To see the other types of publications on this topic, follow the link: Diversity-oriented synthesi.

Journal articles on the topic 'Diversity-oriented synthesi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Diversity-oriented synthesi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Spandl, Richard J., Mónica Díaz‐Gavilán, Kieron M. G. O'Connell, Gemma L. Thomas, and David R. Spring. "Diversity‐oriented synthesis." Chemical Record 8, no. 3 (2008): 129–42. http://dx.doi.org/10.1002/tcr.20144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sen, Subhabrata, Ganesh Prabhu, Chandramohan Bathula, and Santanu Hati. "Diversity-Oriented Asymmetric Synthesis." Synthesis 46, no. 16 (July 30, 2014): 2099–121. http://dx.doi.org/10.1055/s-0033-1341247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wipf, Peter, Corey R. J. Stephenson, and Maciej A. A. Walczak. "Diversity-Oriented Synthesis of Azaspirocycles." Organic Letters 6, no. 17 (August 2004): 3009–12. http://dx.doi.org/10.1021/ol0487783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

O'Connell, Kieron M. G., Warren R. J. D. Galloway, Brett M. Ibbeson, Albert Isidro-Llobet, Cornelius J. O'Connor, and David R. Spring. "ChemInform Abstract: Diversity-Oriented Synthesis." ChemInform 43, no. 26 (May 31, 2012): no. http://dx.doi.org/10.1002/chin.201226254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rodriguez, Raphael. "ChemInform Abstract: Target-oriented and Diversity-Oriented Organic Synthesis." ChemInform 44, no. 17 (April 4, 2013): no. http://dx.doi.org/10.1002/chin.201317253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laroche, Benjamin, Thomas Bouvarel, Martin Louis-Sylvestre, and Bastien Nay. "Diversity-oriented synthesis of 17-spirosteroids." Beilstein Journal of Organic Chemistry 16 (April 28, 2020): 880–87. http://dx.doi.org/10.3762/bjoc.16.79.

Full text
Abstract:
A diversity-oriented synthesis (DOS) approach has been used to functionalize 17-ethynyl-17-hydroxysteroids through a one-pot procedure involving a ring-closing enyne metathesis (RCEYM) and a Diels–Alder reaction on the resulting diene, under microwave irradiations. Taking advantage of the propargyl alcohol moiety present on commercially available steroids, this classical strategy was applied to mestranol and lynestrenol, giving a collection of new complex 17-spirosteroids.
APA, Harvard, Vancouver, ISO, and other styles
7

Isidro-Llobet, A., T. Murillo, P. Bello, A. Cilibrizzi, J. T. Hodgkinson, W. R. J. D. Galloway, A. Bender, M. Welch, and D. R. Spring. "Diversity-oriented synthesis of macrocyclic peptidomimetics." Proceedings of the National Academy of Sciences 108, no. 17 (March 7, 2011): 6793–98. http://dx.doi.org/10.1073/pnas.1015267108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Gaigai, Chao Liu, Binbin Li, Yingchun Wang, Kristof Van Hecke, Erik V. Van der Eycken, Olga P. Pereshivko, and Vsevolod A. Peshkov. "Diversity-oriented synthesis of 1,3-benzodiazepines." Tetrahedron 73, no. 44 (November 2017): 6372–80. http://dx.doi.org/10.1016/j.tet.2017.09.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lepovitz, Lance T., and Stephen F. Martin. "Diversity-Oriented Synthesis of Bioactive Azaspirocycles." Tetrahedron 75, no. 47 (November 2019): 130637. http://dx.doi.org/10.1016/j.tet.2019.130637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schreiber, Stuart L., K. C. Nicolaou, and Kevin Davies. "Diversity-Oriented Organic Synthesis and Proteomics." Chemistry & Biology 9, no. 1 (January 2002): 1–2. http://dx.doi.org/10.1016/s1074-5521(02)00088-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jiang, Bo, Wen-Juan Hao, Xiang Wang, Feng Shi, and Shu-Jiang Tu. "Diversity-Oriented Synthesis of Kröhnke Pyridines." Journal of Combinatorial Chemistry 11, no. 5 (September 14, 2009): 846–50. http://dx.doi.org/10.1021/cc900052b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Qiao, Zhi, Hui Liu, Jing-Jing Sui, Jin-Xi Liao, Yuan-Hong Tu, Richard R. Schmidt, and Jian-Song Sun. "Diversity-Oriented Synthesis of Steviol Glycosides." Journal of Organic Chemistry 83, no. 19 (September 5, 2018): 11480–92. http://dx.doi.org/10.1021/acs.joc.8b01274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dandapani, Sivaraman, and Lisa A. Marcaurelle. "Current strategies for diversity-oriented synthesis." Current Opinion in Chemical Biology 14, no. 3 (June 2010): 362–70. http://dx.doi.org/10.1016/j.cbpa.2010.03.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sen, Subhabrata, Ganesh Prabhu, Chandramohan Bathula, and Santanu Hati. "ChemInform Abstract: Diversity-Oriented Asymmetric Synthesis." ChemInform 45, no. 48 (November 13, 2014): no. http://dx.doi.org/10.1002/chin.201448228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pavlinov, Ivan, Erica M. Gerlach, and Leslie N. Aldrich. "Next generation diversity-oriented synthesis: a paradigm shift from chemical diversity to biological diversity." Organic & Biomolecular Chemistry 17, no. 7 (2019): 1608–23. http://dx.doi.org/10.1039/c8ob02327a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Schreiber, S. L. "Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery." Science 287, no. 5460 (March 17, 2000): 1964–69. http://dx.doi.org/10.1126/science.287.5460.1964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

