Academic literature on the topic 'DNA nanoarrays'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA nanoarrays.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "DNA nanoarrays"

1

Yang, Yang, and Chenxiang Lin. "Directing reconfigurable DNA nanoarrays." Science 357, no. 6349 (July 27, 2017): 352–53. http://dx.doi.org/10.1126/science.aao0599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hao, X., E. A. Josephs, Q. Gu, and T. Ye. "Molecular conformations of DNA targets captured by model nanoarrays." Nanoscale 9, no. 36 (2017): 13419–24. http://dx.doi.org/10.1039/c7nr04715k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

NAKAO, Hidenobu, Futoshi IWATA, Hidenori KARASAWA, Hideki HAYASHI, and Kazushi MIKI. "Fabrication of Metallic Nanoarrays using DNA Templates." Hyomen Kagaku 28, no. 7 (2007): 372–77. http://dx.doi.org/10.1380/jsssj.28.372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hawkes, William, Da Huang, Paul Reynolds, Linda Hammond, Matthew Ward, Nikolaj Gadegaard, John F. Marshall, Thomas Iskratsch, and Matteo Palma. "Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control." Faraday Discussions 219 (2019): 203–19. http://dx.doi.org/10.1039/c9fd00023b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Piccone, Ashley. "DNA origami folds proteins into nanoarrays with precision." Scilight 2022, no. 34 (August 19, 2022): 341107. http://dx.doi.org/10.1063/10.0013751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yan, Yonggang Ke, and Hao Yan. "Self-Assembly of Symmetric Finite-Size DNA Nanoarrays." Journal of the American Chemical Society 127, no. 49 (December 2005): 17140–41. http://dx.doi.org/10.1021/ja055614o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mei, Qian, Xixi Wei, Fengyu Su, Yan Liu, Cody Youngbull, Roger Johnson, Stuart Lindsay, Hao Yan, and Deirdre Meldrum. "Stability of DNA Origami Nanoarrays in Cell Lysate." Nano Letters 11, no. 4 (April 13, 2011): 1477–82. http://dx.doi.org/10.1021/nl1040836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghosh, Sumana, and Eric Defrancq. "Metal-Complex/DNA Conjugates: A Versatile Building Block for DNA Nanoarrays." Chemistry - A European Journal 16, no. 43 (October 4, 2010): 12780–87. http://dx.doi.org/10.1002/chem.201001590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cervantes-Salguero, K., M. Freeley, R. E. A. Gwyther, D. D. Jones, J. L. Chávez, and M. Palma. "Single molecule DNA origami nanoarrays with controlled protein orientation." Biophysics Reviews 3, no. 3 (September 2022): 031401. http://dx.doi.org/10.1063/5.0099294.

Full text
Abstract:
The nanoscale organization of functional (bio)molecules on solid substrates with nanoscale spatial resolution and single-molecule control—in both position and orientation—is of great interest for the development of next-generation (bio)molecular devices and assays. Herein, we report the fabrication of nanoarrays of individual proteins (and dyes) via the selective organization of DNA origami on nanopatterned surfaces and with controlled protein orientation. Nanoapertures in metal-coated glass substrates were patterned using focused ion beam lithography; 88% of the nanoapertures allowed immobilization of functionalized DNA origami structures. Photobleaching experiments of dye-functionalized DNA nanostructures indicated that 85% of the nanoapertures contain a single origami unit, with only 3% exhibiting double occupancy. Using a reprogrammed genetic code to engineer into a protein new chemistry to allow residue-specific linkage to an addressable ssDNA unit, we assembled orientation-controlled proteins functionalized to DNA origami structures; these were then organized in the arrays and exhibited single molecule traces. This strategy is of general applicability for the investigation of biomolecular events with single-molecule resolution in defined nanoarrays configurations and with orientational control of the (bio)molecule of interest.
APA, Harvard, Vancouver, ISO, and other styles
10

Sathish, Shivani, Sébastien G. Ricoult, Kazumi Toda-Peters, and Amy Q. Shen. "Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays." Analyst 142, no. 10 (2017): 1772–81. http://dx.doi.org/10.1039/c7an00273d.

Full text
Abstract:
Aqueous based microcontact printing (μCP) to create micro- and nanoarrays of (3-aminopropyl)triethoxysilane (APTES) on glass substrates of microfluidic devices for covalent immobilization of DNA aptamers and antibodies.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "DNA nanoarrays"

1

White, Jenifer Christine. "Novel functionalised, nanoarrays of DNA binding supramolecular helicates." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6625/.

Full text
Abstract:
Work described in this thesis shows the design, synthesis, DNA binding activity and gold nanoparticle interaction of functionalised triple stranded supramolecular helicates. DNA structures and the way molecules recognise and bind to them are reviewed, with specific emphasis on supramolecular compounds. Supramolecular helicates are discussed in detail with consideration of how they may be used as anticancer agents. Nanoparticles, specifically gold nanoparticles are studied, with specific reference to how they are able to enhance anticancer properties of drug molecules and how they may be used to develop potent anticancer therapies. With the formation of three novel supramolecular iron helicates and the incorporation of supramolecular chemistry and nanotechnology, through binding such complexes to the surface of gold nanoparticles, foundations of work in this area are discussed, showing promising results for future research.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Fan. "DNA directed assembly of two dimensional fluorophore nanoarrays." Huntington, WV : [Marshall University Libraries], 2004. http://www.marshall.edu/etd/descript.asp?ref=396.

