Academic literature on the topic 'DNA self-assembling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA self-assembling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DNA self-assembling"
Sa-Ardyen, Phiset, Natašsa Jonoska, and Nadrian C. Seeman. "Self-assembling DNA graphs." Natural Computing 2, no. 4 (2003): 427–38. http://dx.doi.org/10.1023/b:naco.0000006771.95566.34.
Full textLi, Sinan, Pingang He, Jianhua Dong, Zhixin Guo, and Liming Dai. "DNA-Directed Self-Assembling of Carbon Nanotubes." Journal of the American Chemical Society 127, no. 1 (January 2005): 14–15. http://dx.doi.org/10.1021/ja0446045.
Full textLargo, Julio, Francis W. Starr, and Francesco Sciortino. "Self-Assembling DNA Dendrimers: A Numerical Study." Langmuir 23, no. 11 (May 2007): 5896–905. http://dx.doi.org/10.1021/la063036z.
Full textCarbone, A., and N. C. Seeman. "Circuits and programmable self-assembling DNA structures." Proceedings of the National Academy of Sciences 99, no. 20 (September 13, 2002): 12577–82. http://dx.doi.org/10.1073/pnas.202418299.
Full textVecchioni, S., M. C. Capece, E. Toomey, L. J. Rothschild, and S. J. Wind. "Toward electronically-functional, self-assembling DNA nanostructures." Journal of Self-Assembly and Molecular Electronics 6, no. 1 (2018): 1. http://dx.doi.org/10.13052/jsame2245-4551.2018008.
Full textGrome, Michael W., Zhao Zhang, Frédéric Pincet, and Chenxiang Lin. "Vesicle Tubulation with Self-Assembling DNA Nanosprings." Angewandte Chemie 130, no. 19 (April 14, 2018): 5428–32. http://dx.doi.org/10.1002/ange.201800141.
Full textGrome, Michael W., Zhao Zhang, Frédéric Pincet, and Chenxiang Lin. "Vesicle Tubulation with Self-Assembling DNA Nanosprings." Angewandte Chemie International Edition 57, no. 19 (April 14, 2018): 5330–34. http://dx.doi.org/10.1002/anie.201800141.
Full textMohammed, Abdul M., Petr Šulc, John Zenk, and Rebecca Schulman. "Self-assembling DNA nanotubes to connect molecular landmarks." Nature Nanotechnology 12, no. 4 (December 19, 2016): 312–16. http://dx.doi.org/10.1038/nnano.2016.277.
Full textSamano, Enrique C., Mauricio Pilo-Pais, Sarah Goldberg, Briana N. Vogen, Gleb Finkelstein, and Thomas H. LaBean. "Self-assembling DNA templates for programmed artificial biomineralization." Soft Matter 7, no. 7 (2011): 3240. http://dx.doi.org/10.1039/c0sm01318h.
Full textFahlman, Richard P., and Dipankar Sen. "“Synapsable” DNA Double Helices: Self-Selective Modules for Assembling DNA Superstructures." Journal of the American Chemical Society 121, no. 48 (December 1999): 11079–85. http://dx.doi.org/10.1021/ja992574d.
Full textDissertations / Theses on the topic "DNA self-assembling"
Wirtz, René. "DNA-based self-assembling molecular electronics." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615788.
Full textFrezza, Elisa. "Modelling of chirality propagation in self-assembling systems." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423467.
