Academic literature on the topic 'DNA, G-quadruplex, structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA, G-quadruplex, structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DNA, G-quadruplex, structure"
Winnerdy, Fernaldo Richtia, Blaž Bakalar, Arijit Maity, J. Jeya Vandana, Yves Mechulam, Emmanuelle Schmitt, and Anh Tuân Phan. "NMR solution and X-ray crystal structures of a DNA molecule containing both right- and left-handed parallel-stranded G-quadruplexes." Nucleic Acids Research 47, no. 15 (June 19, 2019): 8272–81. http://dx.doi.org/10.1093/nar/gkz349.
Full textOlejko, Lydia, Anushree Dutta, Kosar Shahsavar, and Ilko Bald. "Influence of Different Salts on the G-Quadruplex Structure Formed from the Reversed Human Telomeric DNA Sequence." International Journal of Molecular Sciences 23, no. 20 (October 13, 2022): 12206. http://dx.doi.org/10.3390/ijms232012206.
Full textHeddi, Brahim, Vee Vee Cheong, Herry Martadinata, and Anh Tuân Phan. "Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide–quadruplex complex." Proceedings of the National Academy of Sciences 112, no. 31 (July 20, 2015): 9608–13. http://dx.doi.org/10.1073/pnas.1422605112.
Full textTraczyk, Anna, Chong Wai Liew, David James Gill, and Daniela Rhodes. "Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1." Nucleic Acids Research 48, no. 8 (March 18, 2020): 4562–71. http://dx.doi.org/10.1093/nar/gkaa171.
Full textParekh, Virali J., Brittany A. Niccum, Rachna Shah, Marisa A. Rivera, Mark J. Novak, Frederic Geinguenaud, Frank Wien, Véronique Arluison, and Richard R. Sinden. "Role of Hfq in Genome Evolution: Instability of G-Quadruplex Sequences in E. coli." Microorganisms 8, no. 1 (December 22, 2019): 28. http://dx.doi.org/10.3390/microorganisms8010028.
Full textTateishi-Karimata, Hisae, Tatsuya Ohyama, Takahiro Muraoka, Shigenori Tanaka, Kazushi Kinbara, and Naoki Sugimoto. "New Modified Deoxythymine with Dibranched Tetraethylene Glycol Stabilizes G-Quadruplex Structures." Molecules 25, no. 3 (February 6, 2020): 705. http://dx.doi.org/10.3390/molecules25030705.
Full textLerner, Leticia Koch, and Julian E. Sale. "Replication of G Quadruplex DNA." Genes 10, no. 2 (January 29, 2019): 95. http://dx.doi.org/10.3390/genes10020095.
Full textSun, Zhi-Yin, Xiao-Na Wang, Sui-Qi Cheng, Xiao-Xuan Su, and Tian-Miao Ou. "Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid–Protein Interaction." Molecules 24, no. 3 (January 22, 2019): 396. http://dx.doi.org/10.3390/molecules24030396.
Full textWu, Guanhui, Luying Chen, Wenting Liu, and Danzhou Yang. "Molecular Recognition of the Hybrid-Type G-Quadruplexes in Human Telomeres." Molecules 24, no. 8 (April 22, 2019): 1578. http://dx.doi.org/10.3390/molecules24081578.
Full textHellman, Lance M., Tyler J. Spear, Colton J. Koontz, Manana Melikishvili, and Michael G. Fried. "Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase." Nucleic Acids Research 42, no. 15 (July 30, 2014): 9781–91. http://dx.doi.org/10.1093/nar/gku659.
Full textDissertations / Theses on the topic "DNA, G-quadruplex, structure"
Rangan, Anupama. "Structural studies of nucleic acids dynamics of RNA pseudoknots and G-quadruplex DNA-ligand interactions /." Access restricted to users with UT Austin EID, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3077362.
Full textPalumbo, SunMi Lee. "Characterization of Secondary DNA Structures Formed in the c-myb and hTERT Promoters and Their Potential Role in the Regulation of Transcription." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/194266.
Full textRigo, Riccardo. "The fine architecture of guanine-rich regions within oncogene promoters." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427311.
Full textLago, Sara. "Investigation of the Role of Dna G-Quadruplex Structures in Human Transcription, Cancer and Viral Infections." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3425882.
Full textIl manuscritto contiene una descrizione e discussione dei risultati ottenuti in ambito del progetto di ricerca di dottorato riguardante lo studio delle strutture G-quadruplex delDNA in un tumore umani raro (il liposarcoma) e nel genoma di due virus a diffusione mondiale, quali: HIV-1 e HSV-1.
Dexheimer, Thomas Steven. "Defining the Role of DNA Secondary Structures and Transcriptional Factors in the Control of c-myc and bcl-2 Expression." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/195655.
Full textQureshi, Mohammad Haroon. "Replication Protein A Mediated G-Quadruplex Unfolding - A Single Molecule FRET Study." Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1385984615.
Full textMusetti, Caterina. "SELECTIVE TARGETING OF NUCLEIC ACIDS BY SMALL MOLECULES: A DNA STRUCTURE RECOGNITION APPROACH." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3422045.
Full textLa scoperta di nuovi target anticancro è il fattore chiave per lo sviluppo di terapie sempre più efficaci. Lo studio del legame selettivo a sequenze di DNA a doppia elica nella classica forma B è stato largamente impiegato al fine di direzionare piccole molecole verso porzioni polinucleotidiche definite. Più recentemente, il riconoscimento (da parte di ligandi) di porzioni non canoniche di DNA si può tradurre in un metodo vantaggioso per indirizzare questi composti verso regioni distinte del genoma. A tale proposito, le strutture G-quadruplex rappresentano un sistema interessante poiché sono ritenute fisiologicamente significative. Queste strutture “non-canoniche” di DNA si trovano alle estremità del cromosoma (telomeri) così come in varie regioni promotrici di oncogeni in cui vi è un’abbondante presenza di residui guaninici e sembrano coinvolte nella regolazione di importanti eventi biologici. Pare infatti che l'induzione e la stabilizzazione di strutture G-quadruplex dalle parte di piccole molecole porti all'inibizione dell'attività della telomerasi interferendo con l'interazione tra l’enzima e il suo substrato a singola catena. Un simile meccanismo molecolare è probabilmente coinvolto anche nel controllo della regolazione dell'espressione genica e può portare alla soppressione della trascrizione di un oncogene. Di conseguenza, “l’approccio G-quadruplex” si rivela molto interessante per lo sviluppo di una strategia anticancro specifica caratterizzata anche da una riduzione drammatica degli effetti collaterali, tipici della chemioterapia. Lo scopo di questo lavoro è lo studio delle interazioni tra nuove famiglie di piccole molecole e diverse conformazioni di DNA G-quadruplex. Queste nuove molecole sono state opportunamente progettate apportando sostituzioni di atomi o gruppi funzionali basate sulla valutazione di composti precedentemente studiati al fine di aumentare la loro selettività per strutture G-quadruplex e di ridurre gli effetti tossici. Le proprietà biofisiche e biologiche di tutti i nuovi derivati sono state valutate al livello molecolare e cellulare. Il lavoro di tesi si divide in tre parti in base alle caratteristiche strutturali dei composti. La prima parte è dedicata alla studio di dicationi eterociclici: si è cercato correlare modifiche nella conformazione molecolare con l’affinita’ verso strutture G-quadruplex. In particolare è stato possibile razionalizzare cambiamenti della modalità di legame in base alla struttura dei composti esaminati. Tuttavia una correlazione fra i risultati biofisici (affinità G-quadruplex) e biologici (inibizione della telomerasi e citotossicità) non è risultata sempre definita. Ciò può suggerire il coinvolgimento di bersagli cellulari diversi dal telomero umano. Nel capitolo 3, sono state studiate le proprietà di legame al DNA di alcuni derivati fenantrolinici in presenza ed in assenza di Ni (II) e Cu (II). Abbiamo confermato che complessi caratterizzati da diverse geometrie che coinvolgono una, due o tre molecole per ione possono compromettere o meno il riconoscimento del DNA o determinare cambiamenti conformazionali dell'acido nucleico. Per concludere, il capitolo 4 è dedicato allo studio di derivati del transplatino. In particolare ci siamo focalizzati nel definire la capacità dei composti di formare addotti, la natura dei complessi e la cinetica di formazione del complesso non solo con DNA a doppio filamento ma utilizzando anche substrati a singola catena come il G-quadruplex. I risultati hanno dimostrato come diverse modifiche strutturali possano avere un ruolo importante nell’interazione dei composti con gli acidi nucleici. E’ risultata interessante la loro preferenzialità a reagire con porzioni di DNA a singolo filamento rispetto a sequenze a doppia elica. Ciò è probabilmente dovuto ad uno sfavorevole orientamento dei gruppi reattivi quando la molecola interagisce con il substrato di DNA. Di conseguenza, i composti sembrano formare un cross-link tra due filamenti non appaiati. A livello cellulare, questi risultati riflettono una distinta distribuzione del sito di platinazione all’interno del genoma rispetto al cisplatino e perfino rispetto al transplatino. I risultati ottenuti incrementano la conoscenza disponibile sull’interazione tra DNA e piccole molecole. In particolare è emerso che la conservazione della modalità di interazione si correla con effetti biologici definiti. Al contrario, una variazione della modalità di legame può portare a effetti citotossici differenti. Ciò può fornire una spiegazione razionale per una successiva ottimizzazione della struttura dei composti finalizzata allo sviluppo di nuovi agenti antitumorali efficaci e selettivi.
Kerkour, Abdelaziz. "Study of DNA G-quadruplex structures by Nuclear Magnetic Resonance (NMR)." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0292/document.
Full textG-quadruplexes (G4) are non-canonical nucleic acid structures formed by G-rich sequences mainly localized in telomeres and promoter regions of oncogenes. They are built from the stacking of several G-quartets in the presence of cations. Using NMR spectroscopy, we have characterized the interaction between the TAP ligand and the human telomeric G4 formed by the sequence d(AG3(T2AG3)3). CD and 1D 1H NMR spectroscopy were used to follow the interaction between the two partners. 2D NMR was used to assign unambiguously all 1H resonances in the complex and to explore the binding site. A model depicting the interaction of TAP with 22AG in grooves and loops was generated. Another part of this work consists in the study of tetramolecular G4 formed by TG4T and its interaction with G4 ligands by in-cell NMR. 1H-15N HMQC spectra were performed inside Xenopus laevis and HeLa cell lysates compared to those observed in vitro conditions showing a good stability of G4 inside the cell. Furthermore, the interaction of d[TG4T]4 with three G4 specific ligands presenting different mode of interaction was also investigated. The ligand 360A showed a promising behavior. Finally, in the last part, different sequences of Kras promoter were screened by NMR to select good candidates for high resolution structure determination. Two different sequences were selected and characterized by CD spectroscopy. The stabilization of G4 structures formed by these sequences in interaction with different ligands was also investigated. A 1D 1H NMR titration between Braco19 and 22RT showed an interesting behavior of k-ras G4 by the formation of intermediate species upon the addition of Braco19
Morel, Elodie. "Conception d’outils chimiques pour la détection des structures d’ADN G-quadruplex." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS237.