O’Connell, Kieron M. G., Monica Díaz-Gavilán, Warren R. J. D. Galloway, and David R. Spring. "Two-directional synthesis as a tool for diversity-oriented synthesis: Synthesis of alkaloid scaffolds." Beilstein Journal of Organic Chemistry 8 (June 6, 2012): 850–60. http://dx.doi.org/10.3762/bjoc.8.95.

Full text
Abstract:
Two-directional synthesis represents an ideal strategy for the rapid elaboration of simple starting materials and their subsequent transformation into complex molecular architectures. As such, it is becoming recognised as an enabling technology for diversity-oriented synthesis. Herein, we provide a thorough account of our work combining two-directional synthesis with diversity-oriented synthesis, with particular reference to the synthesis of polycyclic alkaloid scaffolds.
APA, Harvard, Vancouver, ISO, and other styles
18

Spatz, Julia H., Thorsten Bach, Michael Umkehrer, Julien Bardin, Günther Ross, Christoph Burdack, and Jürgen Kolb. "Diversity oriented synthesis of benzoxazoles and benzothiazoles." Tetrahedron Letters 48, no. 51 (December 2007): 9030–34. http://dx.doi.org/10.1016/j.tetlet.2007.10.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gigant, Nicolas, Elise Claveau, Pascal Bouyssou, and Isabelle Gillaizeau. "Diversity-Oriented Synthesis of Polycyclic Diazinic Scaffolds." Organic Letters 14, no. 3 (January 19, 2012): 844–47. http://dx.doi.org/10.1021/ol203364b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Adriaenssens, Louis V., Carolyn A. Austin, Mairi Gibson, David Smith, and Richard C. Hartley. "Stereodivergent Diversity Oriented Synthesis of Piperidine Alkaloids." European Journal of Organic Chemistry 2006, no. 22 (November 2006): 4998–5001. http://dx.doi.org/10.1002/ejoc.200600744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dethe, Dattatraya H., and Ganesh M. Murhade. "Diversity-Oriented Synthesis of Calothrixins and Ellipticines." European Journal of Organic Chemistry 2014, no. 31 (September 19, 2014): 6953–62. http://dx.doi.org/10.1002/ejoc.201402837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bathula, Chandramohan, Shailja Singh, and Subhabrata Sen. "Diversity oriented synthesis for novel anti-malarials." Systems and Synthetic Biology 9, S1 (May 10, 2015): 49–53. http://dx.doi.org/10.1007/s11693-015-9171-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bansode, Avinash H., Prathyusha Chimala, and Nitin T. Patil. "Catalytic Branching Cascades in Diversity Oriented Synthesis." ChemCatChem 9, no. 1 (October 20, 2016): 30–40. http://dx.doi.org/10.1002/cctc.201600766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Burke, Martin D., and Stuart L. Schreiber. "A Planning Strategy for Diversity-Oriented Synthesis." Angewandte Chemie International Edition 43, no. 1 (January 2004): 46–58. http://dx.doi.org/10.1002/anie.200300626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Spandl, Richard J., Gemma L. Thomas, Monica Diaz-Gavilan, Kieron M. G. O'Connell, and David R. Spring. "ChemInform Abstract: Introduction to Diversity-Oriented Synthesis." ChemInform 41, no. 43 (September 30, 2010): no. http://dx.doi.org/10.1002/chin.201043253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lenci, E., G. Menchi, and A. Trabocchi. "Carbohydrates in diversity-oriented synthesis: challenges and opportunities." Organic & Biomolecular Chemistry 14, no. 3 (2016): 808–25. http://dx.doi.org/10.1039/c5ob02253c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ghosh, Sunil, Gonna Naidu, and Rekha Singh. "[3]Dendralenes: Synthesis, Reactivity Studies and Employment in Diversity-Oriented Synthesis of Complex Polycyclic Scaffolds." Synlett 29, no. 03 (December 11, 2017): 282–95. http://dx.doi.org/10.1055/s-0036-1590960.

