Academic literature on the topic 'Distinct charge density wave'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distinct charge density wave.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distinct charge density wave"
Hall, R. P., and A. Zettl. "Distinct current-carrying charge density wave states in NbSe3." Solid State Communications 57, no. 1 (January 1986): 27–30. http://dx.doi.org/10.1016/0038-1098(86)90664-2.
Full textMiao, H., J. Lorenzana, G. Seibold, Y. Y. Peng, A. Amorese, F. Yakhou-Harris, K. Kummer, et al. "High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking." Proceedings of the National Academy of Sciences 114, no. 47 (November 7, 2017): 12430–35. http://dx.doi.org/10.1073/pnas.1708549114.
Full textMalliakas, Christos D., Maria Iavarone, Jan Fedor, and Mercouri G. Kanatzidis. "Coexistence and Coupling of Two Distinct Charge Density Waves in Sm2Te5." Journal of the American Chemical Society 130, no. 11 (March 2008): 3310–12. http://dx.doi.org/10.1021/ja7111405.
Full textYUE, SONG. "ELECTRIC FIELD-ASSISTED RELAXATION OF THE CHARGE DENSITY WAVES IN K0.3MoO3." Modern Physics Letters B 21, no. 27 (November 20, 2007): 1863–67. http://dx.doi.org/10.1142/s021798490701422x.
Full textEFTHIMION, PHILIP C., ERIK GILSON, LARRY GRISHAM, PAVEL KOLCHIN, RONALD C. DAVIDSON, SIMON YU, and B. GRANT LOGAN. "ECR plasma source for heavy ion beam charge neutralization." Laser and Particle Beams 21, no. 1 (January 2003): 37–40. http://dx.doi.org/10.1017/s0263034602211088.
Full textKandhakumar, Gopal, Chinnasamy Kalaiarasi, and Poomani Kumaradhas. "Structure and charge density distribution of amine azide based hypergolic propellant molecules: a theoretical study." Canadian Journal of Chemistry 94, no. 2 (February 2016): 126–36. http://dx.doi.org/10.1139/cjc-2015-0416.
Full textZhang, Xiaoxiao, Jun Hou, Wei Xia, Zhian Xu, Pengtao Yang, Anqi Wang, Ziyi Liu, et al. "Destabilization of the Charge Density Wave and the Absence of Superconductivity in ScV6Sn6 under High Pressures up to 11 GPa." Materials 15, no. 20 (October 21, 2022): 7372. http://dx.doi.org/10.3390/ma15207372.
Full textShi, Xun, Wenjing You, Yingchao Zhang, Zhensheng Tao, Peter M. Oppeneer, Xianxin Wu, Ronny Thomale, et al. "Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe2 mediated by mode-selective electron-phonon coupling." Science Advances 5, no. 3 (March 2019): eaav4449. http://dx.doi.org/10.1126/sciadv.aav4449.
Full textShimano, Ryo, and Naoto Tsuji. "Higgs Mode in Superconductors." Annual Review of Condensed Matter Physics 11, no. 1 (March 10, 2020): 103–24. http://dx.doi.org/10.1146/annurev-conmatphys-031119-050813.
Full textYu, Fang-Hang, Xi-Kai Wen, Zhi-Gang Gui, Tao Wu, Zhenyu Wang, Zi-Ji Xiang, Jianjun Ying, and Xianhui Chen. "Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5." Chinese Physics B 31, no. 1 (January 1, 2022): 017405. http://dx.doi.org/10.1088/1674-1056/ac3990.
Full textDissertations / Theses on the topic "Distinct charge density wave"
Gaspar, Luis Alejandro Ladino. "CHARGE DENSITY WAVE POLARIZATION DYNAMICS." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/643.
Full textRai, Ram C. "ELECTRO-OPTICAL STUDIES OF CHARGE-DENSITY-WAVE MATERIALS." UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_diss/427.
Full textRu, Nancy. "Charge density wave formation in rare-earth tritellurides /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textHite, Omar. "Controlling the Charge Density Wave in VSE2 Containing Heterostructures." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23179.