Full textNucleic acids secondary structures may form in guanine-rich regions by Hoogsteen base-pairing around a cation (K+ or Na+) and stacking of guanine quartets. Those nucleic acid secondary structures called G-quadruplex are believed to play regulatory roles in the main functions related to DNA processing. However, although numerous sequences, potentially forming G4-structures are present in genomes, evidence concerning their in vivo formation and biological role remains limited. Primary aim of our research is to provide new chemical biology tools for evaluating the biological impacts of quadruplexes and the potential of our compounds for quadruplex-targeted anticancer therapy. We have synthetized a set of compounds equipped with biotin and cross linking moieties in order to trap and pull-down G4-structures in various cellular contexts. The G4-ligands (PDC, PhenDC3 and Metal-ttpy) were evaluated thanks to FID and FRET-melting assays, and carefully chosen to efficiently target G-quadruplexes but also to display enough selectivity for cellular assays. Direct trapping of a G-quadruplex structures can also be done by metal complexes, thanks to coordination with DNA bases. Platinum tolylterpyridine derivatives have been studied on gel electrophoresis to map the platination sites and to evaluate the kinetics of the phenomenon. By adding photo crosslinking moieties to Pt-ttpy, efficient double-anchoring has been done on DNA G-quadruplex structure. Moreover, first cellular imaging evaluations were done by adding a fluorophore to this platinum tolylterpyridine complex. To eventually probe quadruplex DNA at the genome-wide scale, full control of the trapping protocol is indeed a key step. Full development of the pull-down step has been done, using streptavidin-coated magnetic beads. On-beads experiments indicate that efficacy of trapping can vary dramatically depending on quadruplex and G4-ligand topologies. Moreover, photo crosslinking moiety, introduced on some compounds, has not shown any improvement of the trapping. However, the development of this method and the design of the capture compounds have led to an optimal isolation of telomeric G-quadruplex forming sequences, from genomic DNA
Ma, Yingfang. "Electronic Structure, Optical Properties and Long-Range-Interaction Driven Mesoscale Assembly." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1497049273517057.
Full textBook chapters on the topic "DNA, G-quadruplex, structure"
Dettler, Jamie M., and Edwin A. Lewis. "Biophysical Studies of the Structure, Stability, and Ligand Binding Properties of G-Quadruplex DNA: Thoughts and Comparisons of the K-ras, c-MYC, and Bcl-2 Oncogene Promoter Sequence Quadruplexes." In ACS Symposium Series, 33–50. Washington, DC: American Chemical Society, 2011. http://dx.doi.org/10.1021/bk-2011-1082.ch003.
Full textSimon, Philipp, Philipp Schult, and Katrin Paeschke. "Binding and Modulation of G-quadruplex DNA and RNA Structures by Proteins." In Handbook of Chemical Biology of Nucleic Acids, 1–24. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1313-5_102-1.
Full textHadži, San, Matjaž Boncina, Gorazd Vesnaver, and Jurij Lah. "CHAPTER 17. Thermodynamics of the Folding and Interconversion of G-quadruplex DNA Structures." In Gibbs Energy and Helmholtz Energy, 464–78. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164095-00464.
Full textIshizuka, Takumi, Hong-Liang Bao, and Yan Xu. "19F NMR Spectroscopy for the Analysis of DNA G-Quadruplex Structures Using 19F-Labeled Nucleobase." In Methods in Molecular Biology, 407–33. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9666-7_26.
Full textSchaffitzel, Christiane, Jan Postberg, Katrin Paeschke, and Hans J. Lipps. "Probing Telomeric G-Quadruplex DNA Structures in Cells with In Vitro Generated Single-Chain Antibody Fragments." In Methods in Molecular Biology, 159–81. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-363-9_11.
Full textSun, Daekyu, and Laurence H. Hurley. "Biochemical Techniques for the Characterization of G-Quadruplex Structures: EMSA, DMS Footprinting, and DNA Polymerase Stop Assay." In Methods in Molecular Biology, 65–79. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-363-9_5.
Full textConference papers on the topic "DNA, G-quadruplex, structure"
"G-quadruplex formed by the promoter region of the hTERT gene: structure-driven effects on DNA mismatch repair functions." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-599.
Full text"Lesion recognition and cleavage of damage-containing G-quadruplexes by DNA glycosylases." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-357.
Full textOkada, Arisa, Mai Taniguchi, Kenji Usui, and Naoki Sugimoto. "Peptide-DNA Hybrid G-Quadruplex Structures for Regulation of Protein Expression Depending on Protease Activity." In The Twenty-Third American and the Sixth International Peptide Symposium. Prompt Scientific Publishing, 2013. http://dx.doi.org/10.17952/23aps.2013.180.
Full textRahman, Khondaker M., AKM Azadur Rahman, Paul J. M. Jackson, and David E. Thurston. "Abstract 1357: In silico design and biological evaluation of benzofused polyamides targeting G-quadruplex DNA structures." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1357.
Full text