Full textL’autoassemblaggio gerarchico è un processo nel quale "building block" molecolari formano strutture intermedie che si auto-organizzano a livello macroscopico. Molti esempi possono essere trovati in natura, come il DNA o i virus. L’autoassemblaggio offre interessanti strategie per costruire nuovi materiali complessi: di conseguenza, risulta molto importante capirne i meccanismi per disegnare e controllare le architetture molecolari e per costruire strutture con proprietà e morfologie desiderate. Uno dei principali quesiti cui dare risposta è come la forma del building block influenzi l’autoassemblaggio. In questo contesto, la chiarità svolge un ruolo cruciale: è estremamente sensibile ai dettagli molecolari e può guidare l’autoassemblaggio; inoltre, essa può amplificare le differenze che avvengono su scala molecolare. Dal punto di vista teorico, la difficoltà deriva dalla necessità di metodi e modelli mul- tiscala, capaci di connettere le differenti scale di lunghezza. Per tenere in considerazione la relazione tra i building blocks, la loro organizzazione supramolecolare e le proprietà degli aggregati, si rende necessaria una rappresentazione dettagliata delle interazioni inter- molecolari: questa descrizione deve poi essere integrata in una modellizazione opportuna del comportamento del sistema su scale di lunghezza più grandi. Il tema di questa tesi è lo sviluppo e l’implementazione di modelli per la propagazione di chiralità dalla scala molecolare alla scala meso e macroscopica in sistemi autoassem- blati. Tre diverse linee di ricerca sono state portate avanti. La prima si è concentrata sull’autoassemblaggio di eliche dure, ed in particolare sulla formazione di fasi anisotrope di diversa simmetria. Il secondo argomento riguarda l’aggregazione lineare e la formazione di fasi liquido-cristalline a partire da oligomeri di acidi nucleici a doppio filamento prendendo in considerazione le relazioni tra la sequenza di oligonucleotidi, l’autoassemblaggio e le proprietà della loro fase colesterica. L’ultimo argomento è dedicato all’autoassemblaggio di coniugati porfirina-peptide in acqua. In base al problema e alla scala di lunghezza, sono stati utilizzati diversi metodi teorici e computazionali, in particolare: teorie statistiche dei liquidi e simulazioni di dinamica molecolare (sia atomistica che a grana grossa). La prima e la terza linea di ricerca sono stati condotte in collaborazione con sperimentali, mentre la seconda ha coinvolto altri gruppi teorici. La tesi è organizzata in tre parti. Nel Capitolo 1, il processo di autoassemblaggio, la propagazione di chiralità e il concetto di modellizzazione multiscala vengono descritti. Inoltre in questo Capitolo si presentano le principali proprietà dei cristalli liquidi. Nella prima Parte, dal Capitolo 2 al Capitolo 4, viene presentato il lavoro svolto sulle fasi anisotrope di eliche dure. Il Capitolo 2 presenta lo studio della fase nematica usando una teoria Onsager-like. I risultati teorici sono confrontati con simulazioni Monte Carlo. Nel Capitolo 3, viene presentato un modello teorico per la fase colesterica utilizzato poi per studiare l’effetto della forma elicoidale sulle proprietà della fase colesterica. Nel Capitolo 4 viene presentato l’intero diagramma di fase delle eliche dure, assieme alla caratterizzazione di una nuova fase nematica chirale. La seconda Parte concerne le fasi liquido-cristalline formate da dsNA. Il Capitolo 5 si focalizza sulla relazione tra la sequenza di oligonucleotidi e la loro organizzazione nella fase colesterica utilizzando una teoria molecolare e la modellizzazione a grana grossa, basata su dati strutturali dipendenti dalla sequenza. Nel Capitolo 6, viene descritto il modello teorico per la fase colesterica formata da oligomeri autoassemblati, che mette assieme la teoria per l’ordine colesterico presentata nel Capitolo 3 con quella dell’aggregazione lineare in fase nematica. L’ultima Parte, dal Capitolo 7 al Capitolo 9, si concentra sull’aggregazione di coniugati porfirina-peptide in acqua. Nel Capitolo 7, vengono introdotti i principali concetti relativi al dicroismo circolare e viene commentato lo stato dell’arte dell’autoassemblaggio di porfirine. Il Capitolo 8 descrive le simulazioni atomistiche di dinamica molecolare di aggregati porfirina- peptide . Capitolo 9 presente uno studio degli stessi sistemi condotto attraverso simulazioni di dinamica molecolare a grana grossa, che utilizzano il modello MARTINI. Infine, il Capitolo 10 presenta un sommario delle tre linee di ricerca, mettendo in evidenza i risultati notevoli ottenuti in questa tesi. Seguono poi tre Appendici.
Matthies, Michael [Verfasser], Thorsten-Lars [Gutachter] Schmidt, and Stefan [Gutachter] Dietz. "Design, Synthesis and Analysis of Self-Assembling Triangulated Wireframe DNA Structures / Michael Matthies ; Gutachter: Thorsten-Lars Schmidt, Stefan Dietz." Dresden : Technische Universität Dresden, 2019. http://d-nb.info/122694275X/34.
Full textPraetorius, Florian Michael [Verfasser], Hendrik [Akademischer Betreuer] Dietz, Hendrik [Gutachter] Dietz, Johannes [Gutachter] Buchner, and Friedrich C. [Gutachter] Simmel. "Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures / Florian Michael Praetorius ; Gutachter: Hendrik Dietz, Johannes Buchner, Friedrich C. Simmel ; Betreuer: Hendrik Dietz." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1152006746/34.
Full textPraetorius, Florian Michael Verfasser], Hendrik [Akademischer Betreuer] [Dietz, Hendrik [Gutachter] Dietz, Johannes [Gutachter] Buchner, and Friedrich C. [Gutachter] Simmel. "Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures / Florian Michael Praetorius ; Gutachter: Hendrik Dietz, Johannes Buchner, Friedrich C. Simmel ; Betreuer: Hendrik Dietz." München : Universitätsbibliothek der TU München, 2018. http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20180116-1398662-1-2.
Full textSadowski, John Paul. "Design and synthesis of dynamically assembling DNA nanostructures." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11272.
Full textChemistry and Chemical Biology
Mou, Yun. "Computational Design of Self-Assembling Proteins and Protein-DNA Nanowires." Thesis, 2014. https://thesis.library.caltech.edu/8392/7/Thesis_Yun_Mou.pdf.
Full textMatthies, Michael. "Design, Synthesis and Analysis of Self-Assembling Triangulated Wireframe DNA Structures." 2019. https://tud.qucosa.de/id/qucosa%3A36172.
Full textPilo-Pais, Mauricio. "Metallic Nanostructures Based on Self-Assembling DNA Templates for Studying Optical Phenomena." Diss., 2014. http://hdl.handle.net/10161/9107.
Full textDNA origami is a novel self-assembly technique that can be used to form various
2D and 3D objects, and to position matter with nanometer accuracy. It has been
used to coordinate the placement of nanoscale objects, both organic and inorganic, to make molecular motor and walkers; and to create optically active nanostructures. In this dissertation, DNA origami templates are used to assemble plasmonic structures. Specifically, engineered Surface Enhanced Raman Scattering (SERS) substrates were fabricated. Gold nanoparticles were selectively placed on the corners of rectangular origami and subsequently enlarged via solution-based metal deposition. The resulting assemblies exhibited "hot spots" of enhanced electromagnetic field between the nanoparticles. These hot spots significantly enhanced the Raman signal from Raman molecules covalently attached to the assemblies. Control samples with only one nanoparticle per DNA template, which therefore lacked inter-particle hot spots, did not exhibit strong enhancement. Furthermore, Raman molecules were used to map out the hot spots' distribution, as the molecules are photo-damaged when experiencing a threshold electric field. This method opens up the prospect of using DNA origami to rationally engineer and assemble plasmonic structures for molecular spectroscopy.
Dissertation
Lai, Yu-Sen, and 賴鈺森. "Photodegradable Self-Assembling PAMAM Dendrons for Gene Delivery Involving Dendriplexes Formation and Phototriggered DNA Release." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/85702357366837051341.
Full text中山醫學大學
應用化學系碩士班
103
For effective gene delivery, structural degradation of synthetic carriers is crucial to nucleic acids releasing on the transfection time scale. In this study, we have synthesized the amphiphilic dendritic scaffolds with a photolabile o-nitrobenzyl (o-NB) group that can enable the structural decomposition and controlled release of nucleic acids under active light stimulation. The amphiphilic counterpart composed of a lipophilic cholesterol and hydrophilic poly(amido amine) (PAMAM) dendron allows the self-assembly into a core-shell-like pseudodendrimer above the critical aggregation concentration (CAC) of approximately 20 μM. On the basis of electrostatic interaction, the polycationic pseudodendrimers is capable of forming stable complexes with polyanionic cyclic reporter gene (pEGFP-C1) under low charge excess value, suggesting substantial binding affinity of the dednron assembly toward plasmid DNA. Because the o-NB group in the dendritic structure undergoes efficient photolytic cleavage, in vitro test shows that thus-formed “dendriplexes” are readily dissociated under 365-nm light irradiation, causing effective dendron degradation accompanied by DNA release. This photochemical strategy provides an opportunity to control over the gene binding and releasing in a spatiotemporal manner.