Full text
Abstract:
[3]Dendralenes are exquisite molecules as they exhibit enormous potential for the rapid generation of architecturally esoteric scaffolds when subjected to tandem Diels–Alder reactions, but their synthesis is a tall order. In conjunction with diversity-oriented synthesis, [3]dendralenes satisfy the potential demand for simultaneous and efficient synthesis of intricate collections of molecules that exhibit a range of activities for lead generation in drug discovery. This account chronicles our roller-coaster journey and systematic approach beginning from the synthesis of extremely unstable, non-isolable [3]dendralenes through moderately stable examples and then finally, highly functionalized, stable [3]dendralenes via sequential methylenation (using dimethylsulfonium methylide) and Horner–Wadsworth–Emmons olefination. It also describes the study of the attributes affecting their stability and reactivity with various dienophiles. In addition, it reports on how these dendralenes, upon astute maneuvering, can be engaged in a diene-transmissive Diels–Alder (DTDA) sequence, thus harnessing their full potential by construction of a small but diverse library of complex frameworks in a quick and efficient manner, with step and atom economy.1 Introduction2 Literature Methods for [3]Dendralene Synthesis3 Our Tryst with [3]Dendralenes3.1 Serendipitous Olefination with the Corey–Chaykovsky Ylide3.2 Synthesis of [3]Dendralenes and Reactivity/Stability Studies3.3 Diels–Alder Reactions of [3]Dendralenes3.4 Tuning of [3]Dendralenes for the DTDA Reactions3.5 Diversity-Oriented Synthesis with [3]Dendralenes3.6 Rationalization of Factors Governing the Stability and Reactivity of [3]Dendralenes4 Conclusions
APA, Harvard, Vancouver, ISO, and other styles
28

Surakanti, Ramu, Sumalatha Sanivarapu, Chiranjeevi Thulluri, Pravin S. Iyer, Raghuram S. Tangirala, Rambabu Gundla, Uma Addepally, Y. L. N. Murthy, Lakshmi Velide, and Subhabrata Sen. "Synthesis of Privileged Scaffolds by Using Diversity-Oriented Synthesis." Chemistry - An Asian Journal 8, no. 6 (March 19, 2013): 1168–76. http://dx.doi.org/10.1002/asia.201201203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Burke, Martin D., and Gojko Lalic. "Teaching Target-Oriented and Diversity-Oriented Organic Synthesis at Harvard University." Chemistry & Biology 9, no. 5 (May 2002): 535–41. http://dx.doi.org/10.1016/s1074-5521(02)00143-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gong, Jianxian, Zhen Yang, Yueqing Gu, and Ceheng Tan. "Diversity-Oriented Synthesis of Natural Products via Gold-Catalyzed Cascade Reactions." Synlett 29, no. 12 (May 16, 2018): 1552–71. http://dx.doi.org/10.1055/s-0037-1610126.

Full text
Abstract:
This account describes our group’s latest research in the field of diversity-oriented synthesis of natural products via gold-catalyzed cascade reactions. We present two general strategies based on gold-catalyzed cycloisomerization: a gold-catalyzed cascade reaction of 1,7-diynes and a pinacol-terminated gold-catalyzed cascade reaction. We highlight our development of synthetic methods for the construction of biologically active natural products by using these two strategies.1 Introduction2 Gold-Catalyzed Cascade Reactions of 1,7-Diynes2.1 Collective Synthesis of C15 Oxygenated Drimane-Type Sesquiterpenoids2.2 Synthesis of Left-Wing Fragment of Azadirachtin I2.3 Collective Synthesis of Cladiellins3 Pinacol-Terminated Gold-Catalyzed Cascade Reaction3.1 Asymmetric Formal Total Synthesis of (+)-Cortistatins3.2 Total Synthesis of Orientalol F3.3 Asymmetric Total Synthesis of (–)-Farnesiferol C4 Summary and Outlook
APA, Harvard, Vancouver, ISO, and other styles
31

Mai, Shaoyu, Yixin Luo, Xianyun Huang, Zhenghao Shu, Bingnan Li, Yu Lan, and Qiuling Song. "Diversity-oriented synthesis of imidazo[2,1-a]isoquinolines." Chemical Communications 54, no. 73 (2018): 10240–43. http://dx.doi.org/10.1039/c8cc05390a.

Full text
Abstract:
Herein, we report an efficient and practical strategy for the synthesis of five types of imidazo[2,1-a]isoquinolines via Cp*RhIII-catalyzed [4+2] annulation of 2-arylimidazoles and α-diazoketoesters, whose structural and substituted diversity at 5- or 6-position can be precisely controlled by the α-diazoketoester coupling partners.
APA, Harvard, Vancouver, ISO, and other styles
32

Tejeswararao, D. "Diversity and Oriented Synthesis of Clopidogrel Drug Derivatives." Asian Journal of Chemistry 32, no. 12 (2020): 3007–11. http://dx.doi.org/10.14233/ajchem.2020.22881.

Full text
Abstract:
An efficient synthetic route has been developed for the synthesis of new clopidogrel drug derivatives. Key step of this method is to replacement of mesyl protected alcohol group with various aliphatic amines in presence of base. Various clopidogrel drug derivatives have been prepared in good yields. All the new compounds were confirmed by spectral studies and mass analysis. The main advantage of the new synthetic route has low cost and is fit for industrial applications.
APA, Harvard, Vancouver, ISO, and other styles
33

Comer, Eamon, Jeremy R. Duvall, and Maurice duPont Lee. "Utilizing diversity-oriented synthesis in antimicrobial drug discovery." Future Medicinal Chemistry 6, no. 17 (November 2014): 1927–42. http://dx.doi.org/10.4155/fmc.14.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kato, Nobutaka, Eamon Comer, Tomoyo Sakata-Kato, Arvind Sharma, Manmohan Sharma, Micah Maetani, Jessica Bastien, et al. "Diversity-oriented synthesis yields novel multistage antimalarial inhibitors." Nature 538, no. 7625 (September 7, 2016): 344–49. http://dx.doi.org/10.1038/nature19804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chattopadhyay, Shital, Ayan Bandyopadhyay, and Partha Mitra. "Diversity-Oriented Synthesis of Aminocyclohexitols from Garner's Aldehyde." Synthesis 45, no. 04 (January 9, 2013): 536–44. http://dx.doi.org/10.1055/s-0032-1317962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wittmann, Bruce J., Anders M. Knight, Julie L. Hofstra, Sarah E. Reisman, S. B. Jennifer Kan, and Frances H. Arnold. "Diversity-Oriented Enzymatic Synthesis of Cyclopropane Building Blocks." ACS Catalysis 10, no. 13 (June 4, 2020): 7112–16. http://dx.doi.org/10.1021/acscatal.0c01888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mortensen, Kim T., Thomas J. Osberger, Thomas A. King, Hannah F. Sore, and David R. Spring. "Strategies for the Diversity-Oriented Synthesis of Macrocycles." Chemical Reviews 119, no. 17 (June 20, 2019): 10288–317. http://dx.doi.org/10.1021/acs.chemrev.9b00084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tobrman, Tomáš, Peter Polák, and Dalimil Dvořák. "Cyanogen: A Versatile Reagent for Diversity-Oriented Synthesis." Synthesis 49, no. 08 (February 8, 2017): 1757–66. http://dx.doi.org/10.1055/s-0036-1588410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Díaz-Gavilán, Mónica, Warren R. J. D. Galloway, Kieron M. G. O’Connell, James T. Hodkingson, and David R. Spring. "Diversity-oriented synthesis of bicyclic and tricyclic alkaloids." Chem. Commun. 46, no. 5 (2010): 776–78. http://dx.doi.org/10.1039/b917965h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Itami, Kenichiro, Toshiyuki Kamei, and Jun-ichi Yoshida. "Diversity-Oriented Synthesis of Tamoxifen-type Tetrasubstituted Olefins." Journal of the American Chemical Society 125, no. 48 (December 2003): 14670–71. http://dx.doi.org/10.1021/ja037566i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, Chuo, Xiaodong Li, Christopher S. Neumann, Michael M. C. Lo, and Stuart L. Schreiber. "Convergent Diversity-Oriented Synthesis of Small-Molecule Hybrids." Angewandte Chemie International Edition 44, no. 15 (April 8, 2005): 2249–52. http://dx.doi.org/10.1002/anie.200462798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lalli, Claudia, Andrea Trabocchi, Filippo Sladojevich, Gloria Menchi, and Antonio Guarna. "Diversity-Oriented Synthesis of Morpholine-Containing Molecular Scaffolds." Chemistry - A European Journal 15, no. 32 (August 10, 2009): 7871–75. http://dx.doi.org/10.1002/chem.200900744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Thomas, Gemma L, Richard J Spandl, Freija G Glansdorp, Martin Welch, Andreas Bender, Joshua Cockfield, Jodi A Lindsay, et al. "Anti-MRSA Agent Discovery Using Diversity-Oriented Synthesis." Angewandte Chemie 120, no. 15 (March 31, 2008): 2850–54. http://dx.doi.org/10.1002/ange.200705415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Chuo, Xiaodong Li, Christopher S. Neumann, Michael M. C. Lo, and Stuart L. Schreiber. "Convergent Diversity-Oriented Synthesis of Small-Molecule Hybrids." Angewandte Chemie 117, no. 15 (April 8, 2005): 2289–92. http://dx.doi.org/10.1002/ange.200462798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Thomas, Gemma L, Richard J Spandl, Freija G Glansdorp, Martin Welch, Andreas Bender, Joshua Cockfield, Jodi A Lindsay, et al. "Anti-MRSA Agent Discovery Using Diversity-Oriented Synthesis." Angewandte Chemie International Edition 47, no. 15 (March 31, 2008): 2808–12. http://dx.doi.org/10.1002/anie.200705415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lacour, Jérôme, Samuel Constant, and Virginie Hebbe. "Diversity Oriented Synthesis of Chiral Hexacoordinated Phosphate Anions." European Journal of Organic Chemistry 2002, no. 21 (November 2002): 3580–88. http://dx.doi.org/10.1002/1099-0690(200211)2002:21<3580::aid-ejoc3580>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Surakanti, Ramu, Sumalatha Sanivarapu, Chiranjeevi Thulluri, Pravin S. Iyer, Raghuram S. Tangirala, Rambabu Gundla, Uma Addepally, Y. L. N. Murthy, Lakshmi Velide, and Subhabrata Sen. "Corrigendum: Synthesis of Privileged Scaffolds by Using Diversity-Oriented Synthesis." Chemistry - An Asian Journal 9, no. 7 (June 20, 2014): 1706. http://dx.doi.org/10.1002/asia.201402552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chauhan, Jyoti, Tania Luthra, Rambabu Gundla, Antonio Ferraro, Ulrike Holzgrabe, and Subhabrata Sen. "A diversity oriented synthesis of natural product inspired molecular libraries." Organic & Biomolecular Chemistry 15, no. 43 (2017): 9108–20. http://dx.doi.org/10.1039/c7ob02230a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mendoza, Abraham, and Kilian Colas. "Iterative Synthesis of Pluripotent Thioethers through Controlled Redox Fluctuation of Sulfur." Synlett 29, no. 10 (January 29, 2018): 1329–33. http://dx.doi.org/10.1055/s-0036-1591864.

Full text
Abstract:
Target- and diversity-oriented syntheses are based on diverse building blocks, whose preparation requires discrete design and constructive alignment of different chemistries. To enable future automation of the synthesis of small molecules, we have devised a unified strategy that serves the divergent synthesis of unrelated scaffolds such as carbonyls, olefins, organometallics, halides, and boronic esters. It is based on iterations of a nonelectrophilic Pummerer-type C–C coupling enabled by turbo-organomagnesium amides that we have recently reported. The pluripotency of sulfur allows the central building blocks to be obtained by regulating C–C bond formation through control of its redox state.
APA, Harvard, Vancouver, ISO, and other styles
50

Mehta, Vaibhav P., Sachin G. Modha, Denis Ermolat'ev, Kristof Van Hecke, Luc Van Meervelt, and Erik V. Van der Eycken. "Diversity-Oriented Synthesis of Substituted Furo[2,3-b]pyrazines." Australian Journal of Chemistry 62, no. 1 (2009): 27. http://dx.doi.org/10.1071/ch08376.

Full text
Abstract:
A highly efficient method for the synthesis of diversely substituted furo[2,3-b]pyrazines has been elaborated. The Ag+- or iodine-mediated electrophilic cyclization of readily generated 5-chloro-3-substituted ethynyl-1-(4-methoxybenzyl)-pyrazin-2(1H)-ones affords substituted furo[2,3-b]pyrazines, which undergo various palladium catalyzed reactions to generate a library of difficult to attain diversely substituted furo[2,3-b]pyrazines.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography