Frederick E., Stephen Pan, Matthew T. Wheeler, Stephen R. Quake, and Euan A. Ashley. "DNA Sequencing." Circulation 125, no. 7 (February 21, 2012): 931–44. http://dx.doi.org/10.1161/circulationaha.110.972828.
Full textTang, Lei. "Sequencing DNA bendability." Nature Methods 18, no. 2 (February 2021): 121. http://dx.doi.org/10.1038/s41592-021-01070-1.
Full textLund, John, and Babak Parviz. "Electronic DNA Sequencing." Current Pharmaceutical Analysis 5, no. 2 (May 1, 2009): 91–100. http://dx.doi.org/10.2174/157341209788172906.
Full textMarian, Ali J. "Medical DNA sequencing." Current Opinion in Cardiology 26, no. 3 (May 2011): 175–80. http://dx.doi.org/10.1097/hco.0b013e3283459857.
Full textWong, Ka-Chun, Jiao Zhang, Shankai Yan, Xiangtao Li, Qiuzhen Lin, Sam Kwong, and Cheng Liang. "DNA Sequencing Technologies." ACM Computing Surveys 52, no. 5 (October 19, 2019): 1–30. http://dx.doi.org/10.1145/3340286.
Full textKling, Jim. "Ultrafast DNA sequencing." Nature Biotechnology 21, no. 12 (December 2003): 1425–27. http://dx.doi.org/10.1038/nbt1203-1425.
Full textLi, Chuan, and Philip W. Tucker. "Exoquence DNA sequencing." Nucleic Acids Research 21, no. 5 (1993): 1239–44. http://dx.doi.org/10.1093/nar/21.5.1239.
Full textFigureau, A., M. A. Soto, and J. Tohá. "Fast DNA sequencing." Medical Hypotheses 55, no. 1 (July 2000): 66–68. http://dx.doi.org/10.1054/mehy.1999.1026.
Full textDissertations / Theses on the topic "DNA sequencing"
Chen, Ying-Ja. "DNA sequencing by denaturation." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3359122.
Full textTitle from first page of PDF file (viewed July 14, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 87-91).
Leah, Labib. "Helicase Purification for DNA Sequencing." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31341.
Full textBoufounos, Petros T. 1977. "Signal processing for DNA sequencing." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/17536.
Full textIncludes bibliographical references (p. 83-86).
DNA sequencing is the process of determining the sequence of chemical bases in a particular DNA molecule-nature's blueprint of how life works. The advancement of biological science in has created a vast demand for sequencing methods, which needs to be addressed by automated equipment. This thesis tries to address one part of that process, known as base calling: it is the conversion of the electrical signal-the electropherogram--collected by the sequencing equipment to a sequence of letters drawn from ( A,TC,G ) that corresponds to the sequence in the molecule sequenced. This work formulates the problem as a pattern recognition problem, and observes its striking resemblance to the speech recognition problem. We, therefore, propose combining Hidden Markov Models and Artificial Neural Networks to solve it. In the formulation we derive an algorithm for training both models together. Furthermore, we devise a method to create very accurate training data, requiring minimal hand-labeling. We compare our method with the de facto standard, PHRED, and produce comparable results. Finally, we propose alternative HMM topologies that have the potential to significantly improve the performance of the method.
by Petros T. Boufounos.
M.Eng.and S.B.
Blomstergren, Anna. "Strategies for de novo DNA sequencing." Doctoral thesis, KTH, Biotechnology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3649.
Full textThe development of improved sequencing technologies hasenabled the field of genomics to evolve. Handling andsequencing of large numbers of samples require an increasedlevel of automation in order to obtain high throughput andconsistent quality. Improved performance has lead to thesequencing of numerous microbial genomes and a few genomes fromhigher eukaryotes and the benefits of comparing sequences bothwithin and between species are now becoming apparent. Thisthesis describes both the development of automated purificationmethods for DNA, mainly sequencing products, and a comparativesequencing project.
The initially developed purification technique is dedicatedto single stranded DNA containing vector specific sequences,exemplified by sequencing products. Specific capture probescoupled to paramagnetic beads together with stabilizing modularprobes hybridize to the single stranded target. After washing,the purified DNA can be released using water. When sequencingproducts are purified they can be directly loaded onto acapillary sequencer after elution. Since this approach isspecific it can be applied to multiplex sequencing products.Different probe sets are used for each sequencing product andthe purifications are performed iteratively.
The second purification approach, which can be applied to anumber of different targets, involves biotinylated PCR productsor sequencing products that are captured using streptavidinbeads. This has been described previously, buthere theinteraction between streptavidin and biotin can be disruptedwithout denaturing the streptavidin, enabling the re-use of thebeads. The relatively mild elution conditions also enable therelease of sensitive biotinylated molecules.
Another project described in this thesis is the comparativesequencing of the 40 kbcagpathogenicity island (PAI) in fourHelicobacter pyloristrains. The results included thediscovery of a novel gene, present in approximately half of theSwedish strains tested. In addition, one of the strainscontained a major rearrangement dividing thecagPAI into two parts. Further, information about thevariability of different genes could be obtained.
Keywords:DNA sequencing, DNA purification, automation,solid-phase, streptavidin, biotin, modular probes,Helicobacter pylori,cagPAI.
Hu, Yue. "Microbial DNA Sequencing in Environmental Studies." Doctoral thesis, KTH, Skolan för bioteknologi (BIO), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-204897.
Full textYue Hu was supported by a scholarship from the China Scholarship Council (CSC #201206950024)
Yue Hu has been publishing papers under the name "Yue O. O. Hu".
QC 20170403
Peng, Hongbo. "Towards hybridization-assisted nanopore DNA sequencing." View abstract/electronic edition; access limited to Brown University users, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3318349.
Full textHaan, Nicholas. "Statistical models and algorithms for DNA sequencing." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396070.
Full textDezfouli, Mahya. "Barcoded DNA Sequencing for Parallel Protein Detection." Doctoral thesis, KTH, Genteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159506.
Full textQC 20150203
Hu, Yuwei S. M. Massachusetts Institute of Technology, and Chin Soon Lim. "Scheduling of biological samples for DNA sequencing." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54214.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 95-97).
In a DNA sequencing workflow, a biological sample has to pass through multiple process steps. Two consecutive steps are hydroshearing and library construction. Samples arrive randomly into the inventory and are to complete both processes before their due dates. The research project is to decide the optimal sequence of samples to go through these two processes subject to operational constraints. Two approaches, namely, heuristic and integer programming have been pursued in this thesis. A heuristic algorithm is proposed to solve the scheduling problem. A variant of the problem involving deterministic arrivals of samples is also considered for comparison purposes. Comparison tests between the two approaches are carried out to investigate the performance of the proposed heuristic for the original problem and its variant. Sensitivity analysis of the schedule to parameters of the problem is also conducted when using both approaches.
by Yuwei Hu and Chin Soon Lim.
S.M.
Santiago, Garcia Eric, and Aspåker Hannes Salomonsson. "Temporal Convolutional Networks for Nanopore DNA Sequencing." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295625.
Full textEn nyligen utvecklad metod för att sekvensera DNA innefattar att en elektrisk signal moduleras genom att nukleotider passerar genom porer i nanostorlek. I kommersiella lösningar analyseras denna signal med hjälp av maskininlärning via Recurrent Neural Networks, men en variant av neruala nätverk som kallas Temporal Convolution Networks har nyligen har visat sig ha bättre prestanda jämfört med Recurrent Networks för olika typer av signalbehandlingsproblem. Målet med detta projekt är att undersöka användbarheten av Temporal Convolutional Networks för en förenklad version av DNA-sekvensering, där uppdraget endast är att identifera de nukleotider som passerar genom poren vid varje given tidpunkt, istället för att rekonstruera en komplett DNA-sekvens. För att kunna bestämma en optimal arkitektur på nätverket så undersöks effekten av flera olika parametrar. De implementerade nätverken visas ha god förmåga att klassificera nukleotider, men är troligtvis i behov av ytterligare förbättringar för att kunna konkurrera med nuvarande kommersiella lösningar.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Books on the topic "DNA sequencing"
1942-, Roe Bruce A., ed. DNA sequencing. San Diego: Academic Press, 1991.
Find full textDNA sequencing. New York: Springer, 1997.
Find full textAlphey, Dr Luke. DNA Sequencing. London: Garland Science, 2023. http://dx.doi.org/10.1201/9781003423737.
Full textGriffin, Annette M., and Hugh G. Griffin. DNA Sequencing Protocols. New Jersey: Humana Press, 1993. http://dx.doi.org/10.1385/0896032485.
Full textGraham, Colin A., and Alison J. M. Hill. DNA Sequencing Protocols. New Jersey: Humana Press, 2001. http://dx.doi.org/10.1385/1592591132.
Full textCorsi, Patrick, and Dominique Morin. Sequencing Apple's DNA. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119261575.
Full textWilliam, Lowry, Morrey John, and Taped Technologies Production, eds. DNA sequencing [videorecording]. Logan: Taped Technologies, 1990.
Find full textRoe, Bruce A. DNA isolation and sequencing. New York: John Wiley & Sons, 1996.
Find full textDNA sequencing: The basics. Oxford: Oxford University Press, 1994.
Find full textKresten, Ovesen, and Matthiesen Ulrich, eds. DNA fingerprinting, sequencing, and chips. Hauppauge, NY: Nova Science Publishers, 2009.
Find full textBook chapters on the topic "DNA sequencing"
Alphey, Luke. "Confirmatory Sequencing." In DNA Sequencing, 89–96. London: Garland Science, 2023. http://dx.doi.org/10.1201/9781003423737-11.