Full textBoshoff, Ilana. "Ultrafast electron diffraction on the charge density wave compound 4Hb-TaSe2." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20062.
Full textENGLISH ABSTRACT: Ultrafast electron diffraction is a powerful method to study atomic movement in crystals on sub-picosecond timescales. This thesis consists of three parts. In part one the ultrafast electron diffraction machine is described, followed by improvements that were made and techniques that were developed in order to bring the system to state of the art level and enable the acquisition of suffcient data to obtain information on the structural dynamics in crystals. The second part contains a description of the sample which was studied in our fi rst time-resolved measurements, the transition-metal dichalcogenide 4Hb-TaSe2. This particular crystal is an example of a strongly coupled electronic system which develops a charge density wave (CDW) accompanied by a periodic lattice distortion (PLD). An overview of the formation of electron diffraction patterns and what can be learned from them are also given, followed by the results of the ultrafast electron diffraction experiments done with 4Hb-TaSe2. Part three describes an alternative source to study dynamics in crystalline samples, namely laser plasma-based ultrafast X-ray diffraction. The ultrafast electron diffraction group functions as a unit, but my tasks ranged from sample preparation and characterisation of the electron beam to the setting up and execution of experiments. I was involved in analysing the data and contributed small parts to the data analysis software.
AFRIKAANSE OPSOMMING: Ultravinnige elektron diffraksie is a metode om die beweging van atome in kristalle op sub-pikosekonde tydskale te bestudeer. Hierdie tesis bestaan uit drie dele. In deel een van die tesis word die ultravinnige elektron diffraksie masjien beskryf, gevolg deur verbeteringe wat aangebring is en tegnieke wat ontwikkel is om die sisteem tot op 'n wêreldklas vlak te bring waar die insameling van genoegsame data om inligting oor die strukturele dinamika in kristalle te bekom, moontlik is. Die tweede deel bevat 'n beskrywing van die monster wat in ons eerste tydopgeloste eksperimente gebruik is, naamlik die oorgangsmetaaldichalkogenied 4Hb-TaSe2. Hierdie kristal is 'n voorbeeld van 'n sterk gekoppelde elektroniese sisteem wat 'n ladingsdigtheid-golf en 'n gepaardgaande periodiese versteuring van die kristalrooster ontwikkel. 'n Oorsig van die formasie van elektron diffraksiepatrone en wat ons daaruit kan leer word ook gegee. Daarna word die resultate van die ultravinnige elektron diffraksie eksperimente wat op 4Hb-TaSe2uitgevoer is beskryf en bespreek. In deel drie word 'n alternatiewe metode om die dinamika in kristalmonsters te bestudeer, naamlik laser plasma-gebaseerde ultravinnige X-straal diffraksie, beskryf. Die ultravinnige elektron diffraksie groep funksioneer as 'n eenheid, maar my verantwoordelikhede het gestrek van die voorbereiding van monsters en die karakterisering van die elektron bundel tot die opstel en uitvoer van eksperimente. Ek was ook betrokke by die analisering van data en het dele van die data analise sagteware geskryf.
Yetman, Paul John. "Experimental studies on the size dependence of sliding charge-density wave phenomena." Thesis, University of Bristol, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279769.
Full textRen, Yuhang. "Time-resolved optical studies of colossal magnetoresistance and charge -density wave materials." W&M ScholarWorks, 2003. https://scholarworks.wm.edu/etd/1539623421.
Full textBellec, Ewen. "Study of charge density wave materials under current by X-ray diffraction." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS437/document.
Full textThe main subject of this manuscript is the X-ray diffraction of charge density wave (CDW) materials. We studied the quasi-1D NbSe3 crystal and the quasi-2D TbTe3. Several large instruments facilities were used for this study, the ESRF synchrotron in Grenoble on the ID01 line and the LCLS free electron laser in Stanford. First, thanks to the coherence of the X-beam at LCLS, we were able to observe a loss of transverse coherence in NbSe3 when applying an electrical current above a certain threshold as well as a longitudinal compression of the CDW. Then, at the ESRF, we used an X-ray beam focused on the micrometer scale by a Fresnel zone plate to scan the CDW locally by diffraction on NbSe3 and on TbTe3. When a current is applied to the sample, we observed a transverse deformation indicating that the CDW is pinned on the sample surface in NbSe3. In the case of TbTe3, the CDW rotates under current showing a hysteresis cycle when one is continuously changing from positive to negative current. We have also observed in several regions, in TbTe3, the creation of localized irradiation defects inducing a compression-dilation of the CDW. In a last theoretical part, we show how the theory of electric transport in the CDW state by a train of charged solitons, as well as taking into account the CDW pinning on the surface of the sample that we have seen experimentally, allows us to understand several resistivity measurements, found in the literature, made on samples with different dimensions. Finally, we present several ideas for an explanation of the CDW pinning at the surfaces on a microscopic level and propose the hypothesis of a commensurate CDW on the surface (and incommensurate in volume)
Edkins, Stephen David. "Visualising the charge and Cooper pair density waves in cuprates." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9888.
Full textYi, Tianyou. "Modeling of dynamical vortex states in charge density waves." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00768237.
Full textBooks on the topic "Distinct charge density wave"
Butz, Tilman, ed. Nuclear Spectroscopy on Charge Density Wave Systems. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-1299-2.
Full textButz, Tilman. Nuclear Spectroscopy on Charge Density Wave Systems. Dordrecht: Springer Netherlands, 1992.
Find full textTilman, Butz, ed. Nuclear spectroscopy on charge density wave systems. Dordrecht: Kluwer Academic Publishers, 1992.
Find full textZong, Alfred. Emergent States in Photoinduced Charge-Density-Wave Transitions. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81751-0.
Full textBoswell, Frank W. Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. Dordrecht: Springer Netherlands, 1999.
Find full textBoswell, Frank W., and J. Craig Bennett, eds. Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4603-6.
Full textW, Boswell Frank, and Bennett J. Craig, eds. Advances in the cyrstallographic and microstructural analysis of charge density wave modulated crystals. Dordrecht: Kluwer Academic Publishers, 1999.
Find full textCraig, Bennett J., and Boswell Frank W, eds. Advances in the crystallographic and microstructural analysis of charge density wave modulated crystals. Boston: Kluwer Academi Publishers, 1999.
Find full textBudkowski, Andrzej. Symmetry analysis of some modulated structures: Study of charge density wave-like periodic deviations in NbS₃, Au₂+x, Cd₁-x, TaTe₄ and (Ta₀.₇₂Nb₀.₂₈)Te₄. Kraków: Nakł. Uniwersytetu Jagiellońskiego, 1992.
Find full textGy, Hutiray, and Sólyom J, eds. Charge density waves in solids: Proceedings of the international conference held in Budapest, Hungary, September 3-7, 1984. Berlin: Springer-Verlag, 1985.
Find full textBook chapters on the topic "Distinct charge density wave"
Monceau, P. "From Sliding Charge Density Wave to Charge Ordering." In The Physics of Organic Superconductors and Conductors, 17–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76672-8_2.
Full textOverhauser, A. W. "Charge Density Wave Phenomena in Potassium." In Anomalous Effects in Simple Metals, 394–410. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch48.
Full textWerner, S. A., T. M. Giebultowicz, and A. W. Overhauser. "Charge Density Wave Satellites in Potassium?" In Anomalous Effects in Simple Metals, 545–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch66.
Full textFrano, Alex. "The Cuprates: A Charge Density Wave." In Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures, 91–138. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07070-4_4.
Full textBrazovskii, S., and S. Matveenko. "Solitons in Charge Density Wave Crystals." In NATO ASI Series, 125–35. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5961-6_11.
Full textMonceau, P. "Introduction to Charge Density Wave Transport." In Physics and Chemistry of Low-Dimensional Inorganic Conductors, 371–88. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1149-2_24.
Full textBünner, M. J., G. Heinz, A. Kittel, and J. Parisi. "Structure Formation in Charge Density Wave Systems." In Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, 133–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79506-0_6.
Full textBoriack, M. L., and A. W. Overhauser. "Dynamics of an Incommensurate Charge-Density Wave." In Anomalous Effects in Simple Metals, 169–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch27.
Full textGiuliani, G. F., and A. W. Overhauser. "Charge-Density-Wave Satellite Intensity in Potassium." In Anomalous Effects in Simple Metals, 295–301. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch39.
Full textGiuliani, G. F., and A. W. Overhauser. "Structure Factor of a Charge-Density Wave." In Anomalous Effects in Simple Metals, 327–37. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch41.
Full textConference papers on the topic "Distinct charge density wave"
Eremenko, Victor, Peter Gammel, Gyorgy Remenyi, Valentyna Sirenko, Anatolii Panfilov, Vladimir Desnenko, Vladimir Ibulaev, and A. Fedorchenko. "Magnetostriction Of Charge Density Wave Superconductor." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355033.
Full textMatsuura, Toru, Taku Tsuneta, Katsuhiko Inagaki, and Satoshi Tanda. "Charge Density Wave Dynamics on Ring." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355285.
Full textRogovin, D., J. Scholl, R. Pizzoferrato, M. DeSpirito, M. Marinelli, and U. Zammit. "Stark-enchanced nonlinear optics in shaped microparticle suspensions: beam combination." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fz3.
Full textMATSUURA, TORU, KATSUHIKO INAGAKI, SATOSHI TANDA, and TAKU TSUNETA. "TOPOLOGICAL EFFECTS IN CHARGE DENSITY WAVE DYNAMICS." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0060.
Full textLalngilneia, P. C., A. Thamizhavel, S. Ramakrishnan, and D. Pal. "Charge density wave in Er2Ir3Si5 single crystal." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872511.
Full textYOSHIMOTO, HIROYUKI, and SUSUMU KURIHARA. "THERMOELECTRIC TRANSPORTS IN CHARGE-DENSITY-WAVE SYSTEMS." In Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics — In the Light of Quantum Computation. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701619_0011.
Full textDegiorai, L., and G. Groner. "Fluctuation effects in charge density wave condensates." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835922.
Full textNOGAWA, T., and K. NEMOTO. "CHARGE DENSITY WAVE STATE IN TOPOLOGICAL CRYSTAL." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708687_0034.
Full textvan Smaalen, Sander, Sitaram Ramakrishnan, Ngyuen Hai An Bui, Florian Feulner, Marila Anurova, Andreas Schönleber, and Dmitry Chernyshov. "The three-dimensional charge-density-wave compound CuV2S4." In Aperiodic 2018 ("9th Conference on Aperiodic Crystals"). Iowa State University, Digital Press, 2018. http://dx.doi.org/10.31274/aperiodic2018-180810-33.
Full textINAGAKI, KATSUHIKO, TAKESHI TOSHIMA, and SATOSHI TANDA. "SOLITON TRANSPORT IN NANOSCALE CHARGE-DENSITY-WAVE SYSTEMS." In Proceedings of the 1st International Symposium on TOP2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772879_0027.
Full textReports on the topic "Distinct charge density wave"
Coleman, R. V., Zhenxi Dai, W. W. McNairy, C. G. Slough, and Chen Wang. Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5901839.
Full textThomson, R. E. Scanning tunneling microscopy of charge density wave structure in 1T- TaS sub 2. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5130392.
Full textColeman, R. V., Zhenxi Dai, W. W. McNairy, C. G. Slough, and Chen Wang. Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10122090.
Full textThomson, Ruth Ellen. Scanning tunneling microscopy of charge density wave structure in 1T- TaS2. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10158007.
Full textColeman, R. V., W. W. McNairy, and C. G. Slough. Amplitude modulation of charge-density-wave domains in 1T-TaS sub 2 at 300 K. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5879904.
Full textColeman, R. V., W. W. McNairy, and C. G. Slough. Amplitude modulation of charge-density-wave domains in 1T-TaS{sub 2} at 300 K. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10122082.
Full textCreager, W. N. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6112541.
Full text