Academic literature on the topic 'Distributions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Distributions"

1

Ejsmont, Wiktor. "Free Meixner Distributions." Didactics of Mathematics 13, no. 17 (2016): 13–16. http://dx.doi.org/10.15611/dm.2016.13.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Omer, Abdeen. "Medicines Distribution, Regulatory Privatisation, Social Welfare Services and Financing Alternatives." International Journal of Medical Reviews and Case Reports 2, Reports in Surgery and Dermatolo (2018): 1. http://dx.doi.org/10.5455/ijmrcr.medicine-distributions-sudan.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sulewski, Piotr, and Marcin Szymkowiak. "Modelling income distributions based on theoretical distributions derived from normal distributions." Wiadomości Statystyczne. The Polish Statistician 2023, no. 6 (June 30, 2023): 1–23. http://dx.doi.org/10.59139/ws.2023.06.1.

Full text
Abstract:
In income modelling studies, such well-known distributions as the Dagum, the lognormal or the Zenga distributions are often used as approximations of the observed distributions. The objective of the research described in the article is to verify the possibility of using other type of distributions, i.e. asymmetric distributions derived from normal distribution (ND) in the context of income modelling. Data from the 2011 EU-SILC survey on the monthly gross income per capita in Poland were used to assess the most important characteristics of the discussed distributions. The probability distributions were divided into two groups: I – distributions commonly used for income modelling (e.g. the Dagum distribution) and II – distributions derived from ND (e.g. the SU Johnson distribution). In addition to the visual evaluation of the usefulness of the analysed probability distributions, various numerical criteria were applied: information criteria for econometric models (such as the Akaike Information Criterion, Schwarz’s Bayesian Information Criterion and the Hannan-Quinn Information Criterion), measures of agreement, as well as empirical and theoretical characteristics, including a measure based on quantiles, specifically defined by the authors for the purposes of this article. The research found that the SU Johnson distribution (Group II), similarly to the Dagum distribution (Group I), can be successfully used for income modelling.
APA, Harvard, Vancouver, ISO, and other styles
4

Panton, Don B. "Distribution function values for logstable distributions." Computers & Mathematics with Applications 25, no. 9 (May 1993): 17–24. http://dx.doi.org/10.1016/0898-1221(93)90128-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

TRANDAFIR, Romică, Vasile PREDA, Sorin DEMETRIU, and Ion MIERLUŞ-MAZILU. "ON MIXING CONTINUOUS DISTRIBUTIONS WITH DISCRETE DISTRIBUTIONS USED IN RELIABILITY." Review of the Air Force Academy 16, no. 2 (October 31, 2018): 5–16. http://dx.doi.org/10.19062/1842-9238.2018.16.2.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marengo, James E., David L. Farnsworth, and Lucas Stefanic. "A Geometric Derivation of the Irwin-Hall Distribution." International Journal of Mathematics and Mathematical Sciences 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/3571419.

Full text
Abstract:
The Irwin-Hall distribution is the distribution of the sum of a finite number of independent identically distributed uniform random variables on the unit interval. Many applications arise since round-off errors have a transformed Irwin-Hall distribution and the distribution supplies spline approximations to normal distributions. We review some of the distribution’s history. The present derivation is very transparent, since it is geometric and explicitly uses the inclusion-exclusion principle. In certain special cases, the derivation can be extended to linear combinations of independent uniform random variables on other intervals of finite length. The derivation adds to the literature about methodologies for finding distributions of sums of random variables, especially distributions that have domains with boundaries so that the inclusion-exclusion principle might be employed.
APA, Harvard, Vancouver, ISO, and other styles
7

Aguirre, M. A., and C. K. Li. "The distributional products of particular distributions." Applied Mathematics and Computation 187, no. 1 (April 2007): 20–26. http://dx.doi.org/10.1016/j.amc.2006.08.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clancy, Damian, and Philip K. Pollett. "A note on quasi-stationary distributions of birth–death processes and the SIS logistic epidemic." Journal of Applied Probability 40, no. 03 (September 2003): 821–25. http://dx.doi.org/10.1017/s002190020001977x.

