Academic literature on the topic 'DNA repair, helicase, G-quadruplex'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA repair, helicase, G-quadruplex.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "DNA repair, helicase, G-quadruplex"

1

Sun, Zhi-Yin, Xiao-Na Wang, Sui-Qi Cheng, Xiao-Xuan Su, and Tian-Miao Ou. "Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid–Protein Interaction." Molecules 24, no. 3 (2019): 396. http://dx.doi.org/10.3390/molecules24030396.

Full text
Abstract:
G-quadruplex is a special secondary structure of nucleic acids in guanine-rich sequences of genome. G-quadruplexes have been proved to be involved in the regulation of replication, DNA damage repair, and transcription and translation of oncogenes or other cancer-related genes. Therefore, targeting G-quadruplexes has become a novel promising anti-tumor strategy. Different kinds of small molecules targeting the G-quadruplexes have been designed, synthesized, and identified as potential anti-tumor agents, including molecules directly bind to the G-quadruplex and molecules interfering with the bin
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Yuliang, Kazuo Shin-ya, and Robert M. Brosh. "FANCJ Helicase Defective in Fanconia Anemia and Breast Cancer Unwinds G-Quadruplex DNA To Defend Genomic Stability." Molecular and Cellular Biology 28, no. 12 (2008): 4116–28. http://dx.doi.org/10.1128/mcb.02210-07.

Full text
Abstract:
ABSTRACT FANCJ mutations are associated with breast cancer and genetically linked to the bone marrow disease Fanconi anemia (FA). The genomic instability of FA-J mutant cells suggests that FANCJ helicase functions in the replicational stress response. A putative helicase with sequence similarity to FANCJ in Caenorhabditis elegans (DOG-1) and mouse (RTEL) is required for poly(G) tract maintenance, suggesting its involvement in the resolution of alternate DNA structures that impede replication. Under physiological conditions, guanine-rich sequences spontaneously assemble into four-stranded struc
APA, Harvard, Vancouver, ISO, and other styles
3

Shukla, Kaustubh, Roshan Singh Thakur, Debayan Ganguli, Desirazu Narasimha Rao, and Ganesh Nagaraju. "Escherichia coli and Neisseria gonorrhoeae UvrD helicase unwinds G4 DNA structures." Biochemical Journal 474, no. 21 (2017): 3579–97. http://dx.doi.org/10.1042/bcj20170587.

Full text
Abstract:
G-quadruplex (G4) secondary structures have been implicated in various biological processes, including gene expression, DNA replication and telomere maintenance. However, unresolved G4 structures impede replication progression which can lead to the generation of DNA double-strand breaks and genome instability. Helicases have been shown to resolve G4 structures to facilitate faithful duplication of the genome. Escherichia coli UvrD (EcUvrD) helicase plays a crucial role in nucleotide excision repair, mismatch repair and in the regulation of homologous recombination. Here, we demonstrate a novel
APA, Harvard, Vancouver, ISO, and other styles
4

Bryan, Tracy M. "Mechanisms of DNA Replication and Repair: Insights from the Study of G-Quadruplexes." Molecules 24, no. 19 (2019): 3439. http://dx.doi.org/10.3390/molecules24193439.

Full text
Abstract:
G-quadruplexes are four-stranded guanine-rich structures that have been demonstrated to occur across the genome in humans and other organisms. They provide regulatory functions during transcription, translation and immunoglobulin gene rearrangement, but there is also a large amount of evidence that they can present a potent barrier to the DNA replication machinery. This mini-review will summarize recent advances in understanding the many strategies nature has evolved to overcome G-quadruplex-mediated replication blockage, including removal of the structure by helicases or nucleases, or circumv
APA, Harvard, Vancouver, ISO, and other styles
5

Byrd, Alicia K., and Kevin D. Raney. "Structure and function of Pif1 helicase." Biochemical Society Transactions 45, no. 5 (2017): 1159–71. http://dx.doi.org/10.1042/bst20170096.

Full text
Abstract:
Pif1 family helicases have multiple roles in the maintenance of nuclear and mitochondrial DNA in eukaryotes. Saccharomyces cerevisiae Pif1 is involved in replication through barriers to replication, such as G-quadruplexes and protein blocks, and reduces genetic instability at these sites. Another Pif1 family helicase in S. cerevisiae, Rrm3, assists in fork progression through replication fork barriers at the rDNA locus and tRNA genes. ScPif1 (Saccharomyces cerevisiae Pif1) also negatively regulates telomerase, facilitates Okazaki fragment processing, and acts with polymerase δ in break-induced
APA, Harvard, Vancouver, ISO, and other styles
6

Schwab, Rebekka A., Jadwiga Nieminuszczy, Kazuo Shin-ya, and Wojciech Niedzwiedz. "FANCJ couples replication past natural fork barriers with maintenance of chromatin structure." Journal of Cell Biology 201, no. 1 (2013): 33–48. http://dx.doi.org/10.1083/jcb.201208009.

Full text
Abstract:
Defective DNA repair causes Fanconi anemia (FA), a rare childhood cancer–predisposing syndrome. At least 15 genes are known to be mutated in FA; however, their role in DNA repair remains unclear. Here, we show that the FANCJ helicase promotes DNA replication in trans by counteracting fork stalling on replication barriers, such as G4 quadruplex structures. Accordingly, stabilization of G4 quadruplexes in ΔFANCJ cells restricts fork movements, uncouples leading- and lagging-strand synthesis and generates small single-stranded DNA gaps behind the fork. Unexpectedly, we also discovered that FANCJ
APA, Harvard, Vancouver, ISO, and other styles
7

Lowran, Kaitlin, Laura Campbell, Phillip Popp, and Colin G. Wu. "Assembly of a G-Quadruplex Repair Complex by the FANCJ DNA Helicase and the REV1 Polymerase." Genes 11, no. 1 (2019): 5. http://dx.doi.org/10.3390/genes11010005.

Full text
Abstract:
The FANCJ helicase unfolds G-quadruplexes (G4s) in human cells to support DNA replication. This action is coupled to the recruitment of REV1 polymerase to synthesize DNA across from a guanine template. The precise mechanisms of these reactions remain unclear. While FANCJ binds to G4s with an AKKQ motif, it is not known whether this site recognizes damaged G4 structures. FANCJ also has a PIP-like (PCNA Interacting Protein) region that may recruit REV1 to G4s either directly or through interactions mediated by PCNA protein. In this work, we measured the affinities of a FANCJ AKKQ peptide for G4s
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Yuliang, Joshua A. Sommers, Avvaru N. Suhasini, et al. "Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes." Blood 116, no. 19 (2010): 3780–91. http://dx.doi.org/10.1182/blood-2009-11-256016.

Full text
Abstract:
Abstract Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and susceptibility to leukemia and other cancers. FANCJ, one of 13 genes linked to FA, encodes a DNA helicase proposed to operate in homologous recombination repair and replicational stress response. The pathogenic FANCJ-A349P amino acid substitution resides immediately adjacent to a highly conserved cysteine of the iron-sulfur domain. Given the genetic linkage of the FANCJ-A349P allele to FA, we investigated the effect of this particular mutation on the biochemical and cellular fu
APA, Harvard, Vancouver, ISO, and other styles
9

Gaur, Paras, Fletcher E. Bain, Masayoshi Honda, Sophie L. Granger, and Maria Spies. "Single-Molecule Analysis of the Improved Variants of the G-Quadruplex Recognition Protein G4P." International Journal of Molecular Sciences 24, no. 12 (2023): 10274. http://dx.doi.org/10.3390/ijms241210274.

Full text
Abstract:
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine–guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al. synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4
APA, Harvard, Vancouver, ISO, and other styles
10

Ononye, Onyekachi E., Christopher W. Sausen, Lata Balakrishnan, and Matthew L. Bochman. "Lysine acetylation regulates the activity of nuclear Pif1." Journal of Biological Chemistry 295, no. 46 (2020): 15482–97. http://dx.doi.org/10.1074/jbc.ra120.015164.

Full text
Abstract:
In Saccharomyces cerevisiae, the Pif1 helicase functions in both nuclear and mitochondrial DNA replication and repair processes, preferentially unwinding RNA:DNA hybrids and resolving G-quadruplex structures. We sought to determine how the various activities of Pif1 are regulated in vivo. Here, we report lysine acetylation of nuclear Pif1 and demonstrate that it influences both Pif1's cellular roles and core biochemical activities. Using Pif1 overexpression toxicity assays, we determined that the acetyltransferase NuA4 and deacetylase Rpd3 are primarily responsible for the dynamic acetylation
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!