Full textSurzycki, Stefan. "DNA Sequencing." In Basic Techniques in Molecular Biology, 374–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56968-5_15.
Full textJankevics, Eriks. "DNA Sequencing." In Basic Cloning Procedures, 22–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71965-3_2.
Full textBriones, Carlos. "DNA Sequencing." In Encyclopedia of Astrobiology, 675. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_453.
Full textSpencer, Chris. "DNA Sequencing." In Springer Protocols Handbooks, 95–108. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-59259-642-3_10.
Full textBriones, Carlos. "DNA Sequencing." In Encyclopedia of Astrobiology, 453. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_453.
Full textLozano-Kühne, Jingky. "DNA Sequencing." In Encyclopedia of Systems Biology, 615. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1294.
Full textBadge, Jo. "DNA Sequencing." In Plant Virology Protocols, 307–18. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1385/0-89603-385-6:307.
Full textVolckaert, Guido, Peter Verhasselt, Marleen Voet, and Johan Robben. "DNA Sequencing." In Biotechnology, 257–315. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620838.ch8.
Full textLi, Lei M. "DNA Sequencing." In Selected Works of Terry Speed, 535–61. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1347-9_13.
Full textConference papers on the topic "DNA sequencing"
Myers, Gene. "Advances in DNA sequencing." In the Paris C. Kanellakis memorial workshop. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/778348.778350.
Full textGholami, Ali, Mohammad Ali Maddah-Ali, and Seyed Abolfazl Motahari. "Private Shotgun DNA Sequencing." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849382.
Full textMastrangelo, Carlos H., S. Palaniappan, Piu Francis Man, Mark A. Burns, and David T. Burke. "Microchips for DNA sequencing." In Symposium on Micromachining and Microfabrication, edited by Chong H. Ahn and A. Bruno Frazier. SPIE, 1999. http://dx.doi.org/10.1117/12.359324.
Full textWu, ZhongPan, Karim Hammad, Yunus Dawji, Ebrahim Ghafar-Zadeh, and Sebastian Magierowski. "Hardware Accelerated DNA Sequencing." In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2018. http://dx.doi.org/10.1109/mwscas.2018.8623915.
Full textZhang, Yunpeng, Dafang Zhang, Peng Sun, and Feng Guo. "DNA Sequencing Puzzle Based DNA Cryptography Algorithm." In Modelling, Simulation and Identification / 854: Intelligent Systems and Control. Calgary,AB,Canada: ACTAPRESS, 2017. http://dx.doi.org/10.2316/p.2017.853-022.
Full textZwolak, Michael, and Massimiliano Di Ventra. "DNA sequencing via electron tunneling." In 2012 IEEE International Symposium on Circuits and Systems - ISCAS 2012. IEEE, 2012. http://dx.doi.org/10.1109/iscas.2012.6271753.
Full textConde-Canencia, Laura, and Lara Dolecek. "Nanopore DNA Sequencing Channel Modeling." In 2018 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 2018. http://dx.doi.org/10.1109/sips.2018.8598361.
Full textHaan and Godsill. "Bayesian models for DNA sequencing." In IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1004800.
Full textHaan, Nicholas M., and Simon J. Godsill. "Bayesian models for DNA sequencing." In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745539.
Full textPalaniappan, Kannappan, and Thomas S. Huang. "Image analysis for DNA sequencing." In Electronic Imaging '91, San Jose,CA, edited by Alan C. Bovik and Vyvyan Howard. SPIE, 1991. http://dx.doi.org/10.1117/12.44310.
Full textReports on the topic "DNA sequencing"
Haugland, R. P. Fluorescence-detected DNA sequencing. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5619036.
Full textBerg, D. E., C. M. Berg, and H. V. Huang. Transposon facilitated DNA sequencing. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6278108.
Full textSchecker, J. The rapid DNA sequencing project. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/766181.
Full textDr. Barry Karger. DNA Sequencing Using capillary Electrophoresis. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1013010.
Full textFormenti, Giulio. The race to improve DNA sequencing. Edited by S. Vicknesan. Monash University, February 2023. http://dx.doi.org/10.54377/faba-ccff.
Full textMathies, R. A. Ultrasensitive fluorescence detection of DNA sequencing gels. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5060142.
Full textBalch, J., J. Davidson, L. Brewer, J. Gingrich, J. Koo, R. Mariella, and A. Carrano. Advanced microinstrumentation for rapid DNA sequencing and large DNA fragment separation. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/105702.
Full textNaca, Christine. Ergonomics in DNA Sequencing: Standing Down to Ergonomics. Office of Scientific and Technical Information (OSTI), June 2009. http://dx.doi.org/10.2172/966050.
Full textUlanovsky, L. DNA sequencing technology, walking with modular primers. Final report. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/353379.
Full textBarron, A. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/877170.
Full text