Books on the topic "DNA self-assembling"
Protozanova, Ekaterina. Self-assembling DNA supramolecular structures containing two distinct conformational domains. Ottawa: National Library of Canada, 1996.
Find full textProtozanova, Ekaterina. Self-assembling DNA supramolecular structures containing two distinct conformational domains. 1996.
Find full textBook chapters on the topic "DNA self-assembling"
Sa-Ardyen, Phiset, Nataša Jonoska, and Nadrian C. Seeman. "Self-assembling DNA Graphs." In DNA Computing, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36440-4_1.
Full textRomano, Flavio, and Lorenzo Rovigatti. "A Nucleotide-Level Computational Approach to DNA-Based Materials." In Design of Self-Assembling Materials, 71–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71578-0_3.
Full textKim, Kyoung Nan, Koshala Sarveswaran, Lesli Mark, and Marya Lieberman. "DNA Origami as Self-assembling Circuit Boards." In Lecture Notes in Computer Science, 56–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13523-1_9.
Full textFujibayashi, Kenichi, and Satoshi Murata. "A Method of Error Suppression for Self-assembling DNA Tiles." In DNA Computing, 113–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11493785_10.
Full textKasyanenko, Nina, and Daria Afanasieva. "DNA Self-Assembling Nanostructures Induced by Trivalent Ions and Polycations." In Nanomaterials for Application in Medicine and Biology, 29–38. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6829-4_3.
Full textEllis-Monaghan, Joanna, Greta Pangborn, Laura Beaudin, David Miller, Nick Bruno, and Akie Hashimoto. "Minimal Tile and Bond-Edge Types for Self-Assembling DNA Graphs." In Discrete and Topological Models in Molecular Biology, 241–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40193-0_11.
Full textBehr, Jean-Paul. "Genetic Chemistry: Towards Non-Enzymatic Ligation, Sequence-Selective Recognition of DNA, and Self-Assembling Systems for Gene Delivery." In Targeting of Drugs 5, 97–100. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-6405-8_9.
Full textStephanopoulos, Nicholas, and Ronit Freeman. "DNA-based materials as self-assembling scaffolds for interfacing with cells." In Self-assembling Biomaterials, 157–75. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-102015-9.00008-3.
Full text"Polyelectrolyte Behavior in DNA: Self-Assembling Toroidal Nanoparticles." In Nanoscale Technology in Biological Systems, 249–66. CRC Press, 2004. http://dx.doi.org/10.1201/9780203500224-14.
Full textLaBean, Thomas H. "Introduction to Self-Assembling DNA Nanostructures for Computation and Nanofabrication." In Computational Biology and Genome Informatics, 35–58. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812564498_0002.
Full textConference papers on the topic "DNA self-assembling"
LaBean, Thom. "Self-Assembling DNA Nanostructures and DNA-Based Nanofabrication." In 2006 International Electron Devices Meeting. IEEE, 2006. http://dx.doi.org/10.1109/iedm.2006.346807.
Full textZhou, L. Z., X. L. Yang, L. Gan, and H. B. Xu. "Self-assembling of DNA and PAMAM dendrimer." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1616456.
Full textDediu, Tudor, and Adrian-horia Dediu. "Hypergraph Contextual Grammars for Self-Assembling DNA Boolean Circuits Modelling." In 2006 International Semiconductor Conference. IEEE, 2006. http://dx.doi.org/10.1109/smicnd.2006.284042.
Full textBayles, Brenda K. Krkosska. "Recognize and Manipulate Pressure to Influence How Components Will Self-Assemble." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93047.
Full textHeller, Michael J., Dieter Dehlinger, Sadik Esener, and Benjamin Sullivan. "Electric Field Directed Fabrication of Biosensor Devices From Biomolecule Derivatized Nanoparticles." In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38093.
Full text