Academic literature on the topic 'Distributed optimization and learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributed optimization and learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distributed optimization and learning"
Kamalesh, Kamalesh, and Dr Gobi Natesan. "Machine Learning-Driven Analysis of Distributed Computing Systems: Exploring Optimization and Efficiency." International Journal of Research Publication and Reviews 5, no. 3 (March 9, 2024): 3979–83. http://dx.doi.org/10.55248/gengpi.5.0324.0786.
Full textMertikopoulos, Panayotis, E. Veronica Belmega, Romain Negrel, and Luca Sanguinetti. "Distributed Stochastic Optimization via Matrix Exponential Learning." IEEE Transactions on Signal Processing 65, no. 9 (May 1, 2017): 2277–90. http://dx.doi.org/10.1109/tsp.2017.2656847.
Full textGratton, Cristiano, Naveen K. D. Venkategowda, Reza Arablouei, and Stefan Werner. "Privacy-Preserved Distributed Learning With Zeroth-Order Optimization." IEEE Transactions on Information Forensics and Security 17 (2022): 265–79. http://dx.doi.org/10.1109/tifs.2021.3139267.
Full textBlot, Michael, David Picard, Nicolas Thome, and Matthieu Cord. "Distributed optimization for deep learning with gossip exchange." Neurocomputing 330 (February 2019): 287–96. http://dx.doi.org/10.1016/j.neucom.2018.11.002.
Full textYoung, M. Todd, Jacob D. Hinkle, Ramakrishnan Kannan, and Arvind Ramanathan. "Distributed Bayesian optimization of deep reinforcement learning algorithms." Journal of Parallel and Distributed Computing 139 (May 2020): 43–52. http://dx.doi.org/10.1016/j.jpdc.2019.07.008.
Full textNedic, Angelia. "Distributed Gradient Methods for Convex Machine Learning Problems in Networks: Distributed Optimization." IEEE Signal Processing Magazine 37, no. 3 (May 2020): 92–101. http://dx.doi.org/10.1109/msp.2020.2975210.
Full textLin, I.-Cheng. "Learning and Optimization over Robust Networked Systems." ACM SIGMETRICS Performance Evaluation Review 52, no. 3 (January 9, 2025): 23–26. https://doi.org/10.1145/3712170.3712179.
Full textGao, Hongchang. "Distributed Stochastic Nested Optimization for Emerging Machine Learning Models: Algorithm and Theory." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (June 26, 2023): 15437. http://dx.doi.org/10.1609/aaai.v37i13.26804.
Full textChoi, Dojin, Jiwon Wee, Sangho Song, Hyeonbyeong Lee, Jongtae Lim, Kyoungsoo Bok, and Jaesoo Yoo. "k-NN Query Optimization for High-Dimensional Index Using Machine Learning." Electronics 12, no. 11 (May 24, 2023): 2375. http://dx.doi.org/10.3390/electronics12112375.
Full textYang, Peng, and Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Full textDissertations / Theses on the topic "Distributed optimization and learning"
Funkquist, Mikaela, and Minghua Lu. "Distributed Optimization Through Deep Reinforcement Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293878.
Full textFörstärkningsinlärningsmetoder tillåter självlärande enheter att spela video- och brädspel autonomt. Projektet siktar på att studera effektiviteten hos förstärkningsinlärningsmetoderna Q-learning och deep Q-learning i dynamiska problem. Målet är att träna upp robotar så att de kan röra sig genom ett varuhus på bästa sätt utan att kollidera. En virtuell miljö skapades, i vilken algoritmerna testades genom att simulera agenter som rörde sig. Algoritmernas effektivitet utvärderades av hur snabbt agenterna lärde sig att utföra förutbestämda uppgifter. Resultatet visar att Q-learning fungerar bra för enkla problem med få agenter, där system med två aktiva agenter löstes snabbt. Deep Q-learning fungerar bättre för mer komplexa system som innehåller fler agenter, men fall med suboptimala rörelser uppstod. Båda algoritmerna visade god potential inom deras respektive områden, däremot måste förbättringar göras innan de kan användas i verkligheten.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Konečný, Jakub. "Stochastic, distributed and federated optimization for machine learning." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/31478.