Full text
Abstract:
For Markov processes on the positive integers with the origin as an absorbing state, Ferrari, Kesten, Martínez and Picco studied the existence of quasi-stationary and limiting conditional distributions by characterizing quasi-stationary distributions as fixed points of a transformation Φ on the space of probability distributions on {1, 2, …}. In the case of a birth–death process, the components of Φ(ν) can be written down explicitly for any given distributionν. Using this explicit representation, we will show that Φ preserves likelihood ratio ordering between distributions. A conjecture of Kryscio and Lefèvre concerning the quasi-stationary distribution of the SIS logistic epidemic follows as a corollary.
APA, Harvard, Vancouver, ISO, and other styles
9

Cousineau, Denis, Jean-Philippe Thivierge, Bradley Harding, and Yves Lacouture. "Constructing a group distribution from individual distributions." Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale 70, no. 3 (2016): 253–77. http://dx.doi.org/10.1037/cep0000069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moya-Cessa, J. R., H. Moya-Cessa, L. R. Berriel-Valdos, O. Aguilar-Loreto, and P. Barberis-Blostein. "Unifying distribution functions: some lesser known distributions." Applied Optics 47, no. 22 (April 24, 2008): E13. http://dx.doi.org/10.1364/ao.47.000e13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Distributions"

1

Al-Awadhi, Shafeeqah. "Elicitation of prior distributions for a multivariate normal distribution." Thesis, University of Aberdeen, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387799.

Full text
Abstract:
This thesis focuses on elicitation methods for quantifying an expert's subjective opinion about a multivariate normal distribution. Firstly, it is assumed that the expert's opinion can be adequately represented by a natural conjugate prior distribution (a normal inverse-Wishart distribution) and an elicitation method is developed in which the expert performs various assessment tasks that enable the hyperparameters of the distribution to be estimated. An example illustrating use of the method is given. There are some choices in the way hyperparameters are determined and empirical work underlies the choices made. The empirical work aimed to provide a basis for choosing between alternative assessment tasks that may be used in the elicitation method and to examine different ways of using the elicited assessments to estimate the hyperparameters of the prior distribution. In particular, we compare two methods for estimating a spread matrix. The method is implemented in an interactive computer program that questions the expert and forms the subjective distribution. In some practical situations, it may not be possible to accurately represent an expert's opinions by a natural conjugate prior distribution, especially as the conjugate prior description suffers from some restrictions in the manner it represents dependencies between the mean vector and the covariance matrix. As a more flexible alternative, non-conjugate prior distributions are considered in which independent prior distributions for the mean vector and spread matrix are employed. A method of eliciting a prior distribution for the mean when it is assumed to be a multivariate normal distribution is developed. The implementation of the method is given through a pilot study. The prior distribution for the variance is assumed to have one of two forms: either an inverse-Wishart distribution or a generalised inverse-Wishart distribution. An elicitation method is developed for each of these forms of prior distribution. An example illustrating the implementation of the methods is given. Finally, the elicitation methods for the conjugate and the non-conjugate prior distributions are studied and compared in depth through an experiment with subject-matter experts. In this experiment two assessment tasks are used: one is related to the distribution of a sample mean and the other to the distribution of an individual item. A comparison is made between the expert assessments for these two types of task and marked differences are observed.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Min. "Generalized stable distributions and free stable distributions." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I032/document.

Full text
Abstract:
Cette thèse porte sur les lois stables réelles au sens large et comprend deux parties indépendantes. La première partie concerne les lois stables généralisées introduites par Schneider dans un contexte physique et étudiées ensuite par Pakes. Elles sont définies par une équation différentielle fractionnaire dont on caractérise ici l'existence et l'unicité des solutions densité à l'aide de deux paramètres positifs, l'un de stabilité et l'autre de biais. On montre ensuite diverses identités en loi pour les variables aléatoires sous-jacentes. On étudie le comportement asymptotique précis de la densité aux deux extrémités du support. Dans certains cas, on donne des représentations exactes de ces densités comme fonctions de Fox. Enfin, on résout entièrement les questions ouvertes autour de l'infinie divisibilité des lois stables généralisées. La seconde partie, plus longue, porte sur l'analyse classique des lois alpha-stables libres réelles. Introduites par Bercovici et Pata, ces lois ont ensuite étudiées par Biane, Demni et Hasebe-Kuznetsov sous divers points de vue. Nous montrons qu'elles sont classiquement infiniment divisibles pour alpha inférieur ou égal à 1 et qu'elles appartiennent à la classe de Thorin étendue pour alpha inférieur ou égal à 3/4. La mesure de Lévy est calculée explicitement pour alpha = 1 et ce calcul entraîne que les lois 1-stables libres n'appartiennent pas à la classe de Thorin, sauf dans le cas de la loi de Cauchy avec dérive. Dans le cas symétrique, nous montrons que les densités alpha-stables libres ne sont pas infiniment divisibles quand alpha supérieur à 1. Dans le cas de signe constant nous montrons que les densités stables libres ont une courbe en baleine, autrement dit que leurs dérivées successives ne s'annulent qu'une seule fois sur leurs supports, ce qui constitue un raffinement de l'unimodalité et fait écho à la courbe en cloche des densités stables classiques récemment montrée rigoureusement. Nous établissons enfin plusieurs propriétés précises des densités stables libres spectralement de signe constant, parmi lesquelles une analyse détaillée de la variable aléatoire de Kanter, des expansions asymptotiques complètes en zéro, ainsi que plusieurs propriétés intrinsèques des courbes en baleine. Nous montrons enfin une nouvelle identité en loi pour l'algèbre Beta-Gamma, diverses propriétés d'ordre stochastique et nous étudions le problème classique de Van Dantzig pour la loi semi-circulaire généralisée
This thesis deals with real stable laws in the broad sense and consists of two independent parts. The first part concerns the generalized stable laws introduced by Schneider in a physical context and then studied by Pakes. They are defined by a fractional differential equation, whose existence and uniqueness of the density solutions is here characterized via two positive parameters, a stability parameter and a bias parameter. We then show various identities in law for the underlying random variables. The precise asymptotic behaviour of the density at both ends of the support is investigated. In some cases, exact representations as Fox functions of these densities are given. Finally, we solve entirely the open questions on the infinite divisibility of the generalized stable laws. The second and longer part deals with the classical analysis of the free alpha-stable laws. Introduced by Bercovici and Pata, these laws were then studied by Biane, Demni and Hasebe-Kuznetsov, from various points of view. We show that they are classically infinitely divisible for alpha less than or equal to 1 and that they belong to the extended Thorin class extended for alpha less than or equal to 3/4. The Lévy measure is explicitly computed for alpha = 1, showing that free 1-stable distributions are not in the Thorin class except in the drifted Cauchy case. In the symmetric case we show that the free alpha-stable densities are not infinitely divisible when alpha larger than 1. In the one-sided case we prove, refining unimodality, that the densities are whale-shaped, that is their successive derivatives vanish exactly once on their support. This echoes the bell shape property of the classical stable densities recently rigorously shown. We also derive several fine properties of spectrally one-sided free stable densities, including a detailed analysis of the Kanter random variable, complete asymptotic expansions at zero, and several intrinsic features of whale-shaped functions. Finally, we display a new identity in law for the Beta-Gamma algebra, various stochastic order properties, and we study the classical Van Danzig problem for the generalized semi-circular law
APA, Harvard, Vancouver, ISO, and other styles
3

Vu, Tuan T. "Invariant distributions." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Watt, Graeme. "Parton distributions." Thesis, Durham University, 2004. http://etheses.dur.ac.uk/2813/.

Full text
Abstract:
Parton distributions, α(χ,μ(^₂) are essential ingredients for almost all theoretical calculations at hadron colliders. They give the number densities of the colliding par- tons (quarks and gluons) inside their parent hadrons at a given momentum fraction χand scale μ(^₂). The scale dependence of the parton distributions is given by DGLAP evolution, while the X dependence must be determined from a global analysis of deep-inelastic scattering (DIS) and related hard-scattering data. In Part I we introduce ‘doubly-unintegrateď parton distributions, fa(x, z, k(^₂),μ(^₂)), which additionally depend on the splitting fraction z and the transverse momentum (k) associated with the last evolution step. We show how these distributions can be used to calculate cross sections for inclusive jet production in DIS and compare the predictions to data taken at the HERA ep collider. We then calculate the transverse momentum distributions of พ and z bosons at the Tevatron pp collider and of Standard Model Higgs bosons at the forthcoming LHC. In Part II we study diffractive DIS, which is characterised by a large rapidity gap between the slightly deflected proton and the products of the virtual photon dissociation. We perform a novel QCD analysis of recent HERA data and extract diffractive parton distributions. The results of this analysis are used to investigate the effect of absorptive corrections in inclusive DIS. These absorptive corrections are due to the recombination of partons within the proton and are found to enhance the size of the gluon distribution at small X. We discuss the problem that the gluon distribution decreases with decreasing X at low scales while the sea quark distribution increases with decreasing X, whereas Regge theory predicts that both should have the same small-X behaviour. Our study hints at the possible importance of power corrections at low scales of around 1 GeV.
APA, Harvard, Vancouver, ISO, and other styles
5

Feng, Jingyu. "Modeling Distributions of Test Scores with Mixtures of Beta Distributions." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1068.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lamb, Robert. "Dynamic Loss Distributions." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kimber, M. A. "Unintegrated parton distributions." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3848/.

Full text
Abstract:
We develop the theory of parton distributions f(_a)(π, k(^t2), μ(^2), unintegrated with respect to transverse momentum k(_t), from a phenomenological standpoint. In particular, we demonstrate a convenient approximation in which the unintegrated functions are obtained by explicitly performing the last step of parton evolution in perturbative QCD, with single-scale functions a(π, Q(^2) as input. Results are presented in the context of DGLAP and combined BFKL-DGLAP evolution, but with angular ordering imposed in the last step of the evolution. We illustrate the application of these unintegrated distributions to predict cross sections for physical processes at lepton-hadron and hadron-hadron colliders. The use of partons with incoming transverse momentum, based on k(_t)-factorisation, is intended to replace phenomenological "smearing" in the perturbative region k(_t) > k(_o) (k(_o) ≈ 1 GeV), and enables the full kinematics of a process to be included even at leading order. We apply our framework to deep inelastic scattering and the fitting of F(_2)(π, Q(^2), to the transverse momentum spectra of prompt photons in hadroproduction and in photoproduction, and to the topical problem of bb production at HERA. Finally, we address the issue of parton-parton recombination (shadowing) at very low values of π, building on recent work by Kovchegov and others to make predictions for the likely magnitude of shadowing effects at the LHC.
APA, Harvard, Vancouver, ISO, and other styles
8

REY, DAVID. "DISTRIBUTIONS AND IMMERSIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11943@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Os desafios de estudar formas levaram matemáticos a criar abstrações, em particular através da geometria diferencial. Porém, formas simples como cubos não se adequam a ferramentas diferenciáveis. Este trabalho é uma tentativa de usar avanços recentes da análise, no caso a teoria das distribuições, para estender quantidades diferenciáveis a objetos singulares. Como as distribuições generalizam as funções e permitem derivações infinitas, substituição das parametrizações de subvariedades clássicas por distribuições poderia naturalmente generalizar as subvariedades suaves. Isso nos leva a definir D-imersões. Esse trabalho demonstra que essa formulação, de fato, generaliza as imersões suaves. Extensões para outras classes de subvariedades são discutidas através de exemplos e casos particulares.
The challenge of studying shapes has led mathematicians to create powerful abstract concepts, in particular through Differential Geometry. However, differential tools do not apply to simple shapes like cubes. This work is an attempt to use modern advances of the Analysis, namely Distribution Theory, to extend differential quantities to singular objects. Distributions generalize functions, while allowing infinite differentiation. The substitution of classical immersions, which usually serve as submanifold parameterizations, by distributions might thus naturally generalize smooth immersion. This leads to the concept of D-immersion. This work proves that this formulation actually generalizes smooth immersions. Extensions to non-smooth of immersions are discussed through examples and specific cases.
APA, Harvard, Vancouver, ISO, and other styles
9

Anabila, Moses A. "Skew Pareto distributions." abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abuhassan, Hassan. "Some transformed distributions /." Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1456289011&sid=9&Fmt=2&clientId=1509&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Distributions"

1

Duistermaat, J. J., and J. A. C. Kolk. Distributions. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kohel, David, and Igor Shparlinski, eds. Frobenius Distributions:. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/conm/663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

AL-Hussaini, Essam K., and Mohammad Ahsanullah. Exponentiated Distributions. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-079-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lazar, Marian, and Horst Fichtner, eds. Kappa Distributions. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82623-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thomopoulos, Nick T. Statistical Distributions. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65112-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thomopoulos, Nick T. Probability Distributions. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Forbes, Catherine, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical Distributions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470627242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thas, Olivier. Comparing Distributions. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-92710-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silver, Richard N., and Paul E. Sokol, eds. Momentum Distributions. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2554-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zelterman, Daniel. Discrete Distributions. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470868902.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Distributions"

1

Duistermaat, J. J., and J. A. C. Kolk. "Distributions." In Distributions, 33–44. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duistermaat, J. J., and J. A. C. Kolk. "Motivation." In Distributions, 1–15. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duistermaat, J. J., and J. A. C. Kolk. "Transposition: Pullback and Pushforward." In Distributions, 91–113. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duistermaat, J. J., and J. A. C. Kolk. "Convolution of Distributions." In Distributions, 115–36. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Duistermaat, J. J., and J. A. C. Kolk. "Fundamental Solutions." In Distributions, 137–52. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duistermaat, J. J., and J. A. C. Kolk. "Fractional Integration and Differentiation." In Distributions, 153–76. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Duistermaat, J. J., and J. A. C. Kolk. "Fourier Transform." In Distributions, 177–220. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duistermaat, J. J., and J. A. C. Kolk. "Distribution Kernels." In Distributions, 221–36. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duistermaat, J. J., and J. A. C. Kolk. "Fourier Series." In Distributions, 237–70. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duistermaat, J. J., and J. A. C. Kolk. "Fundamental Solutions and Fourier Transform." In Distributions, 271–85. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Distributions"

1

Eliason, Kiya L., and Steven Jones. "Students’ “multi-sample distribution” misconception about sampling distributions." In 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. PMENA, 2020. http://dx.doi.org/10.51272/pmena.42.2020-203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Teryaev, Oleg. "Pressure in generalized parton distributions and distribution amplitudes." In 23rd International Spin Physics Symposium. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.346.0077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hartley, Tom T., Jay L. Adams, and Carl F. Lorenzo. "Complex-Order Distributions." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84952.

Full text
Abstract:
This paper develops the concept of the complex order-distribution. This is a continuum of fractional differintegrals whose order is complex. Two types of complex order-distributions are considered, uniformly distributed and Gaussian distributed. It is shown that these basis distributions can be summed to approximate other complex order-distributions. Conjugated differintegrals are an essential analytical tool applied in this development due to their associated real time-responses. An example is presented to demonstrate the complex order-distribution concept. This work enables the generalization of fractional system identification to allow the search for complex order-derivatives that may better describe real time behaviors.
APA, Harvard, Vancouver, ISO, and other styles
4

Hiskes, J. R. "Electron energy distributions and vibrational population distributions." In Production and neutralization of negative ions and beams. AIP, 1990. http://dx.doi.org/10.1063/1.39654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

THORNE, R. S. "PARTON DISTRIBUTIONS." In Proceedings of the XXI International Symposium. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702975_0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shan, Chung-chieh. "Calculating Distributions." In PPDP '18: The 20th International Symposium on Principles and Practice of Declarative Programming. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3236950.3236973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pumplin, Jon. "Parton Distributions." In DEEP INELASTIC SCATTERING: 13th International Workshop on Deep Inelastic Scattering; DIS 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2122011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Teng, Chung-Chu, and Paul C. Liu. "Estimating Wave Height Distributions from Wind Speed Distributions." In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jacobs, Bart. "From Multisets over Distributions to Distributions over Multisets." In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2021. http://dx.doi.org/10.1109/lics52264.2021.9470678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mauris, Gilles. "Transformation of bimodal probability distributions into possibility distributions." In 2008 IEEE Iinternational Workshop on Advanced Methods for Uncertainty Estimation in Measurement (AMUEM). IEEE, 2008. http://dx.doi.org/10.1109/amuem.2008.4589928.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Distributions"

1

Sala-i-Martin, Xavier. The World Distribution of Income (estimated from Individual Country Distributions). Cambridge, MA: National Bureau of Economic Research, May 2002. http://dx.doi.org/10.3386/w8933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, T. W. Nonnormal Multivariate Distributions: Inference Based on Elliptically Contoured Distributions. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada254999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bowman, K., L. Shenton, and M. Kastenbaum. Discrete Pearson distributions. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10103630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bowman, K., L. Shenton, and M. Kastenbaum. Discrete Pearson distributions. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6042852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Winterbottom, Alan, and John Snell. The Reduction of Component Reliability Distributions to a System Reliability Distribution. Fort Belvoir, VA: Defense Technical Information Center, December 1987. http://dx.doi.org/10.21236/ada195247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Swiler, Laura Painton. Verification of LHS distributions. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bock, Mary E., and Herbert Solomon. Distributions of Quadratic Forms. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada190224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Avara, Elton P., and Bruce T. Miers. Surface Wind Speed Distributions. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada253268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Divgi, D. R. Polynomial Families of Distributions. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada263873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gardner C. J. Projections of Beam Distributions. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/1151346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography