Academic literature on the topic 'Distributions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distributions"
Ejsmont, Wiktor. "Free Meixner Distributions." Didactics of Mathematics 13, no. 17 (2016): 13–16. http://dx.doi.org/10.15611/dm.2016.13.02.
Full textOmer, Abdeen. "Medicines Distribution, Regulatory Privatisation, Social Welfare Services and Financing Alternatives." International Journal of Medical Reviews and Case Reports 2, Reports in Surgery and Dermatolo (2018): 1. http://dx.doi.org/10.5455/ijmrcr.medicine-distributions-sudan.
Full textSulewski, Piotr, and Marcin Szymkowiak. "Modelling income distributions based on theoretical distributions derived from normal distributions." Wiadomości Statystyczne. The Polish Statistician 2023, no. 6 (June 30, 2023): 1–23. http://dx.doi.org/10.59139/ws.2023.06.1.
Full textPanton, Don B. "Distribution function values for logstable distributions." Computers & Mathematics with Applications 25, no. 9 (May 1993): 17–24. http://dx.doi.org/10.1016/0898-1221(93)90128-i.
Full textTRANDAFIR, Romică, Vasile PREDA, Sorin DEMETRIU, and Ion MIERLUŞ-MAZILU. "ON MIXING CONTINUOUS DISTRIBUTIONS WITH DISCRETE DISTRIBUTIONS USED IN RELIABILITY." Review of the Air Force Academy 16, no. 2 (October 31, 2018): 5–16. http://dx.doi.org/10.19062/1842-9238.2018.16.2.1.
Full textMarengo, James E., David L. Farnsworth, and Lucas Stefanic. "A Geometric Derivation of the Irwin-Hall Distribution." International Journal of Mathematics and Mathematical Sciences 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/3571419.
Full textAguirre, M. A., and C. K. Li. "The distributional products of particular distributions." Applied Mathematics and Computation 187, no. 1 (April 2007): 20–26. http://dx.doi.org/10.1016/j.amc.2006.08.098.
Full textClancy, Damian, and Philip K. Pollett. "A note on quasi-stationary distributions of birth–death processes and the SIS logistic epidemic." Journal of Applied Probability 40, no. 03 (September 2003): 821–25. http://dx.doi.org/10.1017/s002190020001977x.
Full textCousineau, Denis, Jean-Philippe Thivierge, Bradley Harding, and Yves Lacouture. "Constructing a group distribution from individual distributions." Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale 70, no. 3 (2016): 253–77. http://dx.doi.org/10.1037/cep0000069.
Full textMoya-Cessa, J. R., H. Moya-Cessa, L. R. Berriel-Valdos, O. Aguilar-Loreto, and P. Barberis-Blostein. "Unifying distribution functions: some lesser known distributions." Applied Optics 47, no. 22 (April 24, 2008): E13. http://dx.doi.org/10.1364/ao.47.000e13.
Full textDissertations / Theses on the topic "Distributions"
Al-Awadhi, Shafeeqah. "Elicitation of prior distributions for a multivariate normal distribution." Thesis, University of Aberdeen, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387799.
Full textWang, Min. "Generalized stable distributions and free stable distributions." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I032/document.
Full textThis thesis deals with real stable laws in the broad sense and consists of two independent parts. The first part concerns the generalized stable laws introduced by Schneider in a physical context and then studied by Pakes. They are defined by a fractional differential equation, whose existence and uniqueness of the density solutions is here characterized via two positive parameters, a stability parameter and a bias parameter. We then show various identities in law for the underlying random variables. The precise asymptotic behaviour of the density at both ends of the support is investigated. In some cases, exact representations as Fox functions of these densities are given. Finally, we solve entirely the open questions on the infinite divisibility of the generalized stable laws. The second and longer part deals with the classical analysis of the free alpha-stable laws. Introduced by Bercovici and Pata, these laws were then studied by Biane, Demni and Hasebe-Kuznetsov, from various points of view. We show that they are classically infinitely divisible for alpha less than or equal to 1 and that they belong to the extended Thorin class extended for alpha less than or equal to 3/4. The Lévy measure is explicitly computed for alpha = 1, showing that free 1-stable distributions are not in the Thorin class except in the drifted Cauchy case. In the symmetric case we show that the free alpha-stable densities are not infinitely divisible when alpha larger than 1. In the one-sided case we prove, refining unimodality, that the densities are whale-shaped, that is their successive derivatives vanish exactly once on their support. This echoes the bell shape property of the classical stable densities recently rigorously shown. We also derive several fine properties of spectrally one-sided free stable densities, including a detailed analysis of the Kanter random variable, complete asymptotic expansions at zero, and several intrinsic features of whale-shaped functions. Finally, we display a new identity in law for the Beta-Gamma algebra, various stochastic order properties, and we study the classical Van Danzig problem for the generalized semi-circular law
Vu, Tuan T. "Invariant distributions." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74019.
Full textWatt, Graeme. "Parton distributions." Thesis, Durham University, 2004. http://etheses.dur.ac.uk/2813/.
Full textFeng, Jingyu. "Modeling Distributions of Test Scores with Mixtures of Beta Distributions." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1068.pdf.
Full textLamb, Robert. "Dynamic Loss Distributions." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520974.
Full textKimber, M. A. "Unintegrated parton distributions." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3848/.
Full textREY, DAVID. "DISTRIBUTIONS AND IMMERSIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11943@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Os desafios de estudar formas levaram matemáticos a criar abstrações, em particular através da geometria diferencial. Porém, formas simples como cubos não se adequam a ferramentas diferenciáveis. Este trabalho é uma tentativa de usar avanços recentes da análise, no caso a teoria das distribuições, para estender quantidades diferenciáveis a objetos singulares. Como as distribuições generalizam as funções e permitem derivações infinitas, substituição das parametrizações de subvariedades clássicas por distribuições poderia naturalmente generalizar as subvariedades suaves. Isso nos leva a definir D-imersões. Esse trabalho demonstra que essa formulação, de fato, generaliza as imersões suaves. Extensões para outras classes de subvariedades são discutidas através de exemplos e casos particulares.
The challenge of studying shapes has led mathematicians to create powerful abstract concepts, in particular through Differential Geometry. However, differential tools do not apply to simple shapes like cubes. This work is an attempt to use modern advances of the Analysis, namely Distribution Theory, to extend differential quantities to singular objects. Distributions generalize functions, while allowing infinite differentiation. The substitution of classical immersions, which usually serve as submanifold parameterizations, by distributions might thus naturally generalize smooth immersion. This leads to the concept of D-immersion. This work proves that this formulation actually generalizes smooth immersions. Extensions to non-smooth of immersions are discussed through examples and specific cases.
Anabila, Moses A. "Skew Pareto distributions." abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453191.
Full textAbuhassan, Hassan. "Some transformed distributions /." Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1456289011&sid=9&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textBooks on the topic "Distributions"
Duistermaat, J. J., and J. A. C. Kolk. Distributions. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2.
Full textKohel, David, and Igor Shparlinski, eds. Frobenius Distributions:. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/conm/663.
Full textAL-Hussaini, Essam K., and Mohammad Ahsanullah. Exponentiated Distributions. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-079-9.
Full textLazar, Marian, and Horst Fichtner, eds. Kappa Distributions. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82623-9.
Full textThomopoulos, Nick T. Statistical Distributions. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65112-5.
Full textThomopoulos, Nick T. Probability Distributions. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1.
Full textForbes, Catherine, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical Distributions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470627242.
Full textThas, Olivier. Comparing Distributions. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-92710-7.
Full textSilver, Richard N., and Paul E. Sokol, eds. Momentum Distributions. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2554-1.
Full textZelterman, Daniel. Discrete Distributions. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470868902.
Full textBook chapters on the topic "Distributions"
Duistermaat, J. J., and J. A. C. Kolk. "Distributions." In Distributions, 33–44. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_3.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Motivation." In Distributions, 1–15. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_1.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Transposition: Pullback and Pushforward." In Distributions, 91–113. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_10.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Convolution of Distributions." In Distributions, 115–36. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_11.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Fundamental Solutions." In Distributions, 137–52. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_12.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Fractional Integration and Differentiation." In Distributions, 153–76. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_13.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Fourier Transform." In Distributions, 177–220. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_14.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Distribution Kernels." In Distributions, 221–36. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_15.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Fourier Series." In Distributions, 237–70. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_16.
Full textDuistermaat, J. J., and J. A. C. Kolk. "Fundamental Solutions and Fourier Transform." In Distributions, 271–85. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_17.
Full textConference papers on the topic "Distributions"
Eliason, Kiya L., and Steven Jones. "Students’ “multi-sample distribution” misconception about sampling distributions." In 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. PMENA, 2020. http://dx.doi.org/10.51272/pmena.42.2020-203.
Full textTeryaev, Oleg. "Pressure in generalized parton distributions and distribution amplitudes." In 23rd International Spin Physics Symposium. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.346.0077.
Full textHartley, Tom T., Jay L. Adams, and Carl F. Lorenzo. "Complex-Order Distributions." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84952.
Full textHiskes, J. R. "Electron energy distributions and vibrational population distributions." In Production and neutralization of negative ions and beams. AIP, 1990. http://dx.doi.org/10.1063/1.39654.
Full textTHORNE, R. S. "PARTON DISTRIBUTIONS." In Proceedings of the XXI International Symposium. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702975_0023.
Full textShan, Chung-chieh. "Calculating Distributions." In PPDP '18: The 20th International Symposium on Principles and Practice of Declarative Programming. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3236950.3236973.
Full textPumplin, Jon. "Parton Distributions." In DEEP INELASTIC SCATTERING: 13th International Workshop on Deep Inelastic Scattering; DIS 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2122011.
Full textTeng, Chung-Chu, and Paul C. Liu. "Estimating Wave Height Distributions from Wind Speed Distributions." In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)24.
Full textJacobs, Bart. "From Multisets over Distributions to Distributions over Multisets." In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2021. http://dx.doi.org/10.1109/lics52264.2021.9470678.
Full textMauris, Gilles. "Transformation of bimodal probability distributions into possibility distributions." In 2008 IEEE Iinternational Workshop on Advanced Methods for Uncertainty Estimation in Measurement (AMUEM). IEEE, 2008. http://dx.doi.org/10.1109/amuem.2008.4589928.
Full textReports on the topic "Distributions"
Sala-i-Martin, Xavier. The World Distribution of Income (estimated from Individual Country Distributions). Cambridge, MA: National Bureau of Economic Research, May 2002. http://dx.doi.org/10.3386/w8933.
Full textAnderson, T. W. Nonnormal Multivariate Distributions: Inference Based on Elliptically Contoured Distributions. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada254999.
Full textBowman, K., L. Shenton, and M. Kastenbaum. Discrete Pearson distributions. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10103630.
Full textBowman, K., L. Shenton, and M. Kastenbaum. Discrete Pearson distributions. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6042852.
Full textWinterbottom, Alan, and John Snell. The Reduction of Component Reliability Distributions to a System Reliability Distribution. Fort Belvoir, VA: Defense Technical Information Center, December 1987. http://dx.doi.org/10.21236/ada195247.
Full textSwiler, Laura Painton. Verification of LHS distributions. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882044.
Full textBock, Mary E., and Herbert Solomon. Distributions of Quadratic Forms. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada190224.
Full textAvara, Elton P., and Bruce T. Miers. Surface Wind Speed Distributions. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada253268.
Full textDivgi, D. R. Polynomial Families of Distributions. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada263873.
Full textGardner C. J. Projections of Beam Distributions. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/1151346.
Full text