Full textArmond, Kenneth C. Jr. "Distributed Support Vector Machine Learning." ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/711.
Full textPatvarczki, Jozsef. "Layout Optimization for Distributed Relational Databases Using Machine Learning." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/291.
Full textOuyang, Hua. "Optimal stochastic and distributed algorithms for machine learning." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49091.
Full textEl, Gamal Mostafa. "Distributed Statistical Learning under Communication Constraints." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/314.
Full textDai, Wei. "Learning with Staleness." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1209.
Full textLu, Yumao. "Kernel optimization and distributed learning algorithms for support vector machines." Diss., Restricted to subscribing institutions, 2005. http://uclibs.org/PID/11984.
Full textDinh, The Canh. "Distributed Algorithms for Fast and Personalized Federated Learning." Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/30019.
Full textReddi, Sashank Jakkam. "New Optimization Methods for Modern Machine Learning." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1116.
Full textBooks on the topic "Distributed optimization and learning"
Jiang, Jiawei, Bin Cui, and Ce Zhang. Distributed Machine Learning and Gradient Optimization. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3420-8.
Full textWang, Huiwei, Huaqing Li, and Bo Zhou. Distributed Optimization, Game and Learning Algorithms. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7.
Full textJoshi, Gauri. Optimization Algorithms for Distributed Machine Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19067-4.
Full textTatarenko, Tatiana. Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65479-9.
Full textOblinger, Diana G. Distributed learning. Boulder, Colo: CAUSE, 1996.
Find full textMajhi, Sudhan, Rocío Pérez de Prado, and Chandrappa Dasanapura Nanjundaiah, eds. Distributed Computing and Optimization Techniques. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2281-7.
Full textGiselsson, Pontus, and Anders Rantzer, eds. Large-Scale and Distributed Optimization. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97478-1.
Full textLü, Qingguo, Xiaofeng Liao, Huaqing Li, Shaojiang Deng, and Shanfu Gao. Distributed Optimization in Networked Systems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8559-1.
Full textAbdulrahman Younis Ali Younis Kalbat. Distributed and Large-Scale Optimization. [New York, N.Y.?]: [publisher not identified], 2016.
Find full textOtto, Daniel, Gianna Scharnberg, Michael Kerres, and Olaf Zawacki-Richter, eds. Distributed Learning Ecosystems. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38703-7.
Full textBook chapters on the topic "Distributed optimization and learning"
Joshi, Gauri, and Shiqiang Wang. "Communication-Efficient Distributed Optimization Algorithms." In Federated Learning, 125–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96896-0_6.
Full textJiang, Jiawei, Bin Cui, and Ce Zhang. "Distributed Gradient Optimization Algorithms." In Distributed Machine Learning and Gradient Optimization, 57–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_3.
Full textJiang, Jiawei, Bin Cui, and Ce Zhang. "Distributed Machine Learning Systems." In Distributed Machine Learning and Gradient Optimization, 115–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_4.
Full textJoshi, Gauri. "Distributed Optimization in Machine Learning." In Synthesis Lectures on Learning, Networks, and Algorithms, 1–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19067-4_1.
Full textLin, Zhouchen, Huan Li, and Cong Fang. "ADMM for Distributed Optimization." In Alternating Direction Method of Multipliers for Machine Learning, 207–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_6.
Full textJiang, Jiawei, Bin Cui, and Ce Zhang. "Basics of Distributed Machine Learning." In Distributed Machine Learning and Gradient Optimization, 15–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_2.
Full textScheidegger, Carre, Arpit Shah, and Dan Simon. "Distributed Learning with Biogeography-Based Optimization." In Lecture Notes in Computer Science, 203–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21827-9_21.
Full textGonzález-Mendoza, Miguel, Neil Hernández-Gress, and André Titli. "Quadratic Optimization Fine Tuning for the Learning Phase of SVM." In Advanced Distributed Systems, 347–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11533962_31.
Full textWang, Huiwei, Huaqing Li, and Bo Zhou. "Cooperative Distributed Optimization in Multiagent Networks with Delays." In Distributed Optimization, Game and Learning Algorithms, 1–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7_1.
Full textWang, Huiwei, Huaqing Li, and Bo Zhou. "Constrained Consensus of Multi-agent Systems with Time-Varying Topology." In Distributed Optimization, Game and Learning Algorithms, 19–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7_2.
Full textConference papers on the topic "Distributed optimization and learning"
Patil, Aditya, Sanket Lodha, Sonal Deshmukh, Rupali S. Joshi, Vaishali Patil, and Sudhir Chitnis. "Battery Optimization Using Machine Learning." In 2024 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS), 1–5. IEEE, 2024. https://doi.org/10.1109/icbds61829.2024.10837428.
Full textKhan, Malak Abid Ali, Luo Senlin, Hongbin Ma, Abdul Khalique Shaikh, Ahlam Almusharraf, and Imran Khan Mirani. "Optimization of LoRa for Distributed Environments Based on Machine Learning." In 2024 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 137–42. IEEE, 2024. https://doi.org/10.1109/apwimob64015.2024.10792952.
Full textChao, Liangchen, Bo Zhang, Hengpeng Guo, Fangheng Ji, and Junfeng Li. "UAV Swarm Collaborative Transmission Optimization for Machine Learning Tasks." In 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS), 504–11. IEEE, 2024. http://dx.doi.org/10.1109/icpads63350.2024.00072.
Full textShamir, Ohad, and Nathan Srebro. "Distributed stochastic optimization and learning." In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2014. http://dx.doi.org/10.1109/allerton.2014.7028543.
Full textHulse, Daniel, Brandon Gigous, Kagan Tumer, Christopher Hoyle, and Irem Y. Tumer. "Towards a Distributed Multiagent Learning-Based Design Optimization Method." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68042.
Full textLi, Naihao, Jiaqi Wang, Xu Liu, Lanfeng Wang, and Long Zhang. "Contrastive Learning-based Meta-Learning Sequential Recommendation." In 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT). IEEE, 2024. http://dx.doi.org/10.1109/icdcot61034.2024.10515699.
Full textVaidya, Nitin H. "Security and Privacy for Distributed Optimization & Distributed Machine Learning." In PODC '21: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3465084.3467485.
Full textLiao, Leonardo, and Yongqiang Wu. "Distributed Polytope ARTMAP: A Vigilance-Free ART Network for Distributed Supervised Learning." In 2009 International Joint Conference on Computational Sciences and Optimization, CSO. IEEE, 2009. http://dx.doi.org/10.1109/cso.2009.63.
Full textWang, Shoujin, Fan Wang, and Yu Zhang. "Learning Rate Decay Algorithm Based on Mutual Information in Deep Learning." In 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT). IEEE, 2024. http://dx.doi.org/10.1109/icdcot61034.2024.10515368.
Full textAnand, Aditya, Lakshay Rastogi, Ansh Agarwaal, and Shashank Bhardwaj. "Refraction-Learning Based Whale Optimization Algorithm with Opposition-Learning and Adaptive Parameter Optimization." In 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE, 2024. http://dx.doi.org/10.1109/icdcece60827.2024.10548420.
Full textReports on the topic "Distributed optimization and learning"
Stuckey, Peter, and Toby Walsh. Learning within Optimization. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada575367.
Full textNygard, Kendall E. Distributed Optimization in Aircraft Mission Scheduling. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada300064.
Full textMeyer, Robert R. Large-Scale Optimization Via Distributed Systems. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada215136.
Full textShead, Timothy, Jonathan Berry, Cynthia Phillips, and Jared Saia. Information-Theoretically Secure Distributed Machine Learning. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1763277.
Full textGraesser, Arthur C., and Robert A. Wisher. Question Generation as a Learning Multiplier in Distributed Learning Environments. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada399456.
Full textVoon, B. K., and M. A. Austin. Structural Optimization in a Distributed Computing Environment. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada454846.
Full textHays, Robert T. Theoretical Foundation for Advanced Distributed Learning Research. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada385457.
Full textChen, J. S. J. Distributed-query optimization in fragmented data-base systems. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/7183881.
Full textNocedal, Jorge. Nonlinear Optimization Methods for Large-Scale Learning. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1571768.
Full textLumsdaine, Andrew. Scalable Second Order Optimization for Machine Learning. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1984057.
Full text