Full text
Abstract:
Thesis (M.S.)--Marshall University, 2004.
Title from document title page. Abstract included. Document formatted into pages; contains viii, 96 p. including illustrations. Includes abstract. Includes bibliographical references (p. 95-96).
APA, Harvard, Vancouver, ISO, and other styles
3

Akbulut, Halatci Özge. "Extending the realm of SuNS to DNA nanoarrays and peptide features." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/59218.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, February 2010.
Includes bibliographical references.
Intense research on DNA arrays has been fostered by their applications in the field of biomedicine. DNA microarrays are composed of several different DNA sequences to be analyzed in parallel allowing high throughput information. Current methods to fabricate these arrays are serial in nature resulting in high prices that prevent their extensive utilization. Supramolecular Nanostamping is devised to solve this problem by harnessing the reversible bond formation between complementary DNA strands. This contact based technique is proven to replicate DNA arrays in a three step cycle: 1) Hybridization, 2) Contact and 3) Dehybridization. The overall goal of this thesis is to demonstrate the application of SuNS to DNA nanoarrays, i.e. increase the resolution of the current method, and broaden the printing capability to peptide arrays. The amount of analyte needed in an array scales with the feature size and spacing i.e. the total array size. The features of a DNA microarray are usually tens of micrometers in size with a spacing on the order of hundred micrometers. Therefore, miniaturization of such arrays is necessary for applications when analyte scarcity is an issue. DNA nanoarrays are promising lower analyte volumes due to their decreased feature size and spacing; namely high resolution. Unfortunately, DNA nanoarrays can only be fabricated by scanning probe microscopy based serial methods which generate each spot individually. To demonstrate SuNS is capable of dealing with the increasing demand to miniaturize DNA arrays, DNA features composed of a few DNA strands is replicated. The faithful printing of feature sizes as small as 14 nm with 70 nm spacing was shown. Apart from the capability to cope with features of various sizes, the strength of a printing method emerges from its ability to deal with different types of biomolecules. Coiled-coil peptides are treated analogously to complementary DNA strands due to the molecular recognition between two complementary peptide strands. Through Liquid Supramolecular Nanostamping (LiSuNS), the replication of coiled-coil motif peptides was demonstrated. To prove the multiplexing capability of the process, a master made of peptide and DNA features was successfully stamped via LiSuNS as well.
by Ozge Akbulut Halatci.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
4

Castronovo, Matteo. "Crowding effects on biochemical reactions of surface-bound DNA." Doctoral thesis, Università degli studi di Trieste, 2008. http://hdl.handle.net/10077/2616.

Full text
Abstract:
2006/2007
Next-generation DNA detection arrays are expected to achieve unprecedented sensitivity, reducing the minimum amount of genetic material that can be directly (PCR-free and label-free) and quantitatively detected, up to the single cell limit. To realize these goals, we propose a new method for the miniaturization of DNA arrays to the nano-scale, which has the unique capability of controlling the packing quality of the deposited bio- molecules. We used NanoGrafting, a nano-lithography technique based on atomic force microscopy (AFM), to fabricate well ordered thiolated single stranded (ss)-DNA nano-patches within a self-assembled monolayer (SAM) of inert thiols on gold surfaces. By varying the “writing” parameters, in particular the number of scan lines, we were able to vary the density of the supported DNA molecules inside the nano-patches in a controlled manner. Our findings can be resumed in two parts: 1) Combining accurate height and compressibility measurements, before and after hybridization, we demonstrate that high-density ss-DNA nanografted patches hybridize with high efficiency, and that, contrary to current understanding, is not the density of probe molecules to be responsible for the lack of hybridization observed in high density ss-DNA SAMs, but the poor quality of their structure. 2) Dpn II enzymatic reactions were carried out over nanopatches with different molecular density and different geometries. Using nanopatch height measurements we are able to show that the capability of the Dpn II enzyme to reach and react at the recognition site significantly depends on the molecular density in the nanopatches. In particular the inhibition of the reaction follows a step-wise fashion at relatively low DNA densities. These findings suggest that, due to the enzyme size, it is possible to tune the efficiency of an enzymatic reaction within surface-bound DNA nanostructures by changing only the crowding of DNA on the surface and without introducing any further physical or chemical variable.
XIX Ciclo
1979
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "DNA nanoarrays"

1

Cheng, Li-Jing, Akash Kannegulla, Ye Liu, and Bo Wu. "Enhanced molecular beacon based DNA detection using plasmonic open-ring nanoarrays." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2321234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kannegulla, Akash, Ye Liu, Bo Wu, and Li-Jing Cheng. "Broadband Fluorescence Enhancement and Ultrasensitive DNA Detection Using Plasmonic Open-Ring Nanoarrays." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_at.2018.atu3j.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Do-Kyun, Young-Soo Kwon, Yuzuru Takamura, and Eiichi Tamiya. "Development of DNA chip nanoarray by Fluidic Self-assembly method for Detection of DNA Hybridization." In 2005 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2005. http://dx.doi.org/10.7567/ssdm.2005.p11-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography