Academic literature on the topic 'Distributed reflectometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributed reflectometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distributed reflectometry"
Mizuno, Yosuke, Neisei Hayashi, Hideyuki Fukuda, Kwang Yong Song, and Kentaro Nakamura. "Ultrahigh-speed distributed Brillouin reflectometry." Light: Science & Applications 5, no. 12 (June 30, 2016): e16184-e16184. http://dx.doi.org/10.1038/lsa.2016.184.
Full textGorlov, N. I., and I. V. Bogachkov. "DISTRIBUTED SENSING OF FIBER-OPTIC COMMUNICATION LINES USING BRILLOUIN SCATTERING." DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES 11, no. 4 (2023): 71–75. http://dx.doi.org/10.25206/2310-9793-2023-11-4-71-75.
Full textZahoor, Rizwan, Raffaele Vallifuoco, Luigi Zeni, and Aldo Minardo. "Distributed Temperature Sensing through Network Analysis Frequency-Domain Reflectometry." Sensors 24, no. 7 (April 8, 2024): 2378. http://dx.doi.org/10.3390/s24072378.
Full textVolanthen, M., H. Geiger, and J. P. Dakin. "Distributed grating sensors using low-coherence reflectometry." Journal of Lightwave Technology 15, no. 11 (1997): 2076–82. http://dx.doi.org/10.1109/50.641525.
Full textDominauskas, Aurimas, Dirk Heider, and John W. Gillespie. "Electric time-domain reflectometry distributed flow sensor." Composites Part A: Applied Science and Manufacturing 38, no. 1 (January 2007): 138–46. http://dx.doi.org/10.1016/j.compositesa.2006.01.019.
Full textBao, Xiaoyi, and Yuan Wang. "Recent Advancements in Rayleigh Scattering-Based Distributed Fiber Sensors." Advanced Devices & Instrumentation 2021 (March 11, 2021): 1–17. http://dx.doi.org/10.34133/2021/8696571.
Full textRahman, Saifur, Farman Ali, Fazal Muhammad, Muhammad Irfan, Adam Glowacz, Mohammed Shahed Akond, Ammar Armghan, Salim Nasar Faraj Mursal, Amjad Ali, and Fahad Salem Alkahtani. "Analyzing Distributed Vibrating Sensing Technologies in Optical Meshes." Micromachines 13, no. 1 (January 5, 2022): 85. http://dx.doi.org/10.3390/mi13010085.
Full textKiyozumi, Takaki, Tomoya Miyamae, Kohei Noda, Heeyoung Lee, Kentaro Nakamura, and Yosuke Mizuno. "Super-simplified optical correlation-domain reflectometry." Japanese Journal of Applied Physics 61, no. 7 (July 1, 2022): 078005. http://dx.doi.org/10.35848/1347-4065/ac7272.
Full textFan, Xinyu, Bin Wang, Guangyao Yang, and Zuyuan He. "Slope-Assisted Brillouin-Based Distributed Fiber-Optic Sensing Techniques." Advanced Devices & Instrumentation 2021 (July 14, 2021): 1–16. http://dx.doi.org/10.34133/2021/9756875.
Full textZhou, Da-Peng, Liang Chen, and Xiaoyi Bao. "Distributed dynamic strain measurement using optical frequency-domain reflectometry." Applied Optics 55, no. 24 (August 18, 2016): 6735. http://dx.doi.org/10.1364/ao.55.006735.
Full textDissertations / Theses on the topic "Distributed reflectometry"
Luo, Linqing. "Time-frequency localisation of distributed Brillouin Optical Time Domain Reflectometry." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274568.
Full textWu, Nan. "Optical Frequency Domain Reflectometry Based Quasi-distributed High Temperature Sensor." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76905.
Full textMaster of Science
Ek, Simon. "Distributed Temperature Sensing Using Phase-Sensitive Optical Time Domain Reflectometry." Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285902.
Full textDet här examensarbetet utforskar och utvärderar förmågorna att mäta temperatur hos en fas-känslig optisk tidsdomän-reflektometer (φ-OTDR), som utnyttjar bakåtriktad Rayleigh-spridning i vanliga optiska singelmodfibrer. Anordningen konstrueras och dess komponentstruktur förklaras, och ett protokoll tas fram för att utföra mätningar med den. Prestandatester utförs och anordningen visas kapabel att göra fullt distribuerade temperaturmätningar längs hundratals meter långa fibrer, med en rymdsupplösning på 1 m och en temperaturupplösning på 0.1 K. Dessutom testas förmågan att mäta normaltöjning hos testfibern med samma metod, dock med mindre framgång. Anordningen är väldigt känslig för förhållandena i omgivningen runt mätningsfibern, vilket gör den kapabel till mätningar med mycket hög precision, men också mottaglig för störningar. Lite diskussion hålls kring hur dessa störningar kan undvikas eller hanteras. Vidare visas att mätningstekniken kan köras samtidigt som andra φ-OTDR-baserade tekniker från samma anordning.
Saunders, Charles T. W. "Optical fibre sensing by time domain reflectometry." Thesis, University of Manchester, 2006. https://www.research.manchester.ac.uk/portal/en/theses/distributed-optical-fibre-sensing(f1857f29-5af2-4e94-97dd-164f3d67f29b).html.
Full textStastny, Jeffrey Allen. "Time domain reflectometry (TDR) techniques for the design of distributed sensors." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09122009-040407/.
Full textRen, Meiqi. "Distributed Optical Fiber Vibration Sensor Based on Phase-Sensitive Optical Time Domain Reflectometry." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34400.
Full textBolen, Ryan. "A study of optical frequency domain reflectometry and its associated distributed sensor applications." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28464.
Full textRizzolo, Serena. "Advantages and limitations of distributed optical-frequency-domain-reflectometry for optical fiber-based sensors in harsh environments." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES013.
Full textFukushima-Daiichi event on March 11th, 2011, signed a turning point in nuclear industry by highlighting several weaknesses in the control of critical systems that ensure the safety in nuclear power plant (NPP) operating, particularly, in accidentals conditions. This PhD thesis has been carried out in collaboration with AREVA, the French industrial group active in the energy domain, with the aim of realizing optical fiber sensors resistant to the harsh environment constraints of a NPP and, in particular, to monitor temperature and water level several parameters inside the spent fuel pools (SFPs). It consists of two parts organized in 7 chapters. In the first part, chapter 1 deals with the phenomena contributing to the light attenuation during its propagation along the fiber and gives an overview on the radiation effects on optical fibers. To identify the most promising technique suitable for AREVA needs, in chapter 2 is reported the state-of-the-art on the distributed OFSs with particular attention to their employment in radiation environments. The last part of this chapter is devoted to the detailed description of the OFDR that is the selected sensor technique for this application. The second part is devoted to present and discuss the obtained results. Chapter 3 gives the experimental details on radiation and thermal treatments, investigated samples and used setups. In order to determine the best fiber/setup combination, a systematic study on temperature and strain distributed sensors was carried out in relation to the harsh constraints demanded from the application. The permanent radiation (MGy dose levels) effects on different fiber classes are investigated in Chapter 4. Chapter 5 illustrates in situ measurements on radiation resistant fibers to understand the combined temperature and radiation (X-rays) effects representative of the SFP nominal and accidental conditions. Simultaneously, we have developed the OFS design for its integration at SFP facility. The prototype is described and its performance is evaluated in chapter 6. Then, the main conclusion and perspective are discussed
L'incidente di Fukushima-Daiichi dell’11 marzo 2011 ha segnato un punto di svolta per l’industria nucleare, mettendo in evidenza diversi punti deboli nel controllo di sistemi critici che garantiscono la sicurezza nelle centrali, in particolare in condizioni di incidente. Questa tesi è stata condotta in collaborazione con AREVA, il gruppo industriale francese attivo nel settore dell'energia, con l'obiettivo di produrre sensori a fibra ottica resistenti alle condizioni estreme di una centrale nucleare e, in particolare, per controllare diversi parametri all'interno di una piscina di stoccaggio di combustibile nucleare, quali la temperatura e il livello dell'acqua. La tesi si compone di due parti organizzate in 7 capitoli. Nella prima parte, il capitolo 1 riguarda i fenomeni che contribuiscono all'attenuazione della luce durante la sua propagazione nella fibra e permette di comprendere gli effetti della radiazione sulle fibre ottiche. Per identificare la tecnologia più promettente per le esigenze di AREVA, nel capitolo 2 é discusso lo stato dell’arte sui sensori distribuiti con particolare attenzione alle loro performance in ambienti radiativi. L'ultima parte di questo capitolo è dedicato ad una descrizione dettagliata della tecnica OFDR che è la tecnologia scelta per questa applicazione. La seconda parte è dedicata a presentare e discutere i risultati. Il capitolo 3 fornisce i dettagli sui campioni studiati e i trattamenti effettuati su di essi e descrive il setup utilizzato. Per determinare la migliore combinazione fibra/tecnica per l’applicazione prevista, è stato eseguito uno studio sistematico sulla risposta alla radiazione dei sensori distribuiti di temperatura e strain. Glieffetti permanenti della radiazione (dosi dell’ordine del MGy) su diverse classi di fibre, resistenti e sensibili alle radiazioni, sono discussi nel capitolo 4. Il capitolo 5 riporta le misure in situ sulle fibre resistenti alla radiazione per investigare gli effetti combinati di temperatura e radiazioni (raggi X) rappresentativi delle condizioni operative e accidentali nelle piscine di stoccaggio. Infine, abbiamo sviluppato un prototipo di sensore del livello dell’acqua nelle piscine di stoccaggio che è descritto nel capitolo 6. In seguito, le principali conclusioni e le prospettive sono discusse
Randall, Summer Lockerbie. "Development and utilization of optical low coherence reflectometry for the study of multiple scattering in randomly distributed solid-liquid suspensions /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8672.
Full textBergdoll, Greg M. "Characterization of two Vernier-Tuned Distributed Bragg Reflector (VT-DBR) Lasers used in Swept Source Optical Coherence Tomography (SS-OCT)." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1461.
Full textBook chapters on the topic "Distributed reflectometry"
Pradhan, Himansu Shekhar, P. K. Sahu, D. Ghosh, and S. Mahapatra. "Brillouin Distributed Temperature Sensor Using Optical Time Domain Reflectometry Techniques." In Smart Sensors, Measurement and Instrumentation, 207–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42625-9_10.
Full textSallem, Soumaya, Ousama Osman, Laurent Sommervogel, Marc Olivas, Arnaud Peltier, Françoise Paladian, and Pierre Bonnet. "Wired Network Distributed Diagnosis and Sensors Communications by Multi-carrier Time Domain Reflectometry." In Advances in Intelligent Systems and Computing, 1038–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01057-7_77.
Full text"Principles of Optical Time-Domain Reflectometry (OTDR) for Distributed Sensing." In An Introduction to Distributed Optical Fibre Sensors, 55–106. CRC Press, 2017. http://dx.doi.org/10.1201/9781315119014-4.
Full textShishkin, Victor, Kenji Tanaka, and Hideaki Murayama. "Proposal on Miniaturization of Distributed Sensing System Based on Optical Frequency Domain Reflectometry." In Advances in Transdisciplinary Engineering. IOS Press, 2019. http://dx.doi.org/10.3233/atde190103.
Full text"Distributed strain measurement in steel slab-on-girder bridge via Brillouin optical time domain reflectometry." In Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM, 899–900. CRC Press, 2015. http://dx.doi.org/10.1201/b18175-367.
Full textConference papers on the topic "Distributed reflectometry"
Yoon, Myung-Keun, Daniel F. Dolan, and Steve Gabriel. "Time domain reflectometry as a distributed strain sensor." In The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Masayoshi Tomizuka. SPIE, 2008. http://dx.doi.org/10.1117/12.776224.
Full textKreger, Stephen T., Emily Templeton, Daniel Kominsky, and Brian Templeton. "Distributed polarization state sensing with optical frequency domain reflectometry." In Fiber Optic Sensors and Applications XVI, edited by Glen A. Sanders, Robert A. Lieberman, and Ingrid U. Scheel. SPIE, 2019. http://dx.doi.org/10.1117/12.2519184.
Full textXiao, Hu, Huafeng Lu, Zeheng Zhang, Guolu Yin, and Tao Zhu. "Distributed pH sensing based on optical frequency domain reflectometry." In 2021 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, edited by Xuping Zhang, Yuncai Wang, and Hai Xiao. SPIE, 2022. http://dx.doi.org/10.1117/12.2616491.
Full textGorlov, Nikolai I., and Igor V. Bogachkov. "Distributed Fiber-Optic Probing using the Optical Reflectometry Method." In 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2022. http://dx.doi.org/10.1109/sibircon56155.2022.10016922.
Full textHu, Zihe, Can Zhao, and Ming Tang. "Distributed Optical Phase-sensitive Reflectometry Based on Continuous FrFT-DC Signal." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th6.13.
Full textDeng, Yuanpeng, Qinwen Liu, He li, Zhiwei Dai, and Zuyuan He. "Quasi-distributed Temperature Sensing with Enhanced Measurement Range Using OFDR and Weak Reflectors." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.th4.20.
Full textTürker, Volkan, Faruk Uyar, Tolga Kartaloğlu, Ekmel Özbay, and İbrahim Özdür. "Long-Range Distributed Acoustic Sensor Based on 3x3 Coupler Assisted Passive Demodulation Scheme." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am3m.3.
Full textOrsuti, Daniele, Arman Aitkulov, Martina Cappelletti, Luca Schenato, Mirko Magarotto, Marco Santagiustina, Cristian Antonelli, et al. "Multi-core Fibers as a Technological Platform for Distributed Twist Sensing." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th6.27.
Full textXie, Dongcheng, Xiang Zhang, Yicheng Lin, Cuofu Lin, Jun Yang, Yuncai Wang, and Yuwen Qin. "High Accuracy Distributed Birefringence Measurement of Polarization Maintaining Fiber Based on OFDR." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.tu3.73.
Full textShatalin, Sergey V., Vladimir N. Treschikov, and Alan J. Rogers. "Interferometric optical time-domain reflectometry for distributed optical fiber sensing." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Ryszard J. Pryputniewicz, Gordon M. Brown, and Werner P. O. Jueptner. SPIE, 1998. http://dx.doi.org/10.1117/12.316448.
Full text